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Left: Courtesy of Mannion et al. Used under CC BY. Right: Courtesy of Sara Beery. Used under CC BY.
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Machine Learning: A Success Story

Machine Translation

Image Classification
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Robotic hand © OpenAl. Images © source
unknown. All rights reserved. This content
is excluded from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

Robotic Manipulation

Image removed to copyright restrictions.

Realistic Image Generation


https://ocw.mit.edu/help/faq-fair-use/

Are ML systems really ready for the real world?



Standard ML setting

training distribution

test distribution




... VS the real world

deploy model on data from a
different distribution

e.g.:
* perturbed data
o different label distribution

* other shifts (sequence/graph
size, weather, country/city,
source of measurement,...)



What can go wrong?

© @hardmaru on X, @DimakKrotov on X, CNN.com. All rights reserved. This content
is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/




Concrete Problems in Al Safety

Dario Amodei* Chris Olah* Jacob Steinhardt Paul Christiano

Google Brain Google Brain Stanford University UC Berkeley
John Schulman Dan Mane
OpenAl Google Brain

might serve a benchmarking role similar to that of the bAbI tasks [163], with the eventual goal being
to develop a single architecture that can learn to avoid catastrophes in all environments in the suite.

7 Robustness to Distributional Change

All of us occasionally find ourselves in situations that our previous experience has not adequately

prepared us to deal with-for instance, flying an airplane, traveling to a country whose culture is
very different from ours, or taking care of children for the first time. Such situations are inherently



QOutline tfor today

e Adversarial examples and training: small perturbations

e Distribution Shifts



Adversarial examples



Adversarial examples

noise (not random) “airliner”

91% confidence 99% confidence

* ML model predictions are (mostly) accurate but can be brittle

© Aleksander Madry and Ludwig Schmidt. All rights reserved. This content is
excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/

10 example: Szegedy et al 2013, obtained from https://gradientscience.org/intro_adversarial/



Adversarial examples

£

'
1S

O
1%

© Papernot et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

11 Papernot et al 2017, Practical black-box attacks against machine learning



Adversarial stickers

Classifier Input Classifier Qutput

o w A
’ | ,

Loasted anana sPognest bssene

© Brown et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/
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https://www.youtube.com/watch?v=i1sp4X57TL4

Adversarial stickers

Classifier Input

© Brown et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/
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13

banana

Classifier Output

slug snail orange

image: Brown et al 2018, Adversarial patch. https://youtu.be/i1sp4X57TL4



Adversarial stickers

Classifier Input

llg-—

© Brown et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/
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banana

Classifier Output

toaster orange crash_helm

image: Brown et al 2018, Adversarial patch. https://youtu.be/i1sp4X57TL4



Adversarial stickers

~Classifier Input

© Brown et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/
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toaster

Classifier Output

banana piggy bank spaghetti_

image: Brown et al 2018, Adversarial patch. https://youtu.be/i1sp4X57TL4



Adversarial examples 3D-printec
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rifle

revolver

-
O
=

0

ki

bl
om
"

© Athalye et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/

16 image: Athalye et al 2018, Synthesizing robust adversarial examples


https://www.youtube.com/watch?v=piYnd_wYlT8

Adversarial examples 3D-printec

" classified as turtle M classified as rifle
B classified as other

© Athalye et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

17 image: Athalye et al 2018, Synthesizing robust adversarial examples



Speech recognition example

© Nicholas Carlini, David Wagner. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/

18 Carlini & Wagner 2018



Hmmmm....

* Are our models completely useless?
* \Why does this happen?

 Can one prevent it?

19



History of adversarial examples / brittleness

© Battista Biggio, Fabio Roli. All
rights reserved. This content is
excluded from our Creative
Commons license. For more
information, see
https://ocw.mit.edu/help/fag-fair-use/

20 Biggio & Roli 2018, Wild Patterns: ten years after the rise of adversarial machine learning



How do you create an adversarial example?

5 “airliner”

e want: small perturbation that does
not change meaning to a human,
but to ML model

e model outputs Py(y|Xx) (softmax)

e adversarial example: max Py(Yiareet | X+0
g
5eA %
T \ input image
small wrong class
perturbation, e.g. (“airliner”)

A={5eR?| 6]l < €}

© Aleksander Madry and Ludwig Schmidt. All rights reserved. This content is
excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

21 allowed perturbations



How to find an adversarial example?

ML model

max 0 (ytarget | 5)

0EA
? input image
small wrong class
perturbation, e.g. (“airliner”)

* e.g. Projected gradient ascent (we update data perturbation 9!):

1. take a step in the direction of the gradient:
6D = 6U + 1 - VsPy(Vtarget | X + 6)

2. into the feasible set A
3. repeatsteps 1 & 2

22



How to “defend” against adversarial examples?

Recall:

e Adversarial example Versus standard training:

max Loss (fg(x+5),y) m@in Loss (fe (X)vy)
c

23



How to “defend” against adversarial examples?

1 < N
. Standard training: min — Z Loss( fy(x”), y')
0. n = K

via (stochastic) gradient descent neural network

e Adversarial training / robust optimization:

1 ¢ | |
min —Z max Loss (f@(x(’) + 5),y(’))

0 n - 0EA
=1

“adaptive data augmentation”

24



Adversarial training with stochastic gradient descent

[ & | |
min — Y /max Loss(fg(x(l) 5),y(’))
6 n 1 0EA

repeat until convergence:
1. sample a data point (X, y)

2. compute the optimal adversarial perturbation 6* (approximately)

3. compute the gradient g = VyLoss (]fg(x + 5*),)})

4. update 0 with the gradient g

25



What do adversarial examples tell us?

* something about the input “features” that are critical for the model’s
decision

 Example:

O O

o O

© Hongzhou Lin. All rights reserved.
This content is excluded from our
Creative Commons license. For

Training data:
classify 4 vs 9

Adversarial
perturbations more information, see

https://ocw.mit.edu/help/fag-fair-use/

26 images: Hongzhou Lin



Predictive features

Robust features Non-robust features
Correlated with label Correlated with label, but can
even when perturbed be flipped via perturbation

Useless
features

* Many features may be correlated with the label and hence predictive and

help with accuracy, beyond what humans would use.

27

© Aleksander Madry. All rights
reserved. This content is excluded
from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

illustration: Aleksander Madry



Where do these correlations come from?

e Data

“Fish” from the ImageNet
training set

© sources unknown. All rights
reserved. This content is excluded
from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/
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Where do these correlations come from?

e ...and how we create datasets

ldeal world:

Real-world Expert Perfect Meaningful
annotators annotations benchmark

Jil =AM

Images

-teleatReal world:

Flickr/scraped Automated + Noisy, biased Easy-to-optimize
images Crowd Labels annotations benchmark

e
A3

e 7
) dog bird © sources unknown. All rights
= RS [z I I reserved. This content is excluded
A= ﬂ ﬂ k [ & from our Creative Commons license.
e | oo e For more information, see

https://ocw.mit.edu/help/fag-fair-use/

29



1t's all “shortcuts”

e Shortcuts: teatures correlated with label in the training data, but not under
realistic distribution shifts

e Models will use them and not generalize it features are no longer

correlated
ko ]
A A A A B B B B

Categorization by (typical) human Categorization by neural network

1.1.d. test set

© Geirhos et al. All rights reserved.
This content is excluded from our
Creative Commons license. For
more information, see
https://ocw.mit.edu/help/fag-fair-use/

30 illustration: Geirhos et al 2020



1t's all “shortcuts”

e Shortcuts: teatures correlated with label in the training data, but not under

realistic distribution shifts

e Models will use them and not generalize it features are no longer

correlated

 This is related to data, not models: adversarial examples transfer across
models trained on the same dataset

31



What can these shortcuts look like?

A herd of sheep grazihg on a 1

Tags: grazing, sheep, mountal

oup of giraffe standing next to a tree
- ‘www. flickr.com/photos/gratapictures - CC-BY-NC

© Al Weirdness. All rights reserved.
This content is excluded from our
Creative Commons license. For
more information, see

Left: A man is holding a dog in his hand https://ocw.mit.edu/help/fag-fair-use/

Right: A woman is holding a dog in her hand images: https://www.aiweirdness.com/do-neural-nets-dream-of-electric-18-03-02/
Image: @SouperSarah




What can these shortcuts look like?

18 12

i ...if an image had a ruler in it, the
.- B B algorithm was more likely to call a
- FTEE  TUESS tumor malignant...”

B33 079 24 BSE2) O

[Esteva et al. 2017]
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"CNNs were able to detect where
an x-ray was acquired [...] and
calibrate predictions accordingly.”

[Zech et al. 2018]

© sources unknown. All rights
reserved. This content is excluded
from our Creative Commons
license. For more information, see

nOt a" predictive %atterns are deSirabIe https://ocw.mit.edu/help/fag-fair-use/




Many more...

Same category for humans Same category for DNNs
but not for DNNs (intended generaliszation) but not for humans (unintended generalization)

|
2
Adversarial

Excessive Fooling Natural Texturized
examples Distortions Pose Texture Background

invanance images adversarials images
Wang 2018 Szegedy 2013 Dodge 2019 Alcorn 2019 Geirhos 2019 Beery 2018 Jacobson 2019 Nguyen 2015 Hendrycks 2019 Brendel 2019

iLid.

© Geirhos et al. All rights reserved.
This content is excluded from our
Creative Commons license. For
more information, see
https://ocw.mit.edu/help/fag-fair-use/

34

illustration: Geirhos et al 2020, Shortcut learning in deep neural networks



Transtormers Learn Shortcuts to Automata

Bingbin Liu'* Jordan T. Ash? Surbhi Goel?® Akshay Krishnamurthy? Cyril Zhang?

1Carnegie Mellon University 2Microsoft Research NYC 3University of Pennsylvania

bingbinl@cs.cmu.edu, {ash.jordan, goel.surbhi, akshaykr, cyrilzhang}@microsoft.com

Abstract

Algorithmic reasoning requires capabilities which are most naturally understood through recurrent
models of computation, like the Turing machine. However, Transformer models, while lacking recurrence,
are able to perform such reasoning using far fewer layers than the number of reasoning steps. This raises
the question: what solutions are these shallow and non-recurrent models finding? We investigate this
question in the setting of learning automata, discrete dynamical systems naturally suited to recurrent _ _ o
modeling and expressing algorithmic tasks. Our theoretical results completely characterize shortcut para"el solutions generallze within-
solutions, whereby a shallow Transformer with only o(T") layers can exactly replicate the computation of distribution,
an automaton on an input sequence of length 7T'. By representing automata using the algebraic structure but not out-of-distribution
of their underlying transformation semigroups, we obtain O(log T")-depth simulators for all automata and
O(1)-depth simulators for all automata whose associated groups are sc
synthetic experiments by training Transformers to simulate a wide var: — GPT GPT - Shifted positions GPT - No positional encoding
shortcut solutions can be learned via standard training. We further in —— LSTM —— Scratchpad -~ Scratchpad+recency - In distribution
solutions and propose potential mitigations. |

1.0 Tt ———— D g 1.0
- ' 9 :
5 0.9 E © 0.9 5
S ' 2 :
< OV !
oLi | - X 0.8 ' < 0.8 |
iu et al. All rights reserved. This ; i G i
content is excluded from our 0 : :
Creative Commons license. For 0.7 ' \ 0.7 i
more information, see | ’ 20 40 60 80 100 120 ' 20 40 60 80 100 120
https://ocw.mit.edu/help/fag-fair-use/ Sequence Length Sequence Length
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Effect ot adversarial training

Robust features Non-robust features
Correlated with label Correlated with label, but can
even when perturbed  be flipped via perturbation

Useless
features

* model output should be stable under adversarial perturbations
=> teaches invariance to non-robust features

36

© Aleksander Madry. All rights
reserved. This content is excluded
from our Creative Commons
license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/




OTsipras et. All rights reserved. This

° ° ° content is excluded from our
Effect of adversarial training
more information, see
https://ocw.mit.edu/help/fag-fair-use/

Loss gradients with respect to input pixels (most important features) show: robust model relies
less on “non-robust” features, and more on human-intuitive features

Adversarial examples for standard and robust models

37 (Isipras et al. 2019, Robustness may be at odds with accuracy.)



Effect of adversarial training: transfer learning

e adversarially trained models transfer better to other datasets

Aircraft Birdsnap CIFAR-10 CIFAR-100
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38 (Salman et al. 2020, Do adversarially robust ImageNet models transfer better?)



Distribution shifts
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of global Species occurrence
biodiversity data in GBIF

Left: Courtesy of Mannion et al. Used under CC BY. Right: Courtesy of Sara Beery. Used under CC BY.
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© Koh et al. All rights reserved. This
content is excluded from our
Creative Commons license. For
more information, see
https://ocw.mit.edu/help/fag-fair-use/

WILDS

Pang Wei Koh*, Shiori Sagawa*, Henrik Marklund, Sang Michael Xie, Marvin Zhang,
Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Sara Beery,
Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang
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shifts across hospitals in histopathology

shifts across time in satellite imagery

ID accuracy -292 9%, OOD accuracy

—

shifts across regions in wheat head detection

ID accuracy -13.7% OOD accuracy

—

Slide from Shiori Sagawa

ID accuracy -16.3% OOD accuracy

—

shifts across scaffold in bioassay prediction

&, X
S ©

OOD AP

okt -7.2%
—

[Koh et al., 2021]

© Koh et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/
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Training data Out-of-distribution (OOD) test data
Camera 1 Camera 2 Camera 245 Camera 246

amM M 371(

g 12:10:56 PM M 2/

A A NS Dy A e

Control: In-distribution (ID) test data
Camera 1 Camera 2 ... Camera 245 Macro F1

! ‘ \/,'Y} o b
AR ID -16.0% OOD

© Beery et al, Koh et al. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

[Beery et al., 2020; Koh et al., 2021]

Slide from Shiori Sagawa



Class distribution is different for each static sensor location
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Different

ecosystems have
&2

both subpopulation
and visual
distribution shifts
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NEONCROWNS Dataset

http://visualize.idtrees.org/
Weinstein et al., 2020

© Weinstein et al. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/
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Performance has strong correlation with subpop. distribution similarity
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What to do about distribution shift?



One path: distributionally robust optimization

e So far: allowed to perturb each datapoint by a limited amount
D

o Alternative: we can perturp the entire training distribution (sample) by a
certain amount, together

Py,
m

49




Distributionally robust optimization

. 1 . .
e Standard training: - ZLOSS(fQ(X(Z)),y(Z)) = E(x.y)~p, Loss(fo(x),y)]
n
i=1

e Distributionally robust optimization (DRO):

min max

v

Q, D(Q,P,,)<e

e.g. re-weight or

4 ) 3
L 4 \ Y
perturb training data points K \ A '
I P,
|
1
|

allow a small
perturbation of
training sample
(discrete distribution)

43(x,y)~@ [LOSS(fQ (X) ) y)]

- I
- i

. . M 11 M 1 '
e Various choices of measuring “distance” between

v dQ,P,) <e R
probability distributions:xz—distance, Wasserstein distance, *

maximum mean discrepancy (MMD)...

N
______
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DRO and generalization

- O
.....
L

min ma (w0 O | LLOSS X),
in o pax Beoy~olloss(fo(x), )

* DRO optimizes for a set of training data sets/
d|Str|bUt|OnS ' d(@ I’P) ) < €

e Say underlying data distribution is | .

N L 4
~ L
-------

A\

e Empirical training data is P,

Va\

e It D(P,P,) < ¢, then we are guaranteed to perform well

on P too, i.e., generalize!
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Application: DRO and class imbalance

e Assume population has K sub-groups (example: K=2).
e Usually: minimize “Empirical Risk” (average error)

min l( Z Loss(x;;60) + Z Loss(x; (9))

6 n\ . .
1 1n group 1 7 1n group 2

80% 20%

* Here, 50% error on minority group makes only 10% average error.
(+ statistical patterns for minority may be different)

* We can “ignore” minority group and still get decent loss!

52



DRO and class imbalance

* |dea: automatically re-weight data via DRO
=> pay more attention to minority class

' C(x.0)~0 | L :
nun @,DI(%?IP%L)<€ (x,y)~0 [Loss(fo(x),y)

53 (Hashimoto et al. 2018, Fairness without demographics in repeated loss minimization)



What to do about distribution shift?

Distributionally robust optimization

54



Learn a spatiotemporal prior

Image Classifier

P(yll)

.

Combine
o

© Mac Aodha et al. All rights
. . reserved. This content is excluded
X S (Iong |tu d e : Iat|tu d e : d ay) fFrom our (?reative pommons license.
or more information, see
https://ocw.mit.edu/help/fag-fair-use/

Presence-Only Geographssal Priors for Fine-Grained Image Classification, Mac Aodha et al., 2019




What to do about distribution shift?

Distributionally robust optimization
e earn (or use) a prior for subpopulation shift

56



Domain

——>

A\ Adaptation
AN

Source domain: @ Y A B

Target dOlnain: /\ O * © He et al. All rights reserved. This

content is excluded from our
Creative Commons license . For
more information, see

https://ocw.mit.edu/help/faqg-fair-use/

57 https://link.springer.com/article/10.1007/s10489-022-03709-8




What to do about distribution shift?

Distributionally robust optimization
e earn (or use) a prior for subpopulation shift
*Domain adaptation (next lecture!)

58



Original Plates Acquiring images of plates with utensils

ImageNet

© Vendrow et al. All rights reserved.
This content is excluded from our
Creative Commons license. For

Figure 8: Real images of plates, with and without food and either on a table or in the grass. Below each more information, see |
image is the predicted class by an ImageNet-trained ResNet50. niips:focw.mit.edufhelplag-iaiuse!

59 https://arxiv.org/abs/2302.07865

tray bucket bucket




What to do about distribution shift?

Distributionally robust optimization

e earn (or use) a prior for subpopulation shift
*Domain adaptation (next lecture!)
*Diagnose failures

60



What to do about distribution shift?

Distributionally robust optimization

e earn (or use) a prior for subpopulation shift

*Domain adaptation (next lecture!)

*Diagnose failures

*Get training data that is representative of your test domain
(works better than any algorithm)
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Summary

e Qut-of-distribution generalization: big challenge, but helps understand
what NNs learn.

e Adversarial examples and training

e Distribution shifts
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