

Lecture 17: Out-of-distribution generalization

Speaker: Sara Beery

Left: Courtesy of Mannion et al. Used under CC BY. Right: Courtesy of Sara Beery. Used under CC BY.

Machine Learning: A Success Story

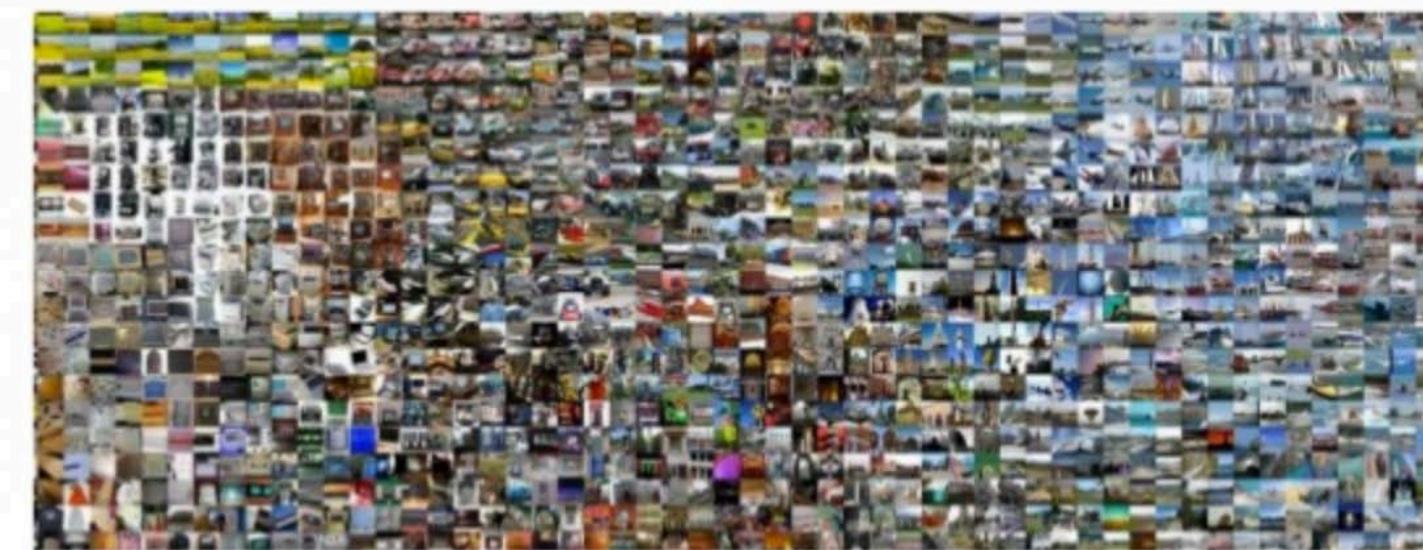


Image Classification

Image removed to copyright restrictions.

Realistic Image Generation

<i>Input sentence:</i>	<i>Translation (PBMT):</i>	<i>Translation (GNMT):</i>	<i>Translation (human):</i>
李克強此行將啟動中加總理年度對話機制，與加拿大總理杜魯多舉行兩國總理首次年度對話。	Li Keqiang premier added this line to start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.	Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.	Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.

Machine Translation

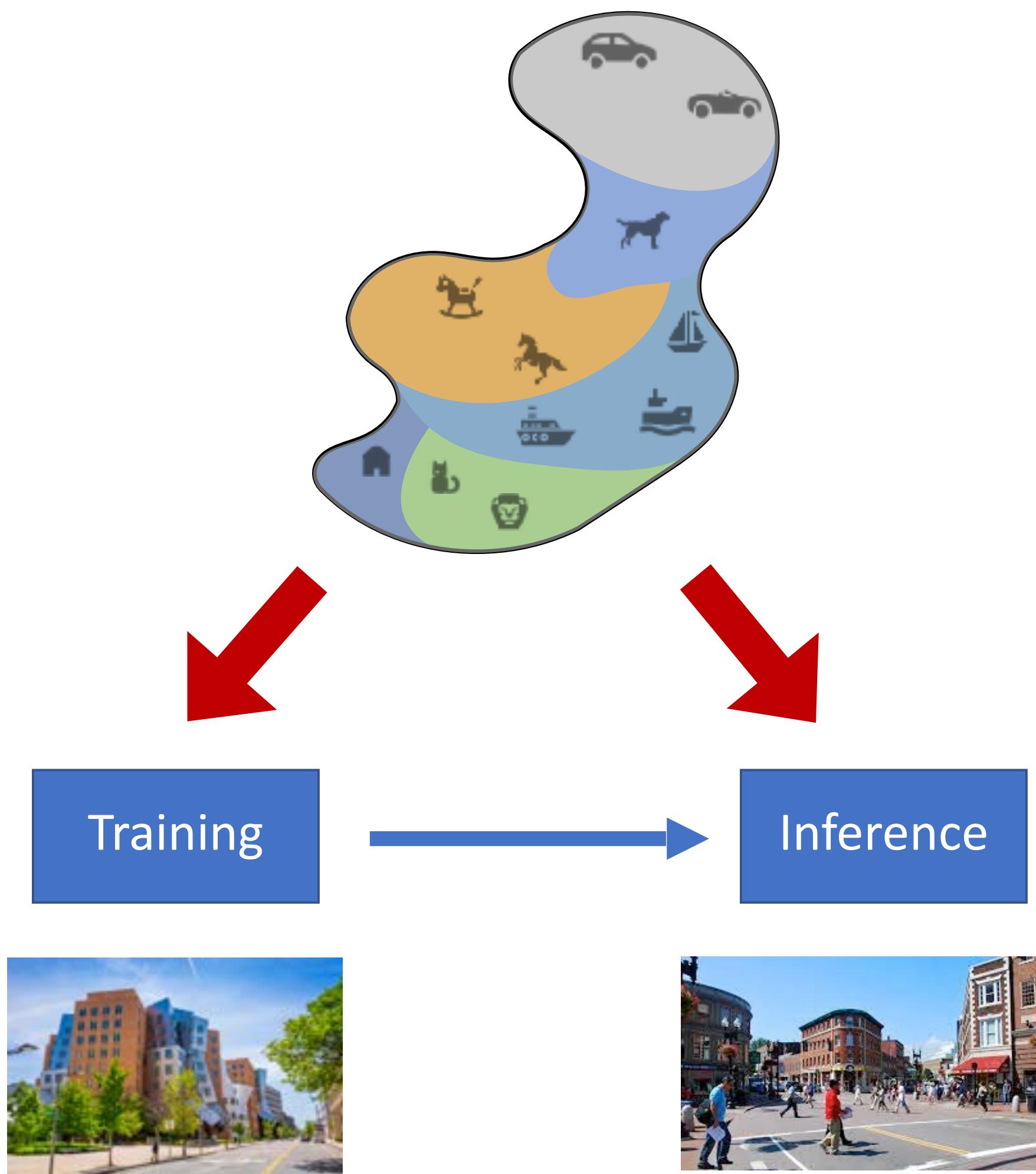
Strategy Games

Robotic Manipulation

Robotic hand © OpenAI. Images © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

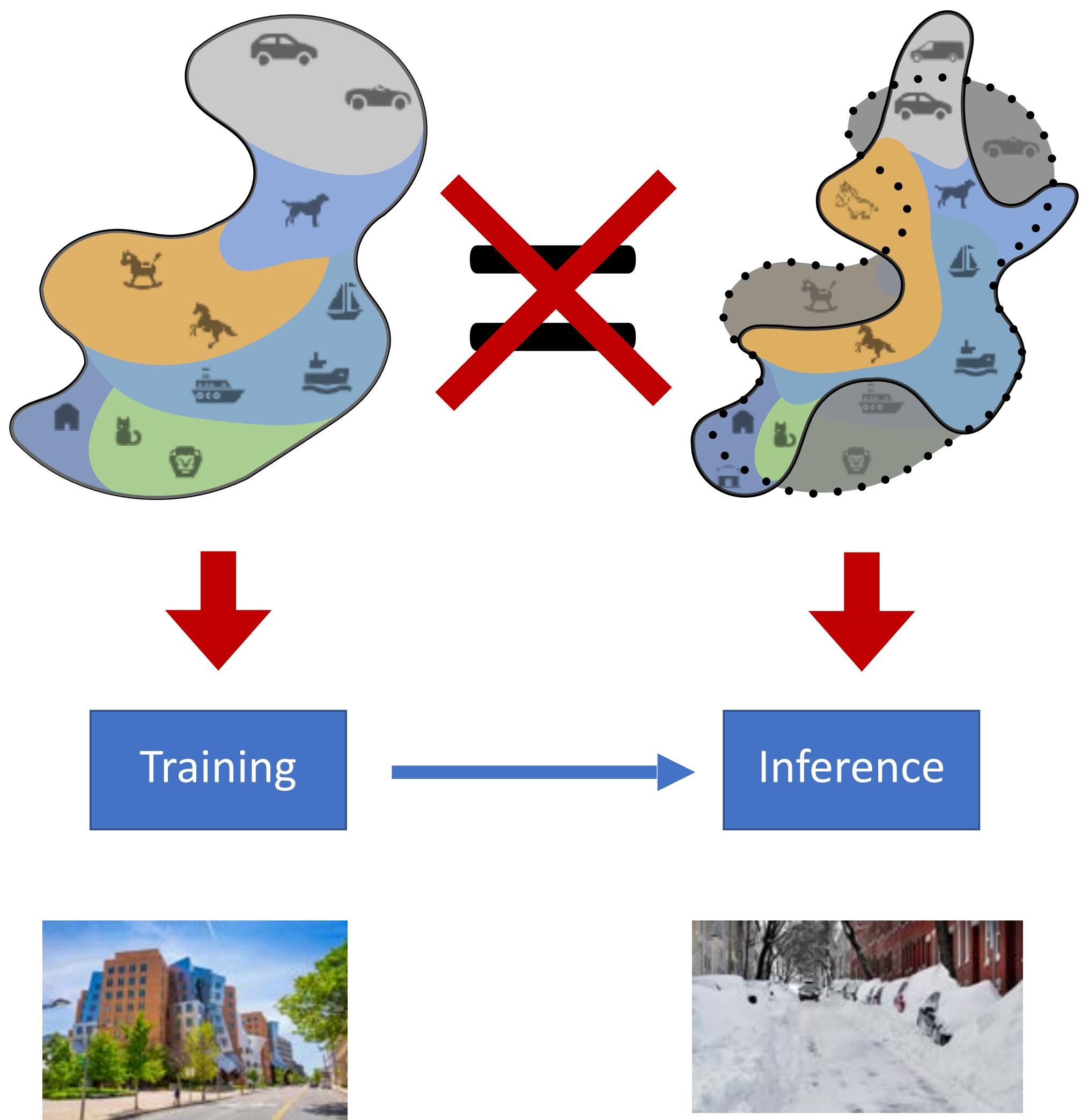
Are ML systems really ready for the real world?

Standard ML setting



training distribution
=
test distribution

... vs the real world

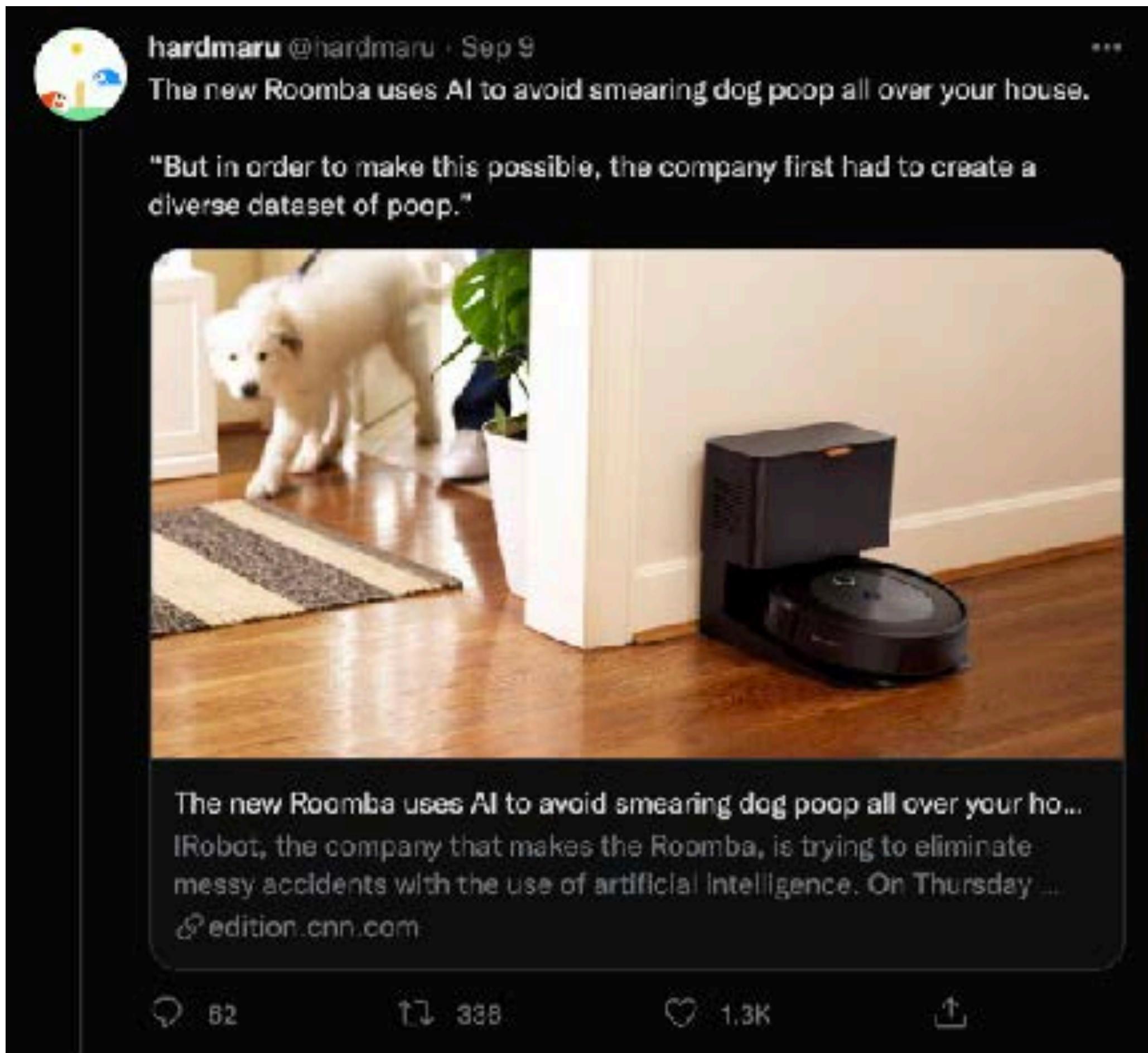
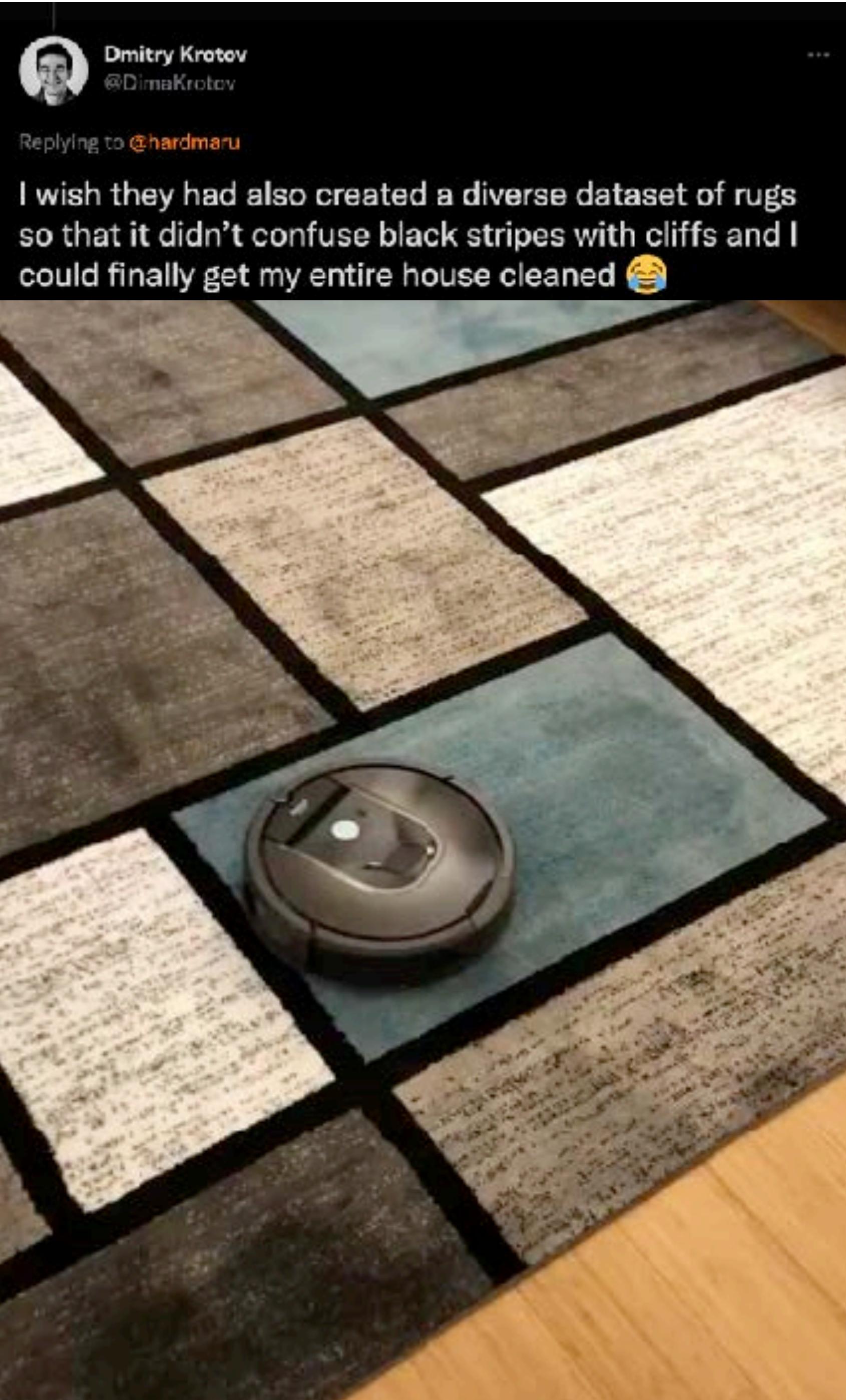


deploy model on data from a different distribution

e.g.:

- perturbed data
- different label distribution
- other shifts (sequence/graph size, weather, country/city, source of measurement,...)

What can go wrong?



Concrete Problems in AI Safety

Dario Amodei*
Google Brain

Chris Olah*
Google Brain

Jacob Steinhardt
Stanford University

Paul Christiano
UC Berkeley

John Schulman
OpenAI

Dan Mane
Google Brain

might serve a benchmarking role similar to that of the bAbI tasks [163], with the eventual goal being to develop a single architecture that can learn to avoid catastrophes in all environments in the suite.

7 Robustness to Distributional Change

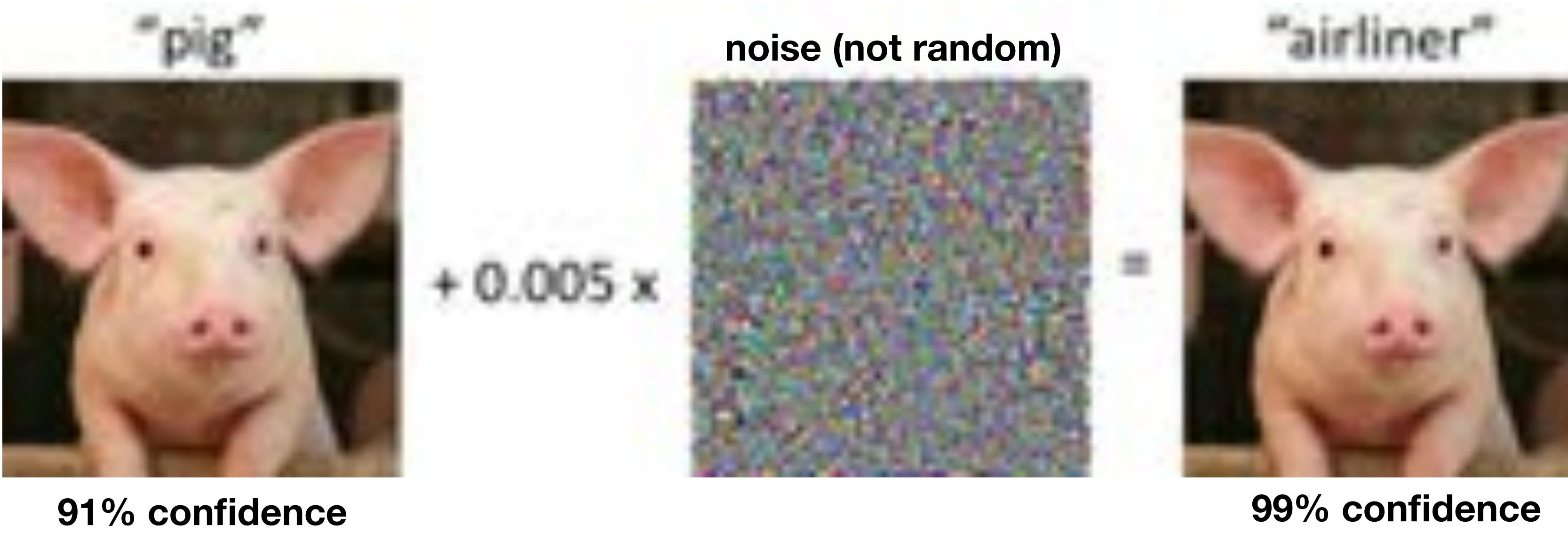
All of us occasionally find ourselves in situations that our previous experience has not adequately prepared us to deal with—for instance, flying an airplane, traveling to a country whose culture is very different from ours, or taking care of children for the first time. Such situations are inherently

Outline for today

- Adversarial examples and training: small perturbations
- Distribution Shifts

Adversarial examples

Adversarial examples



- ML model predictions are (mostly) accurate but can be brittle

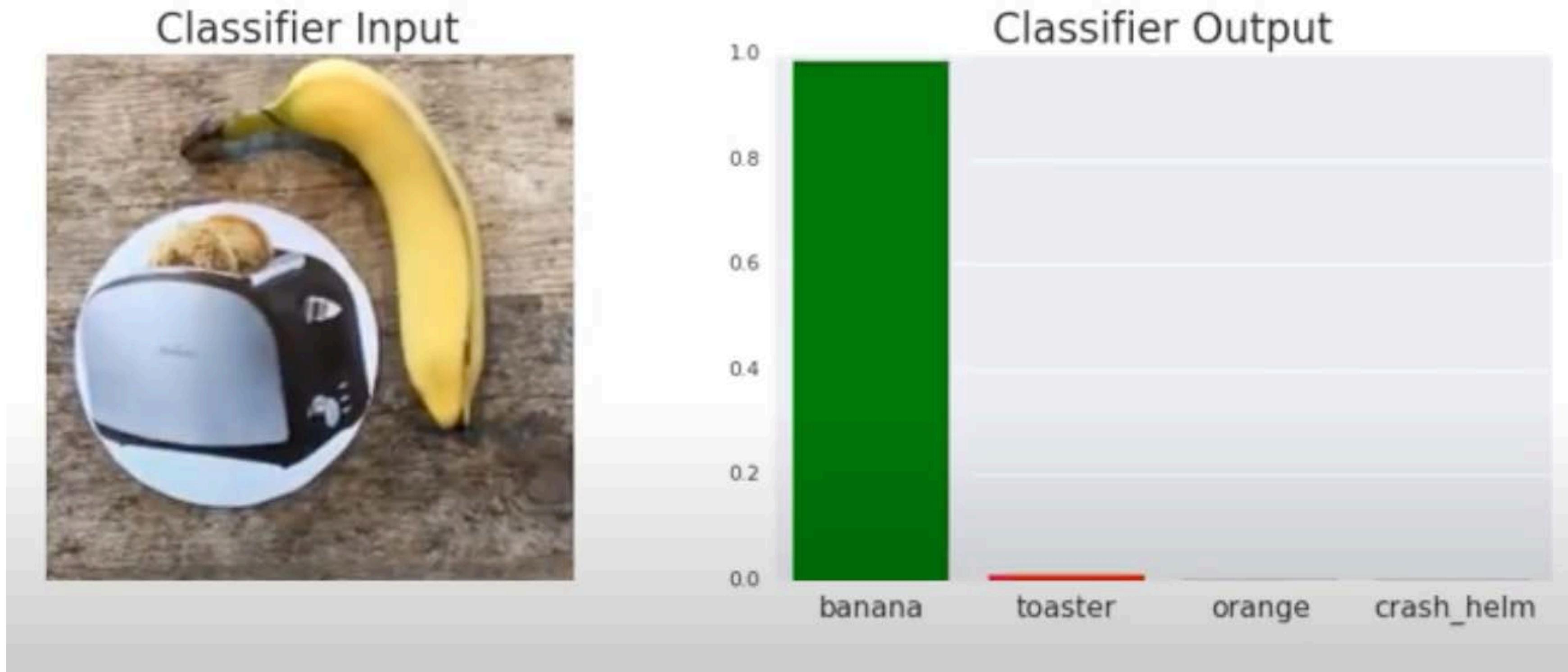
Adversarial examples

© Papernot et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Adversarial stickers

Adversarial stickers

Adversarial stickers

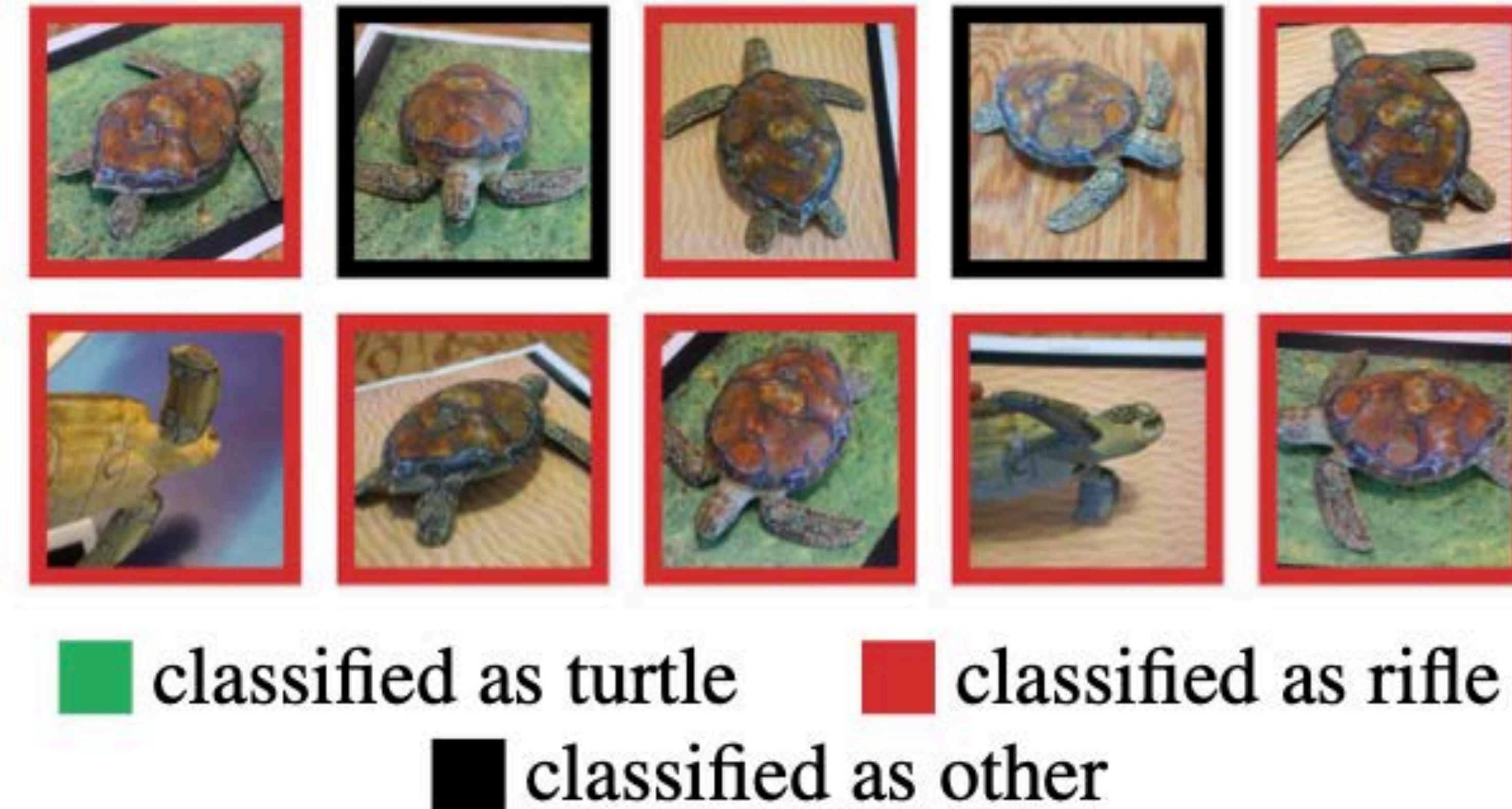


Adversarial stickers

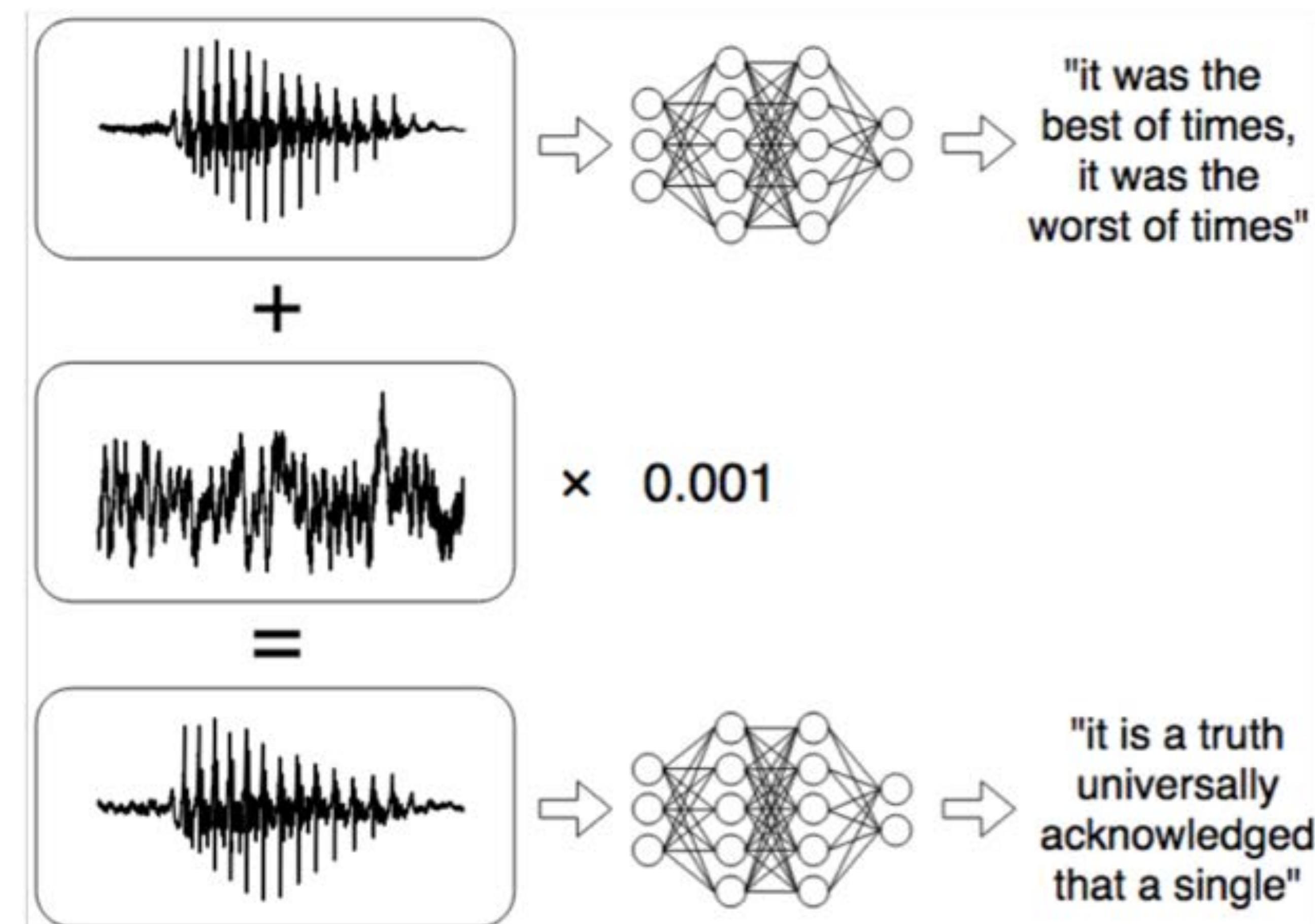
Adversarial examples 3D-printed

© Athalye et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Adversarial examples 3D-printed



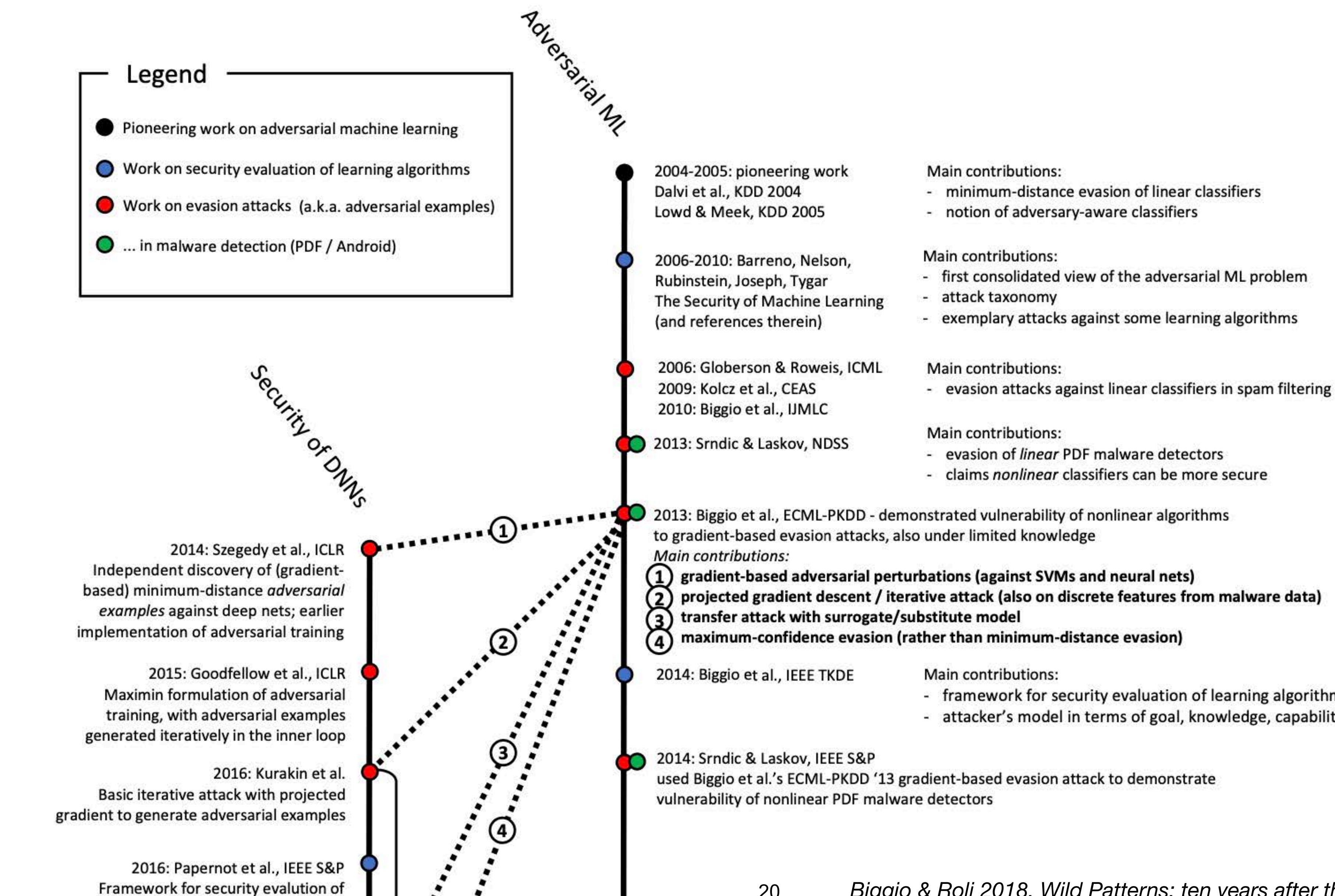
Speech recognition example



Hmmmm....

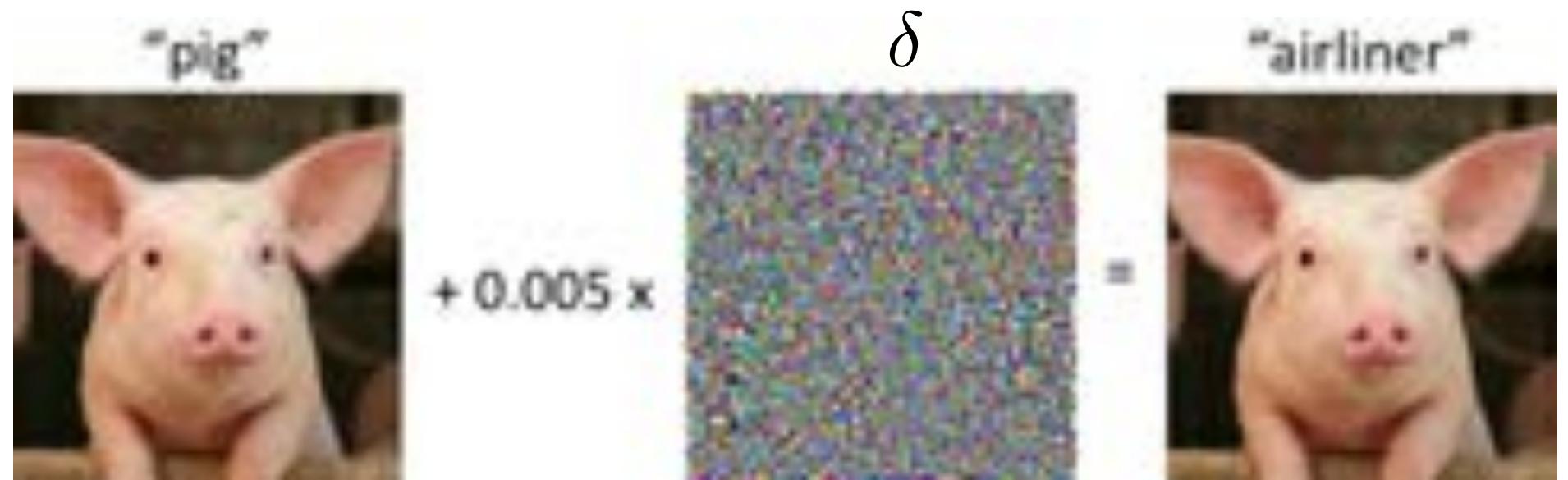
- Are our models completely useless?
- Why does this happen?
- Can one prevent it?

History of adversarial examples / brittleness



How do you create an adversarial example?

- want: small perturbation that does not change meaning to a human, but to ML model



- model outputs $P_\theta(y | \mathbf{x})$ (softmax)

- adversarial example:

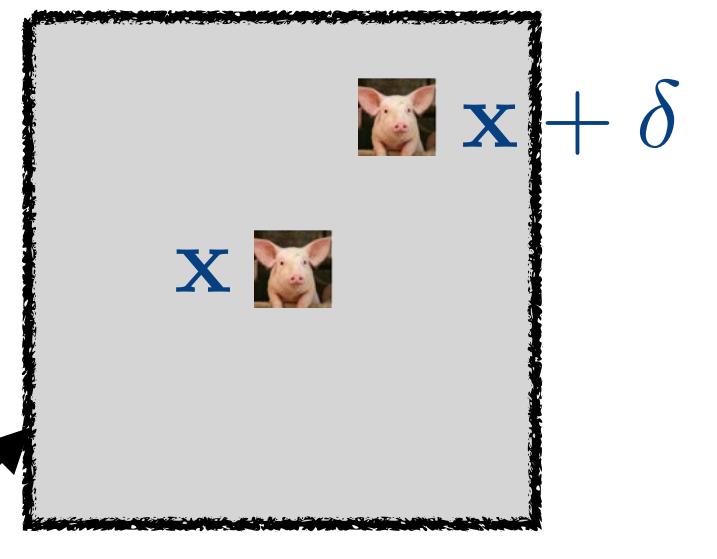
$$\max_{\delta \in \Delta} P_\theta(y_{\text{target}} | \mathbf{x} + \delta)$$

small perturbation, e.g.

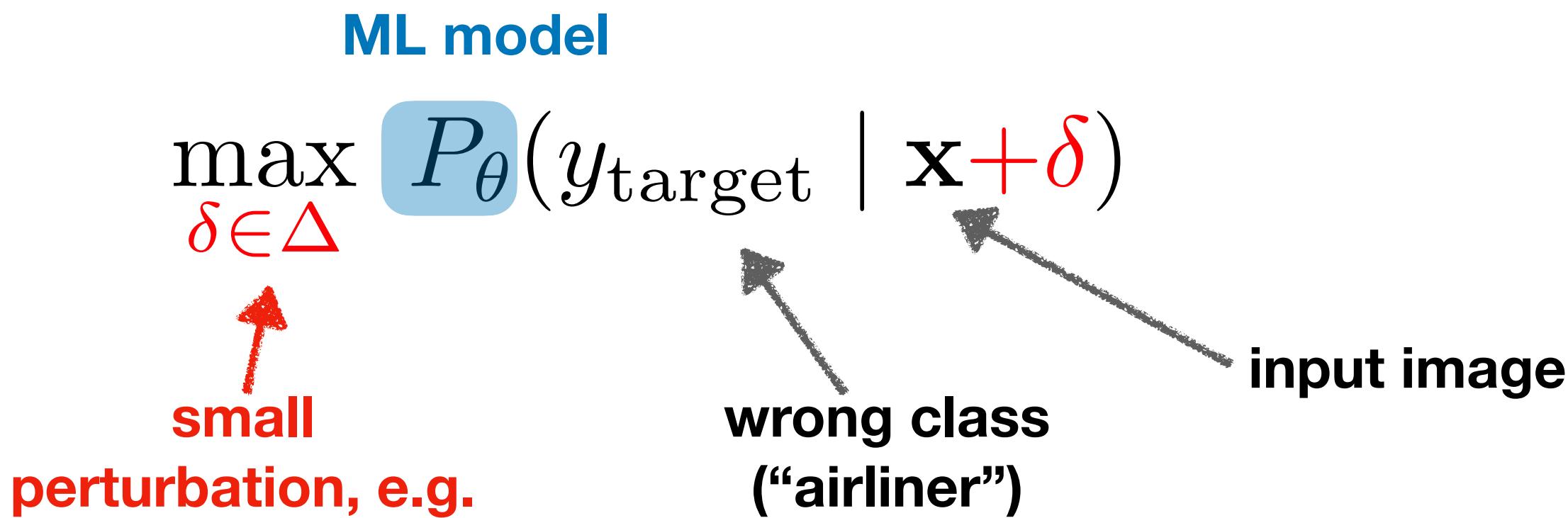
wrong class ("airliner")

input image

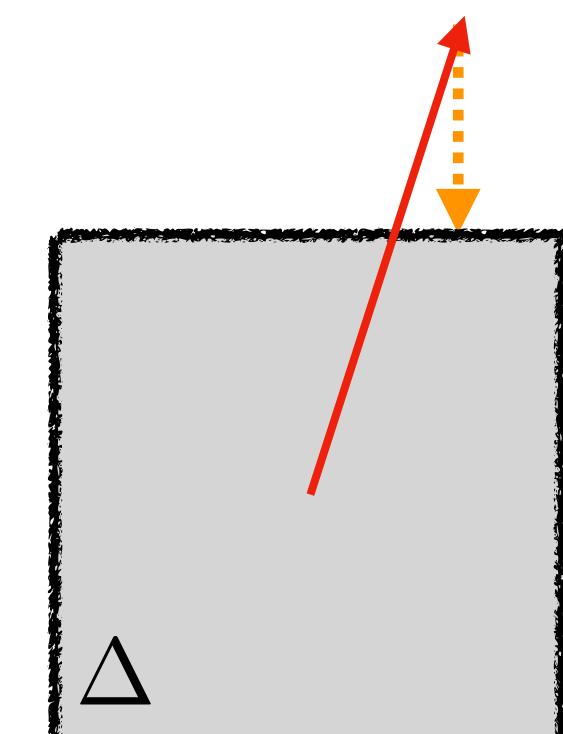
$$\Delta = \{\delta \in \mathbb{R}^d \mid \|\delta\|_\infty < \epsilon\}$$



How to find an adversarial example?



- e.g. Projected gradient ascent (we update data perturbation δ):
 1. take a step in the direction of the gradient:
$$\delta^{(t+1)} = \delta^{(t)} + \eta \cdot \nabla_{\delta} P_{\theta}(y_{\text{target}} \mid \mathbf{x} + \delta)$$
 2. project the result back into the feasible set Δ
 3. repeat steps 1 & 2



How to “defend” against adversarial examples?

Recall:

- Adversarial example

versus

standard training:

$$\max_{\delta \in \Delta} \text{Loss}\left(f_{\theta}(\mathbf{x} + \delta), y\right)$$

$$\min_{\theta} \text{Loss}\left(f_{\theta}(\mathbf{x}), y\right)$$

How to “defend” against adversarial examples?

- **Standard training:**

via (stochastic) gradient descent

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^n \text{Loss}(f_{\theta}(\mathbf{x}^{(i)}), y^{(i)})$$

neural network

- **Adversarial training / robust optimization:**

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^n \max_{\delta \in \Delta} \text{Loss}\left(f_{\theta}(\mathbf{x}^{(i)} + \delta), y^{(i)}\right)$$

“adaptive data augmentation”

Adversarial training with stochastic gradient descent

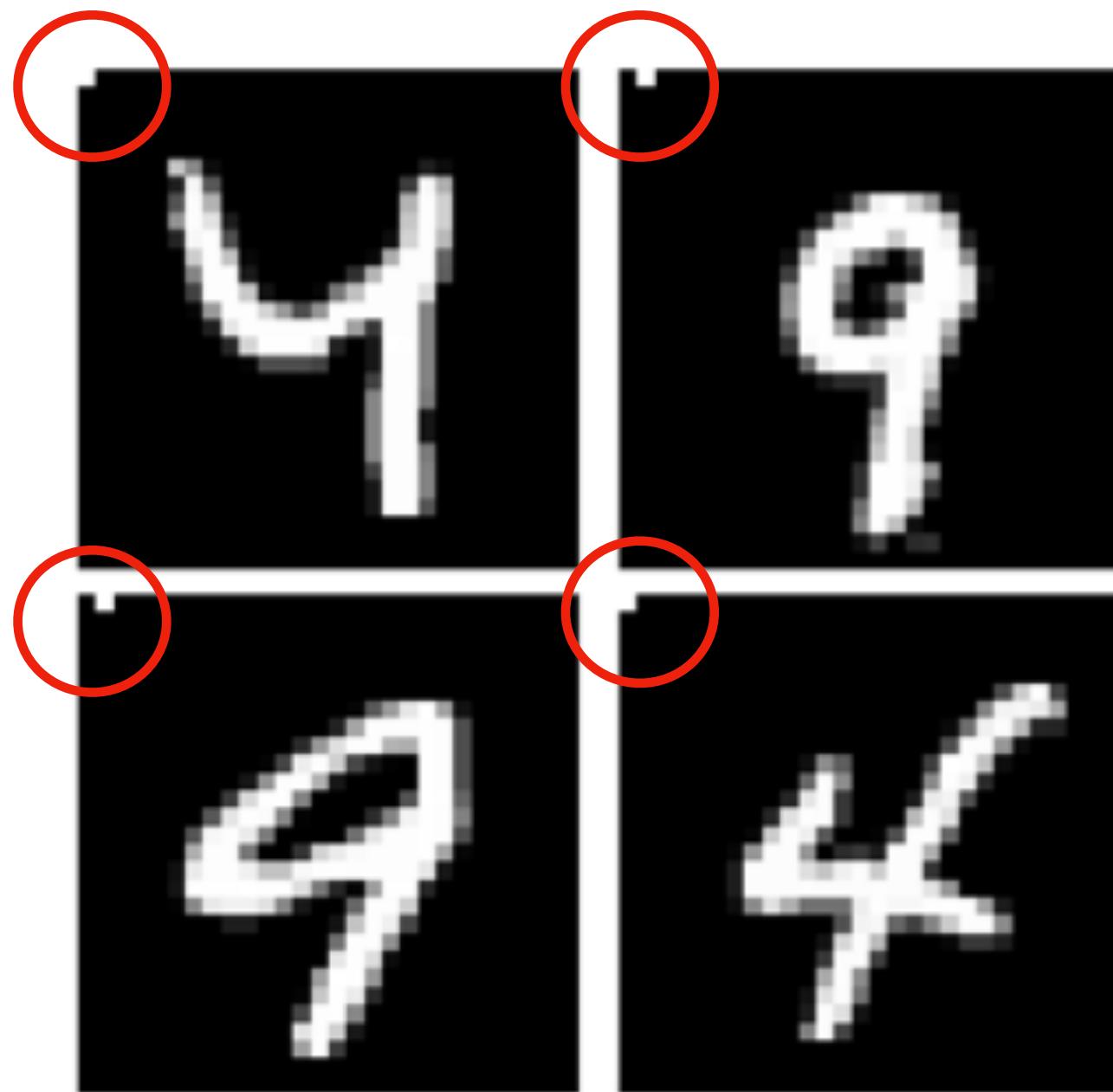
$$\min_{\theta} \frac{1}{n} \sum_{i=1}^n \max_{\delta \in \Delta} \text{Loss}\left(f_{\theta}(\mathbf{x}^{(i)} + \delta), y^{(i)}\right)$$

repeat until convergence:

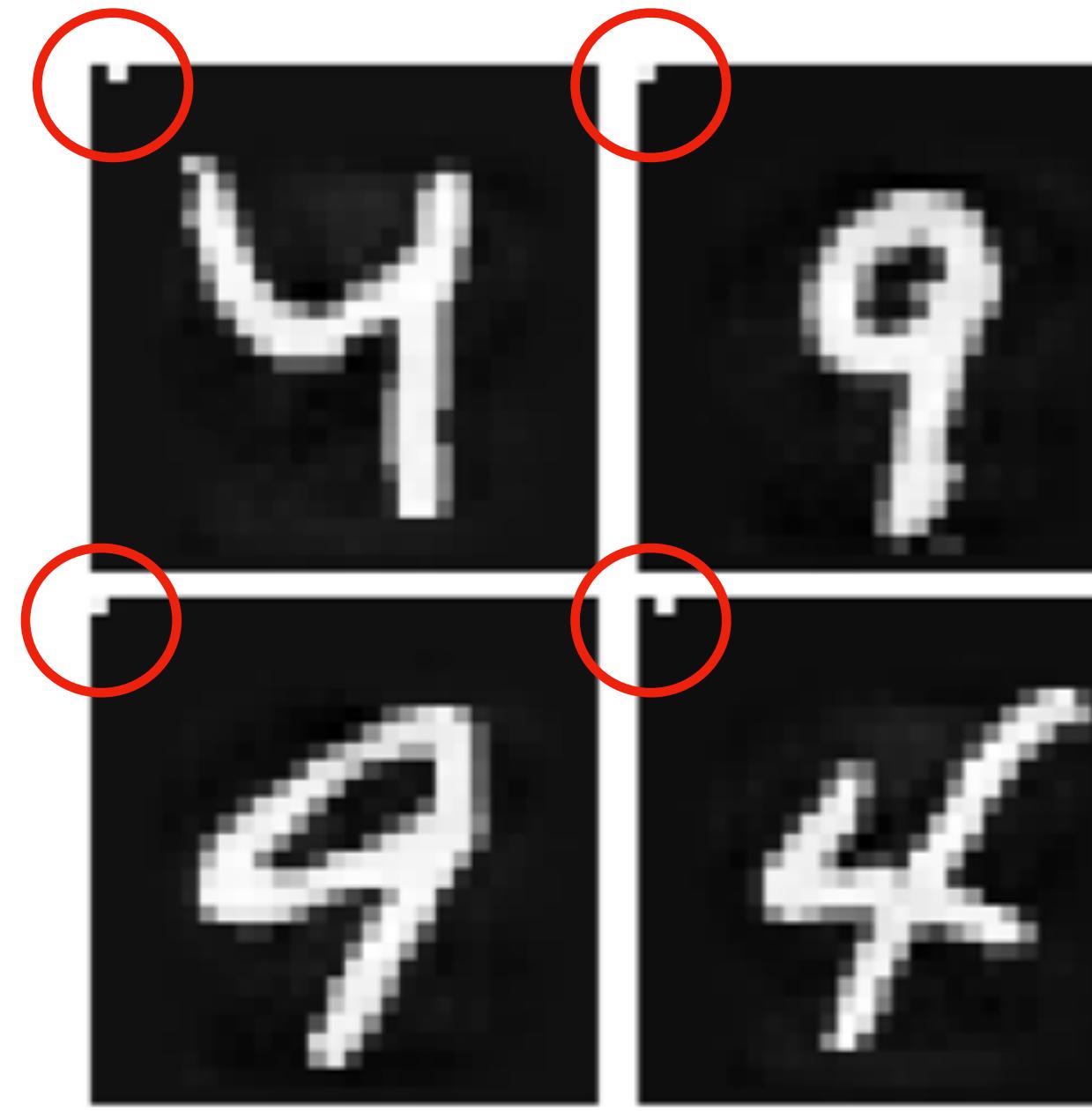
1. sample a data point (\mathbf{x}, y)
2. compute the **optimal adversarial perturbation** δ^* (approximately)
3. compute the gradient $g = \nabla_{\theta} \text{Loss}\left(f_{\theta}(\mathbf{x} + \delta^*), y\right)$
4. update θ with the gradient g

What do adversarial examples tell us?

- something about the input “features” that are critical for the model’s decision
- Example:



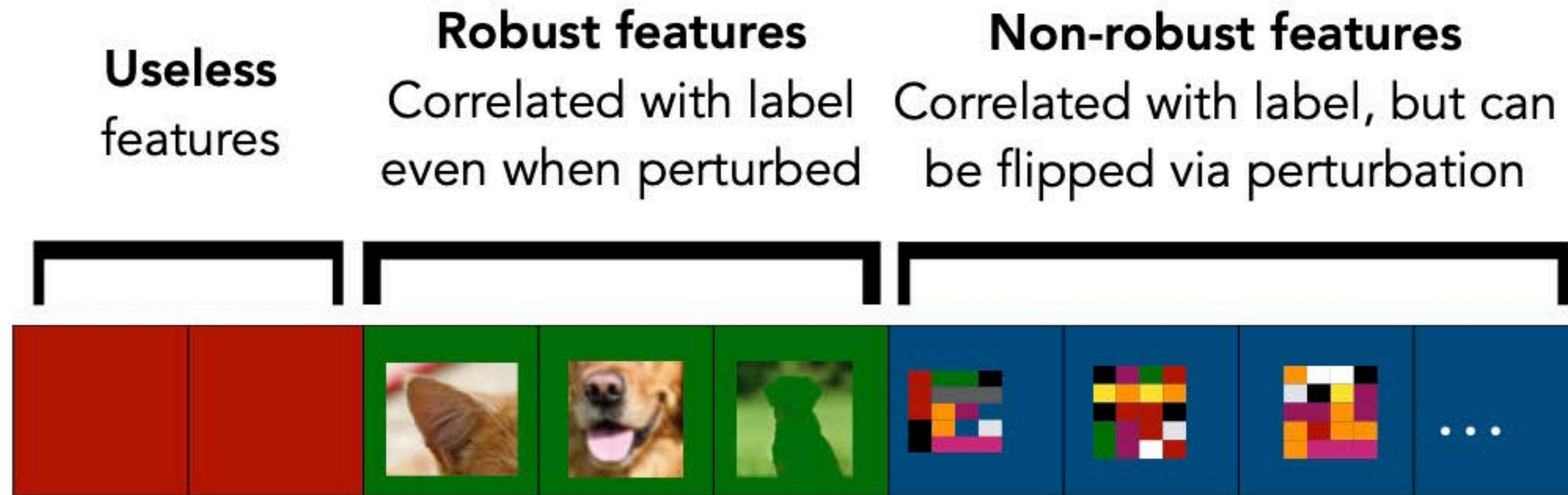
Training data:
classify 4 vs 9



**Adversarial
perturbations**

© Hongzhou Lin. All rights reserved.
This content is excluded from our
Creative Commons license. For
more information, see
<https://ocw.mit.edu/help/faq-fair-use/>

Predictive features



- Many features may be **correlated with the label** and hence predictive and help with accuracy, *beyond what humans would use*.

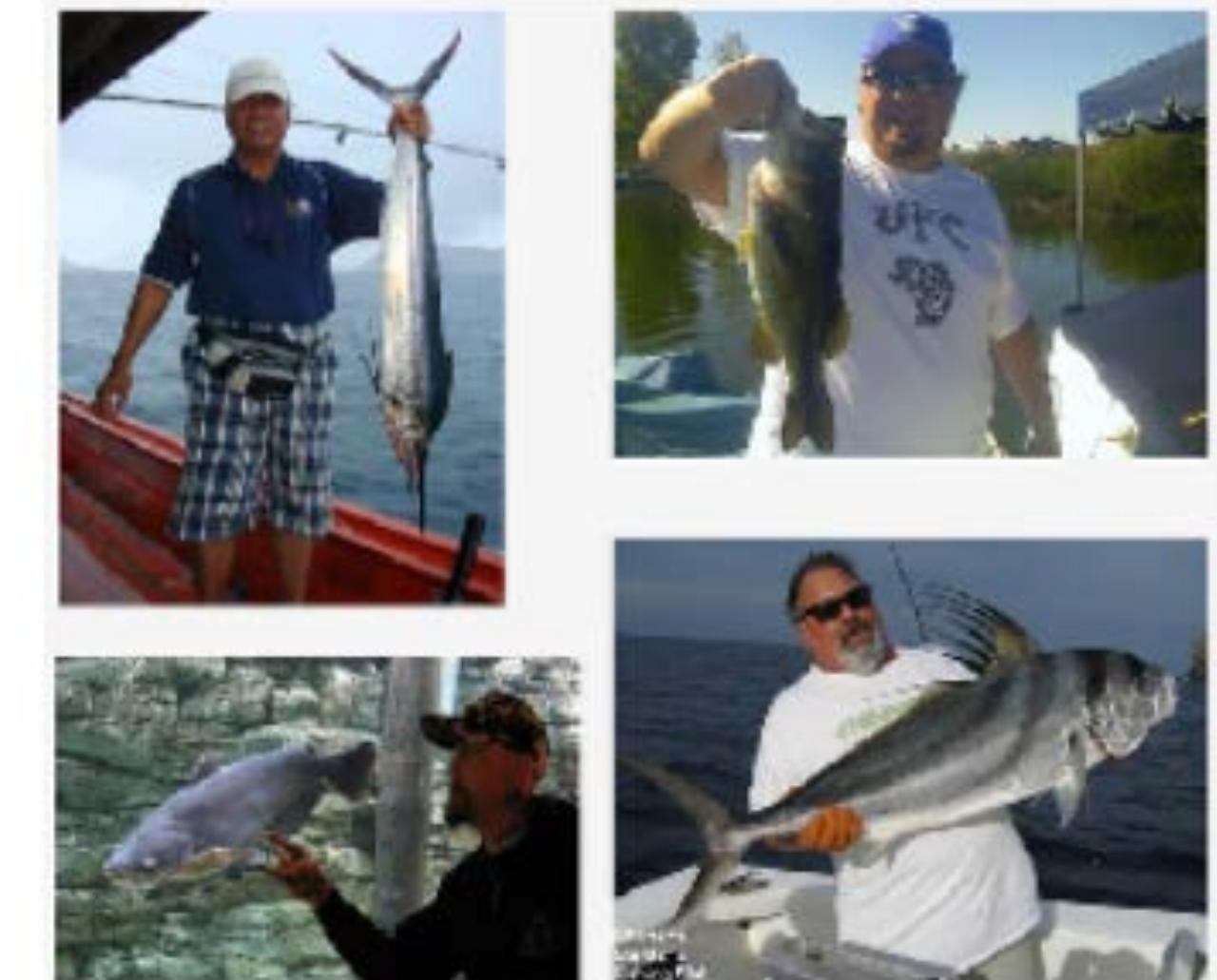
© Aleksander Madry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Where do these correlations come from?

- Data

Dogs

Cats

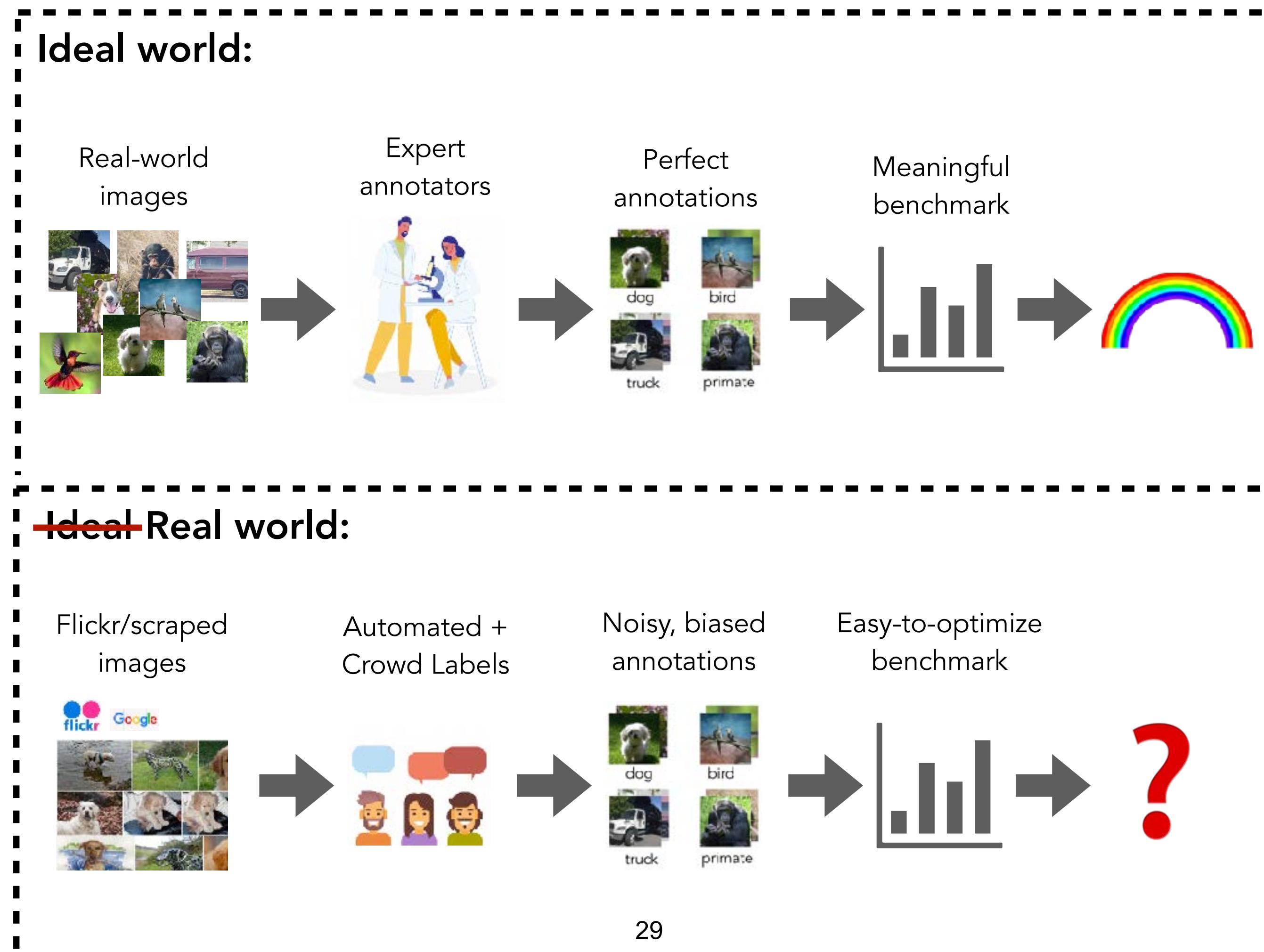


“Fish” from the ImageNet
training set

© sources unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

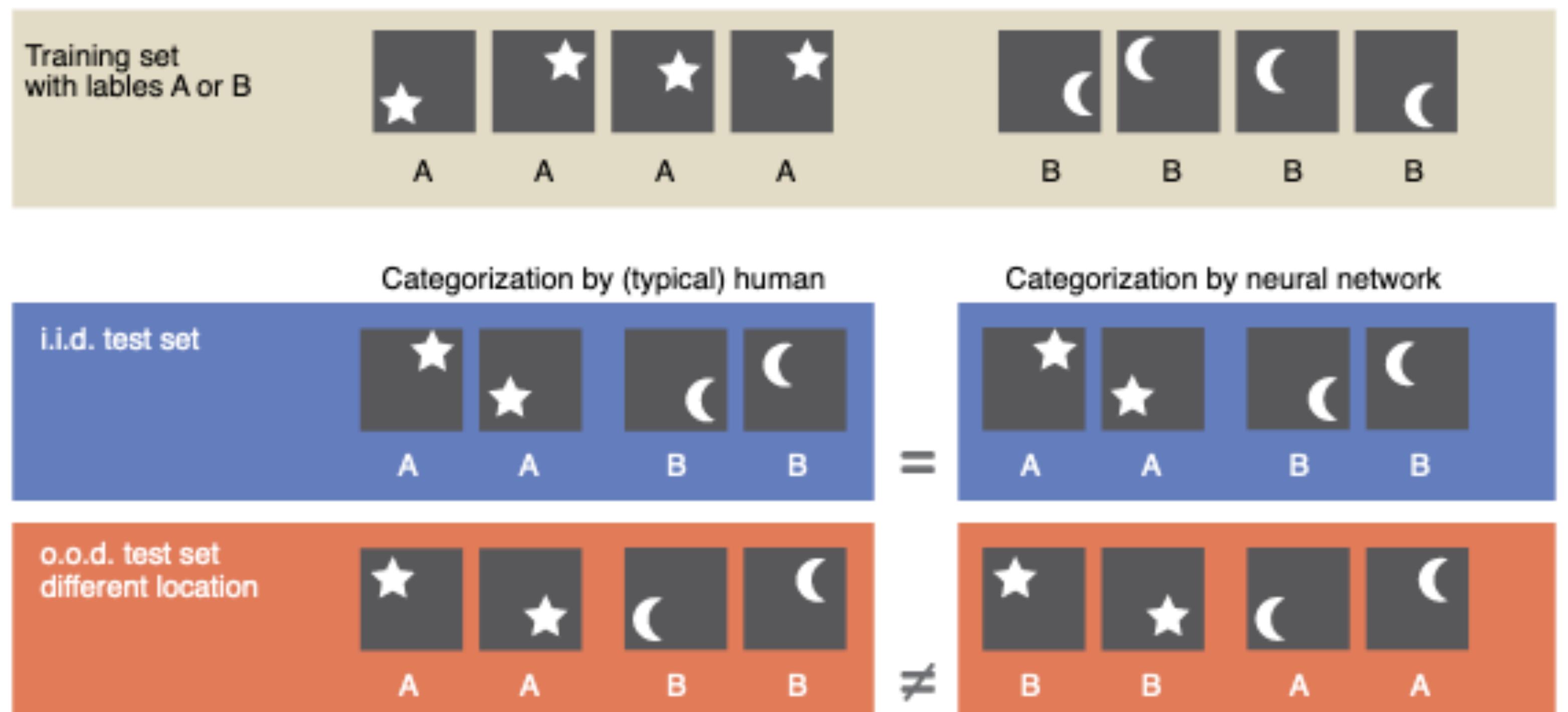
Where do these correlations come from?

- ...and how we create datasets



It's all “shortcuts”

- Shortcuts: features correlated with label in the training data, but not under realistic distribution shifts
- Models will use them and not generalize if features are no longer correlated



It's all “shortcuts”

- Shortcuts: features correlated with label in the training data, but not under realistic distribution shifts
- Models will use them and not generalize if features are no longer correlated
- This is related to **data**, not models: ***adversarial examples transfer across models trained on the same dataset***

What can these shortcuts look like?

A herd of sheep grazing on a lush green hillside with mountains in the background.
Tags: grazing, sheep, mountain

Left: A man is holding a dog in his hand

Right: A woman is holding a dog in her hand

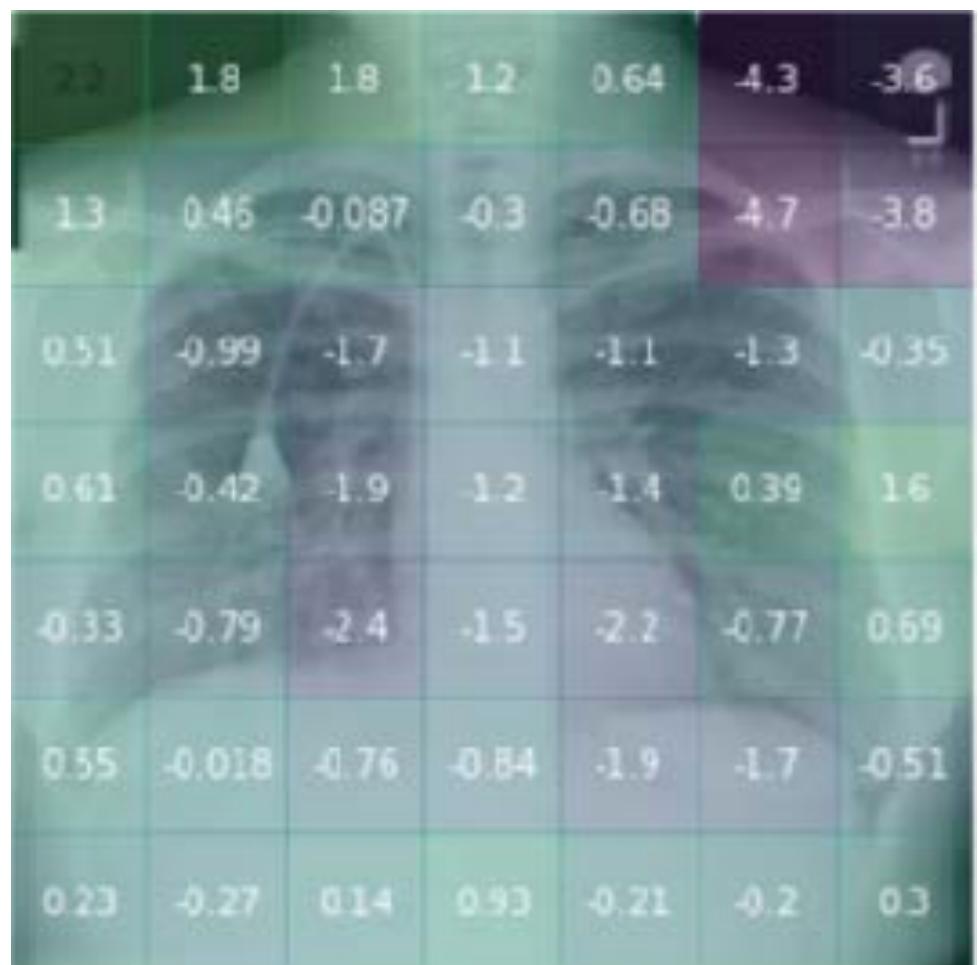
Image: @SouperSarah

• flock of birds flying in the air
• group of giraffe standing next to a tree
www.flickr.com/photos/gratapictures - CC-BY-NC

© AI Weirdness. All rights reserved.
This content is excluded from our
Creative Commons license. For
more information, see
<https://ocw.mit.edu/help/faq-fair-use/>

images: <https://www.aiweirdness.com/do-neural-nets-dream-of-electric-18-03-02/>

What can these shortcuts look like?



“CNNs were able to detect where an x-ray was acquired [...] and calibrate predictions accordingly.”

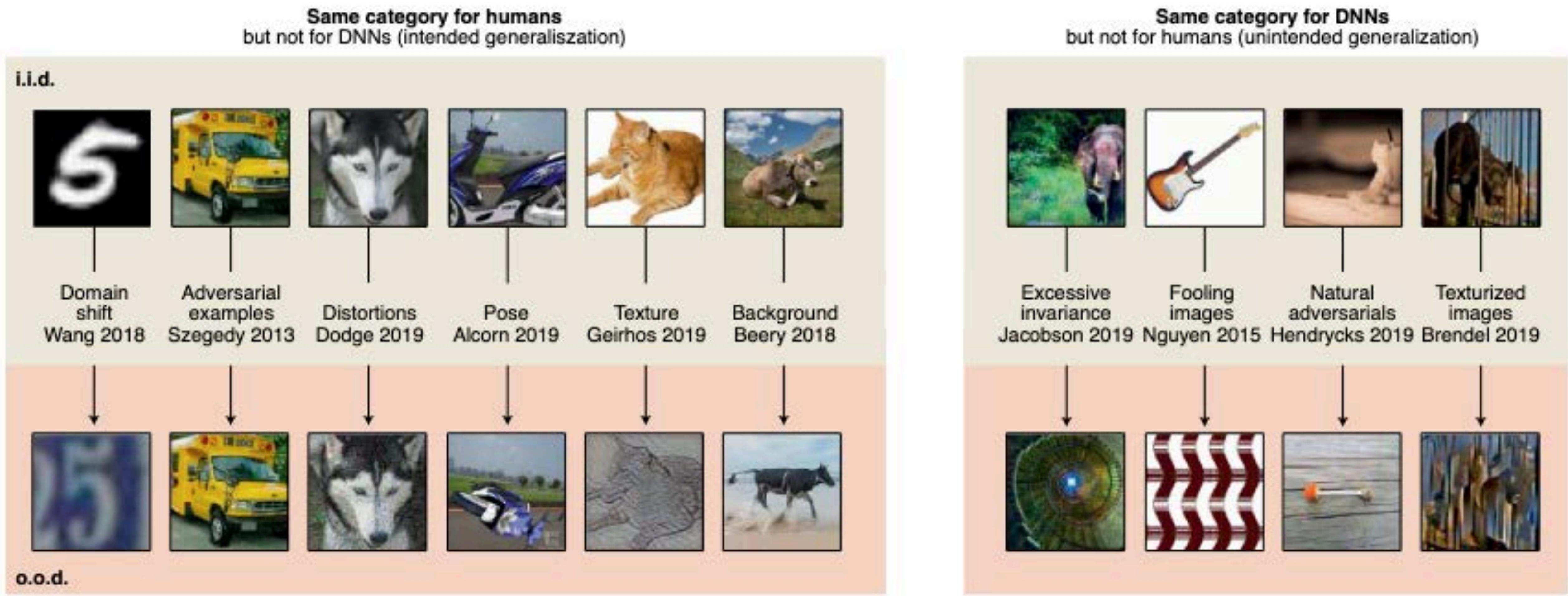
[Zech et al. 2018]

“...if an image had a ruler in it, the algorithm was more likely to call a tumor malignant...”

[Esteva et al. 2017]

not all predictive patterns are desirable

Many more...



© Geirhos et al. All rights reserved.
This content is excluded from our
Creative Commons license. For
more information, see
<https://ocw.mit.edu/help/faq-fair-use/>

Transformers Learn Shortcuts to Automata

Bingbin Liu^{1*} Jordan T. Ash² Surbhi Goel^{2,3} Akshay Krishnamurthy² Cyril Zhang²

¹Carnegie Mellon University

²Microsoft Research NYC

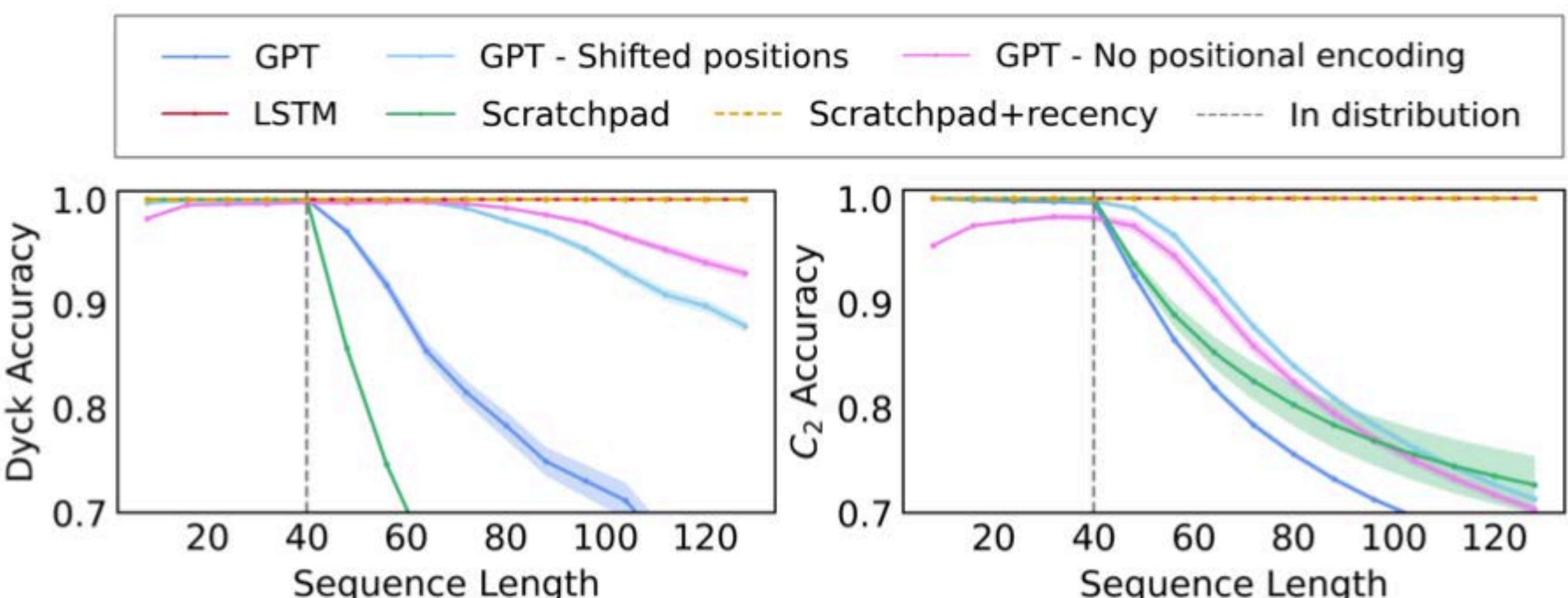
³University of Pennsylvania

bingbinl@cs.cmu.edu, {ash.jordan, goel.surbhi, akshaykr, cyrilzhang}@microsoft.com

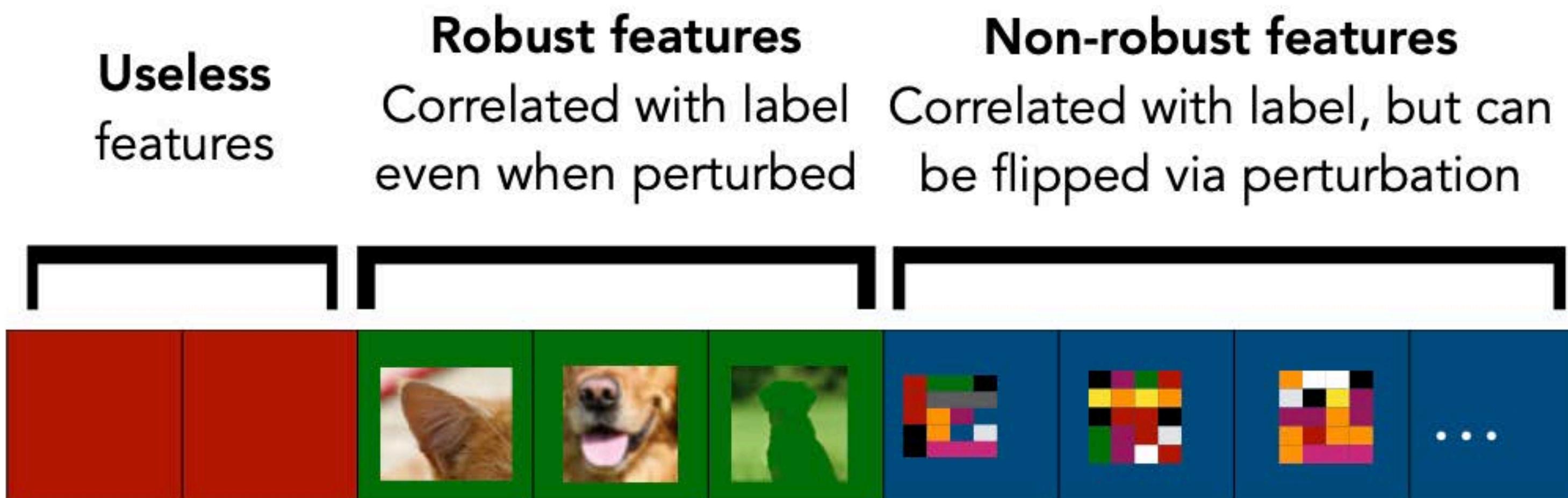
Abstract

Algorithmic reasoning requires capabilities which are most naturally understood through recurrent models of computation, like the Turing machine. However, Transformer models, while lacking recurrence, are able to perform such reasoning using far fewer layers than the number of reasoning steps. This raises the question: *what solutions are these shallow and non-recurrent models finding?* We investigate this question in the setting of learning automata, discrete dynamical systems naturally suited to recurrent modeling and expressing algorithmic tasks. Our theoretical results completely characterize *shortcut solutions*, whereby a shallow Transformer with only $o(T)$ layers can exactly replicate the computation of an automaton on an input sequence of length T . By representing automata using the algebraic structure of their underlying transformation semigroups, we obtain $O(\log T)$ -depth simulators for all automata and $O(1)$ -depth simulators for all automata whose associated groups are sc synthetic experiments by training Transformers to simulate a wide vari shortcut solutions can be learned via standard training. We further in solutions and propose potential mitigations.

parallel solutions generalize within-distribution, but not out-of-distribution



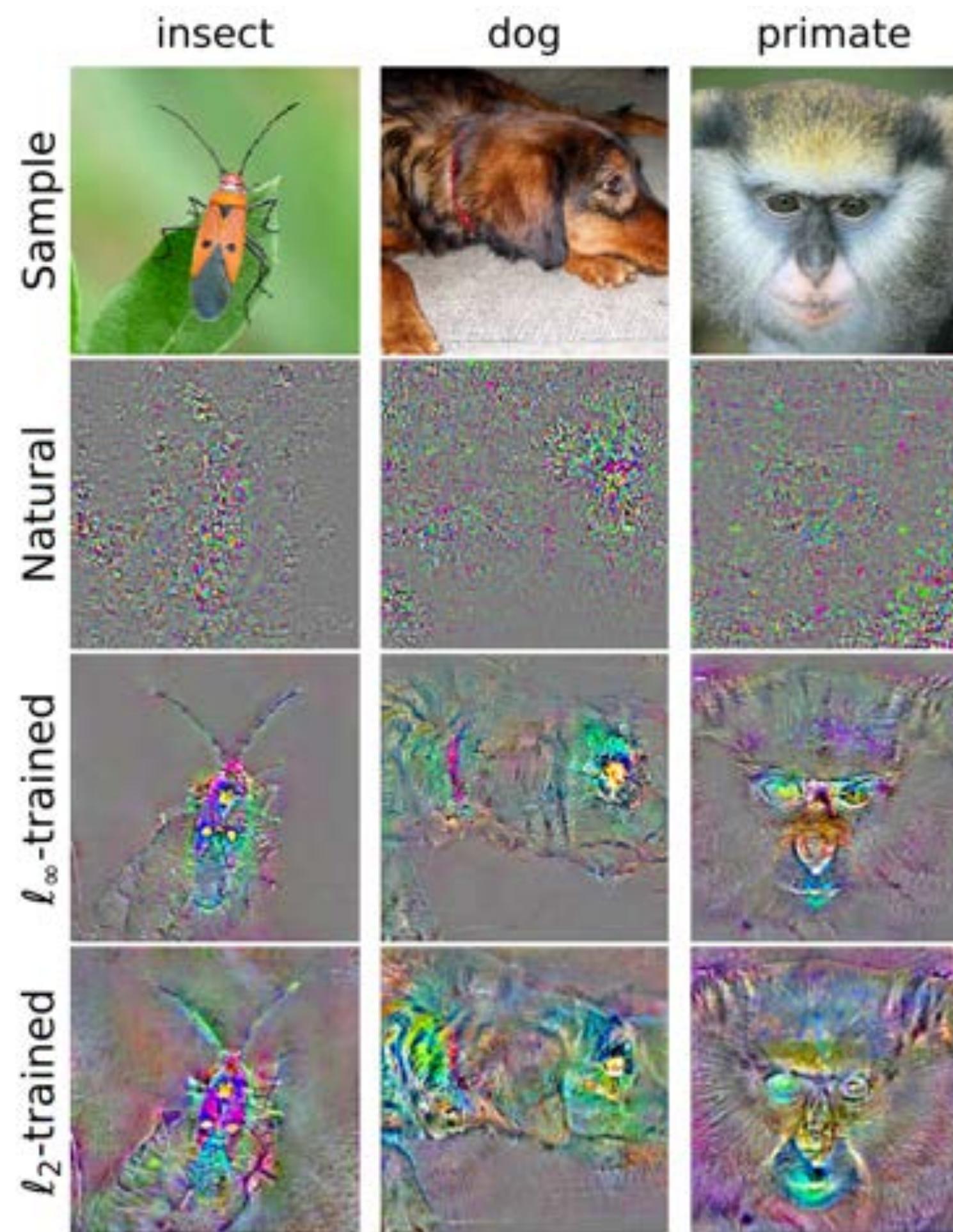
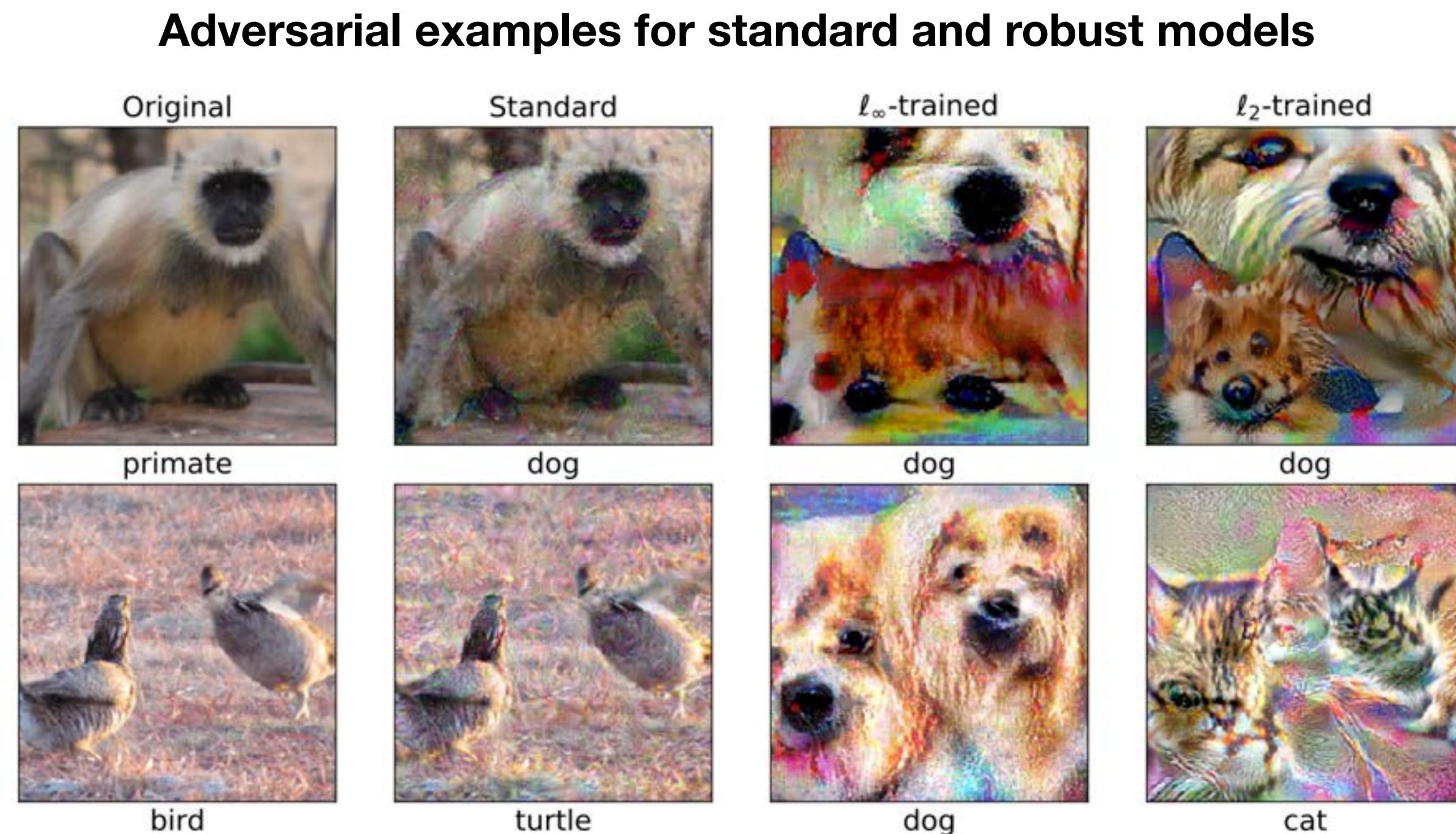
Effect of adversarial training



- model output should be stable under adversarial perturbations
=> teaches **invariance to non-robust features**

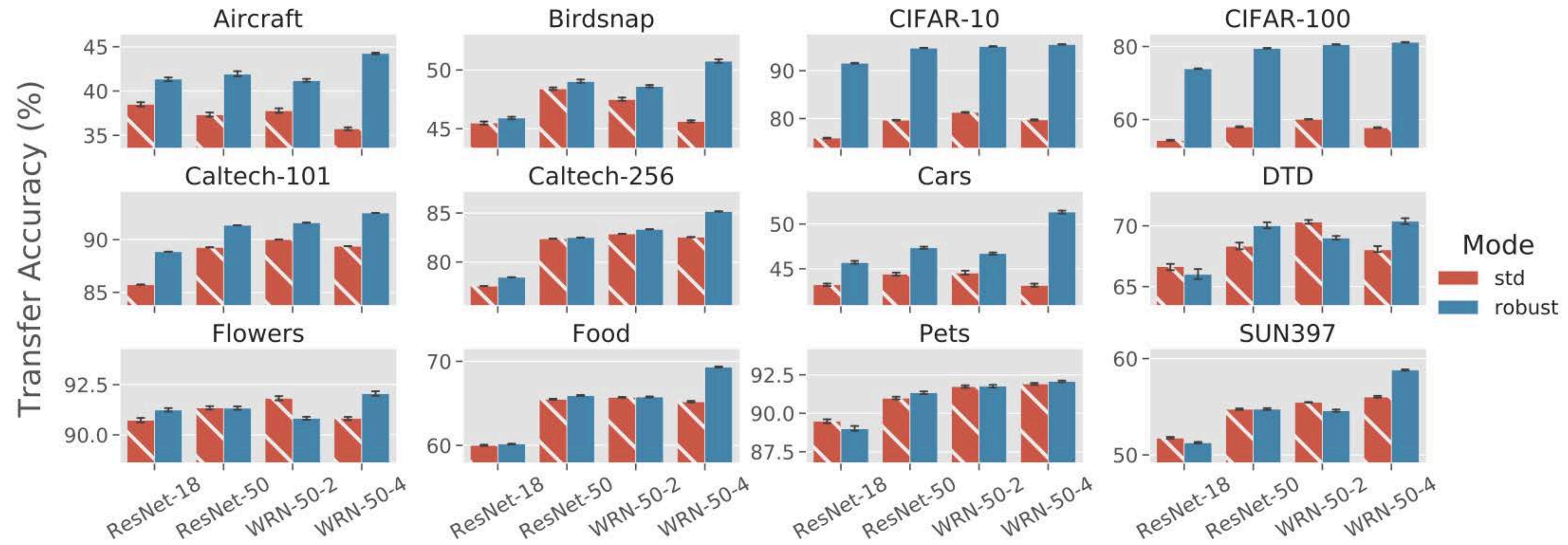
Effect of adversarial training

Loss gradients with respect to input pixels (most important features) show: robust model relies less on “non-robust” features, and more on human-intuitive features

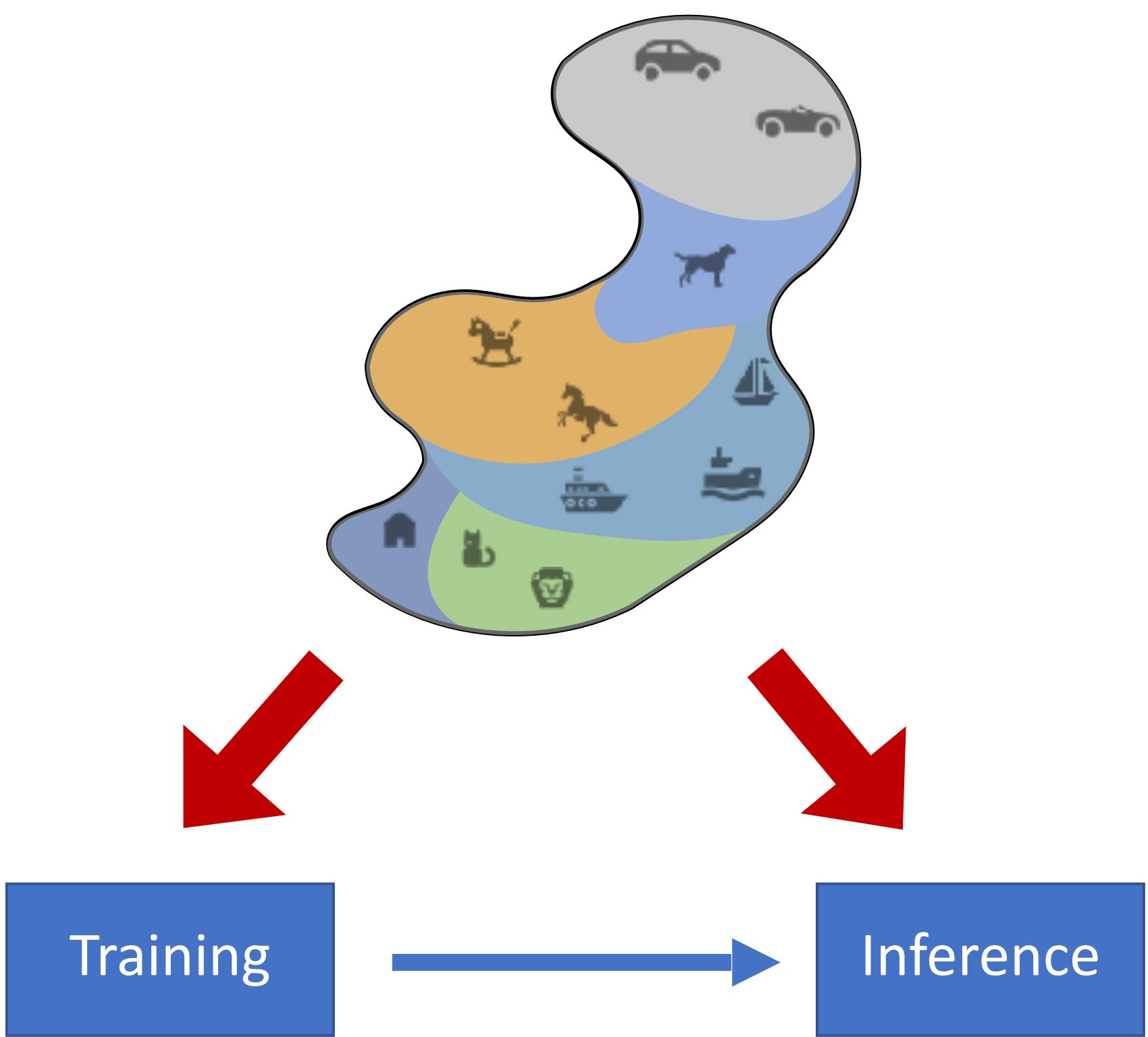
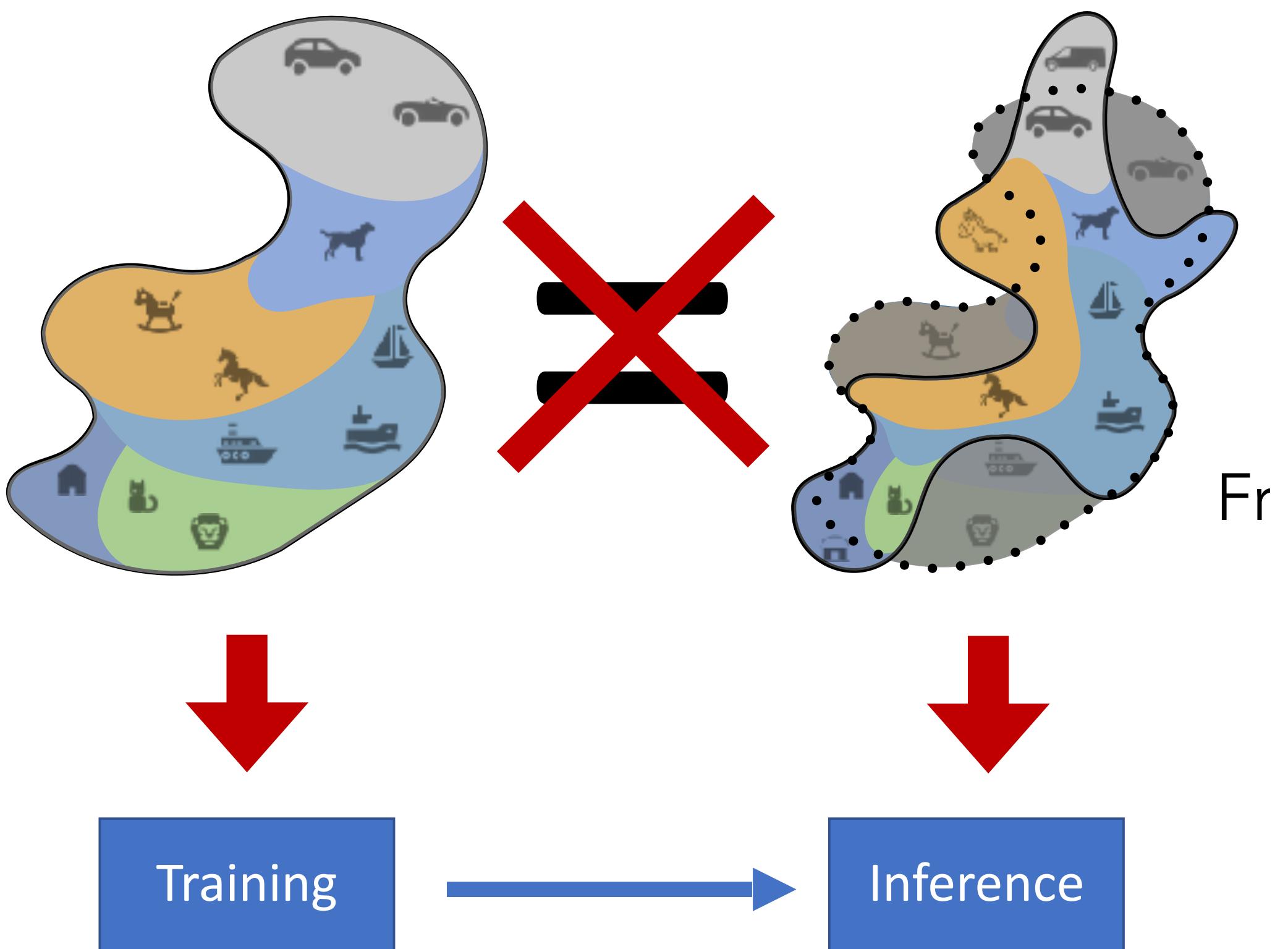


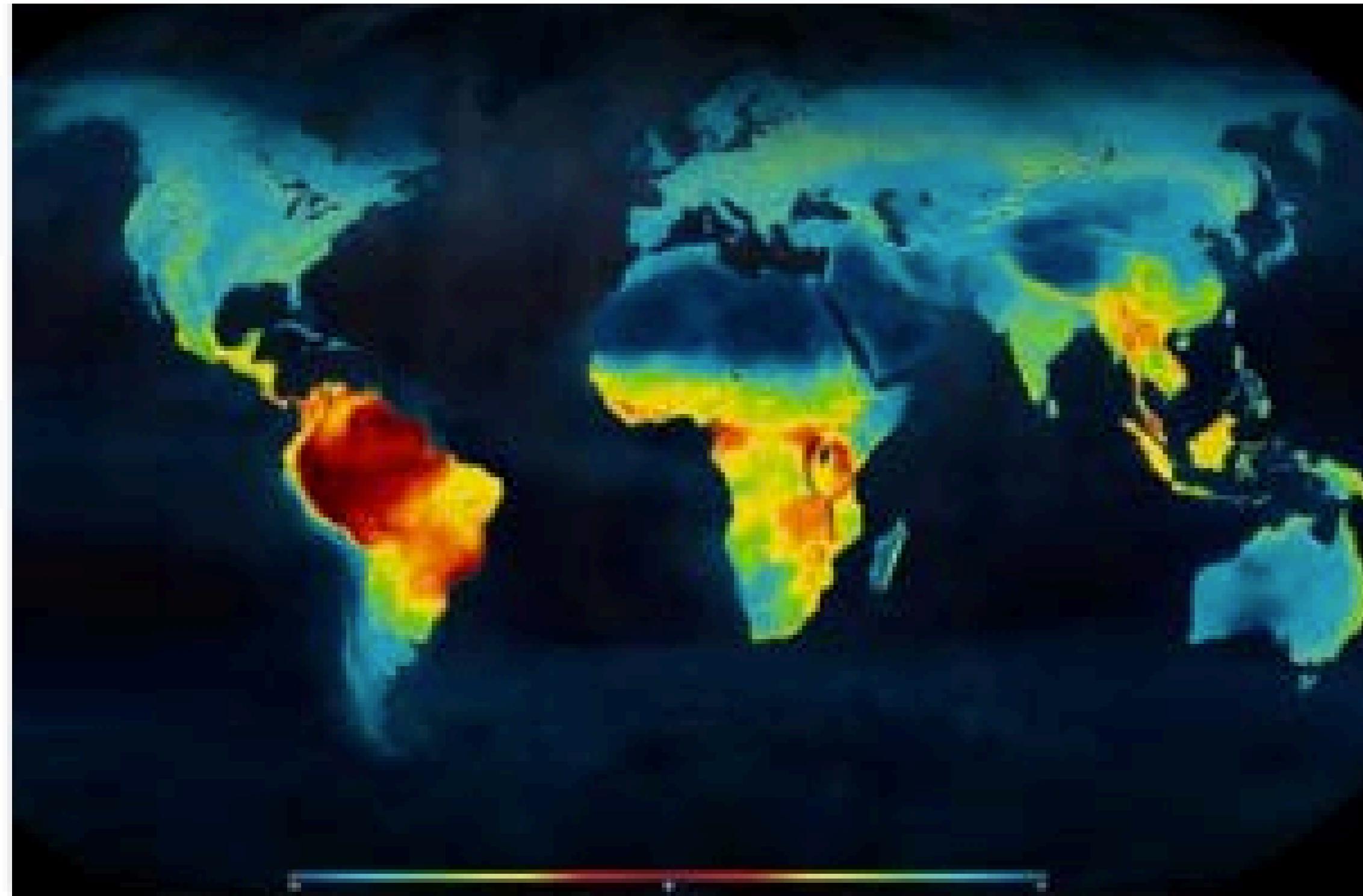
Effect of adversarial training: transfer learning

- adversarially trained models transfer better to other datasets

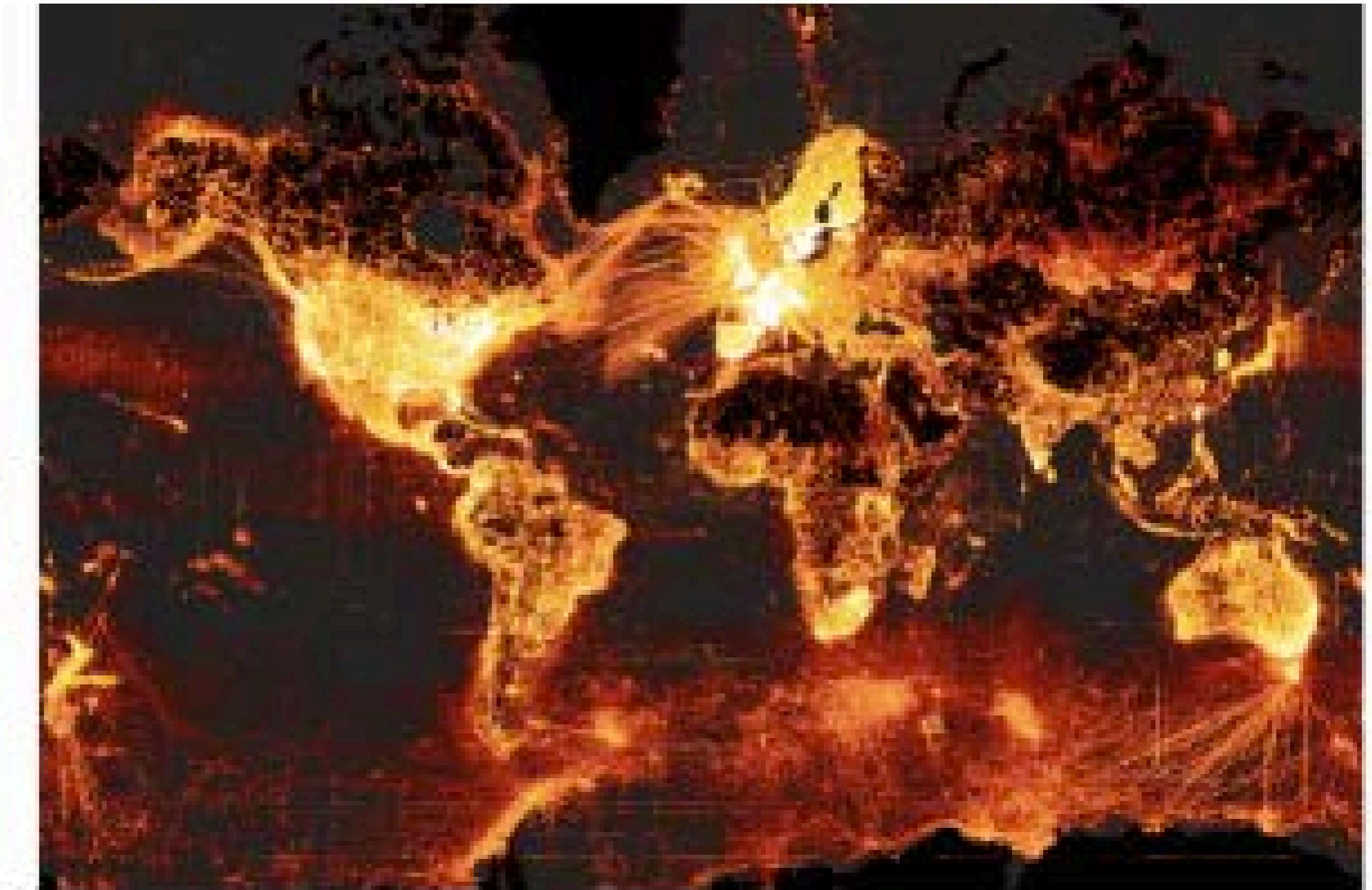


Distribution shifts





Map of global biodiversity

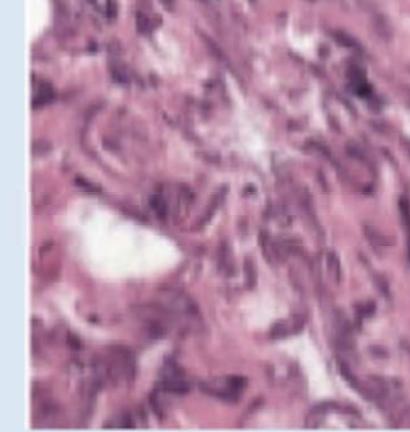
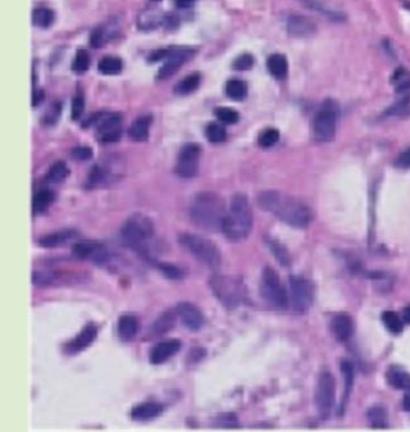


Species occurrence data in GBIF

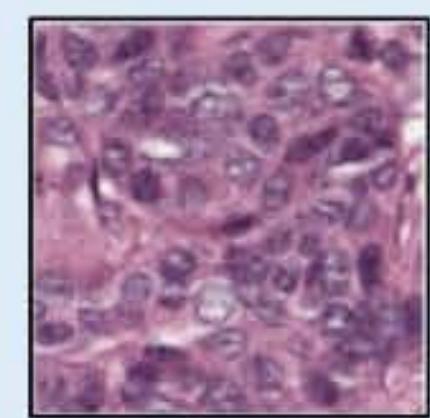
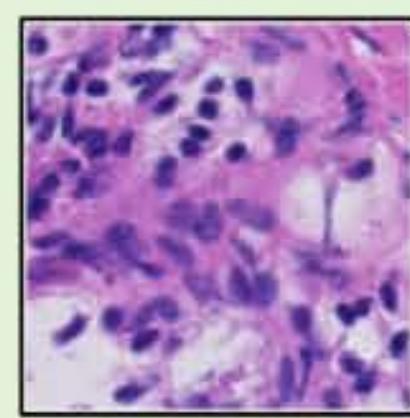
Left: Courtesy of Mannion et al. Used under CC BY. Right: Courtesy of Sara Beery. Used under CC BY.

WILDS

Pang Wei Koh*, Shiori Sagawa*, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Sara Beery, Jure Leskovec, Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang

	Camelyon17	iWildCam	PovertyMap	FMoW	Amazon	CivilComments	OGB-MolPCBA
Shift	Hospitals	Locations	Countries	Time	Users	Demographics	Scaffold
Train					Overall a solid package that has a good quality of construction for the price.	What do Black and LGBT people have to do with bicycle licensing?	<chem>CC(=O)Nc1ccccc1C=CC(=O)NCC</chem>
Test					I *loved* my French press, it's so perfect and came with all this fun stuff!	As a Christian, I will not be patronizing any of those businesses.	<chem>CC(=O)Nc1ccccc1C=CC(=O)Nc2ccsc2Cc3ccccc3O</chem>
Adapted from	Bandi et al. 2018	Beery et al. 2020	Yeh et al. 2020	Christie et al. 2018	Ni et al. 2019	Borkan et al. 2019	Hu et al. 2020

shifts across hospitals in histopathology



ID accuracy
93.2%

-22.9%

OOD accuracy
70.3%

shifts across time in satellite imagery

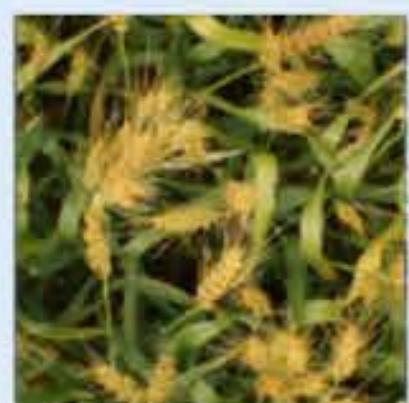


ID accuracy
93.2%

-16.3%

OOD accuracy
32.3%

shifts across regions in wheat head detection

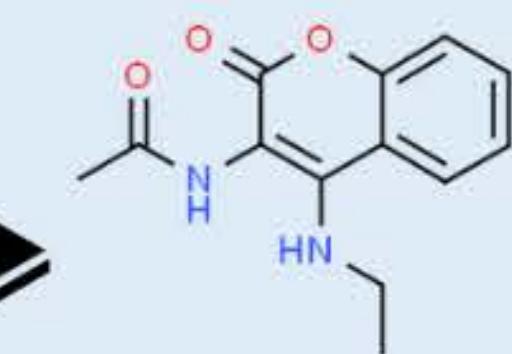
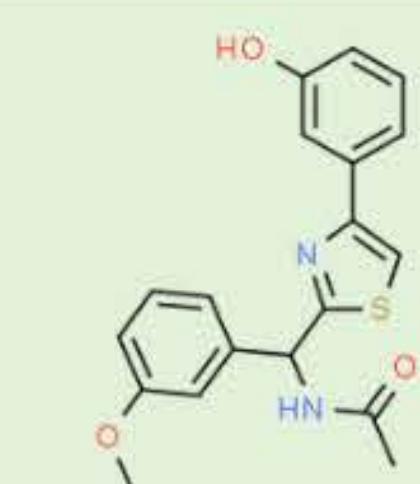


ID accuracy
63.3%

-13.7%

OOD accuracy
49.6%

shifts across scaffold in bioassay prediction



ID AP
34.4%

-7.2%

OOD AP
27.2%

[Koh et al., 2021]

Training data

Camera 1

■

Camera 245

Out-of-distribution (OOD) test data

Camera 246

— ■ ■ ■

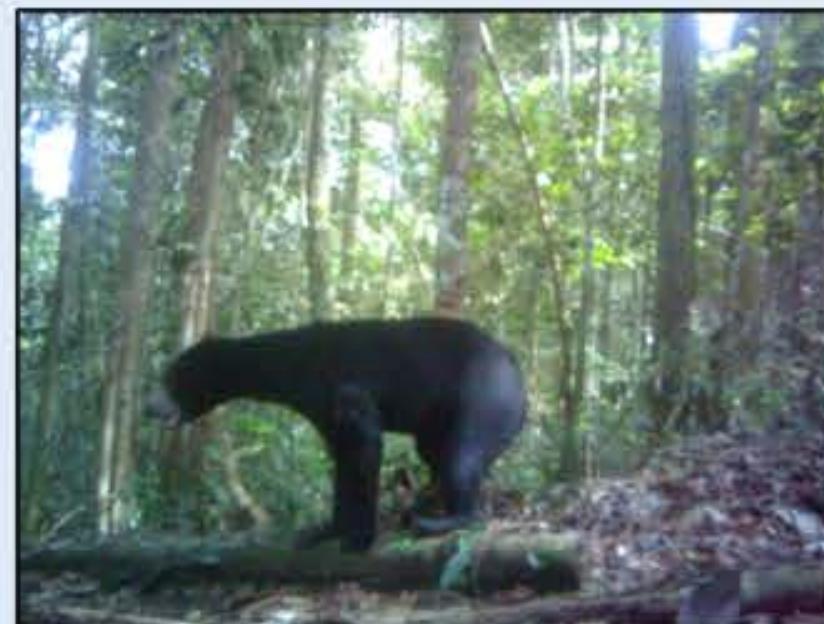
Control: In-distribution (ID) test data

Camera 1

Camera 2

■

Camera 245



Macro F1

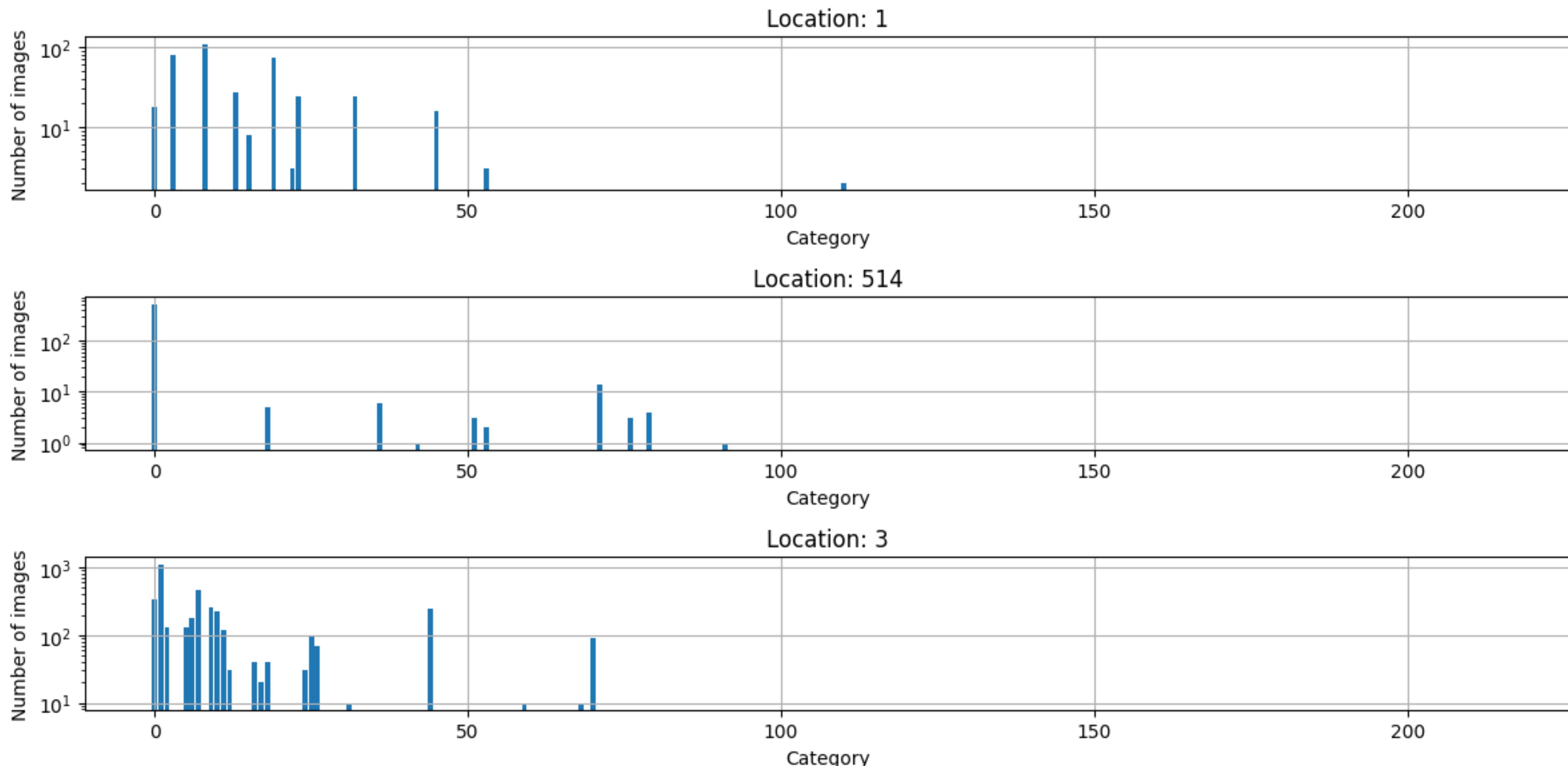
ID
47.0%

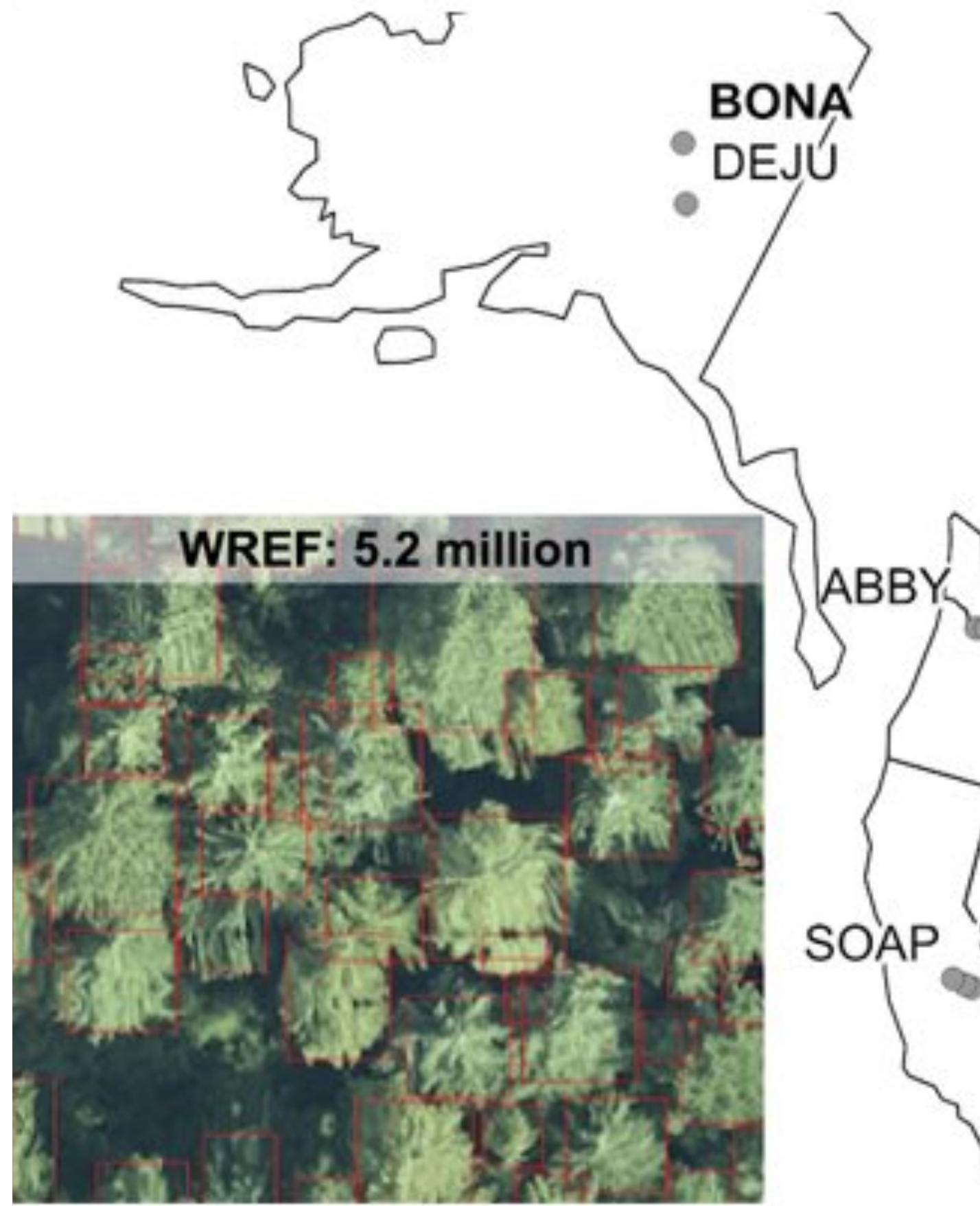
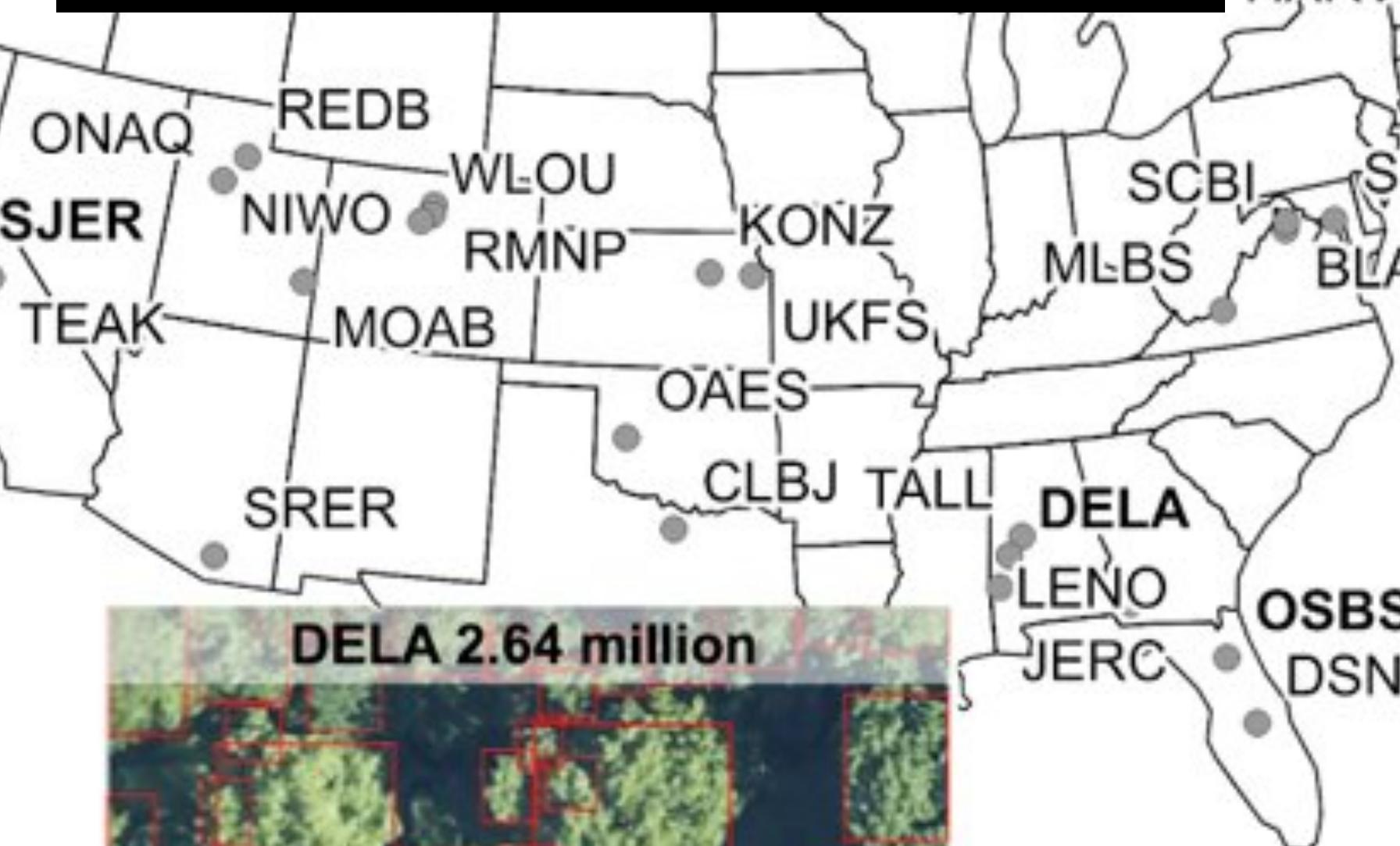
-16.0%

OOD
31.0%

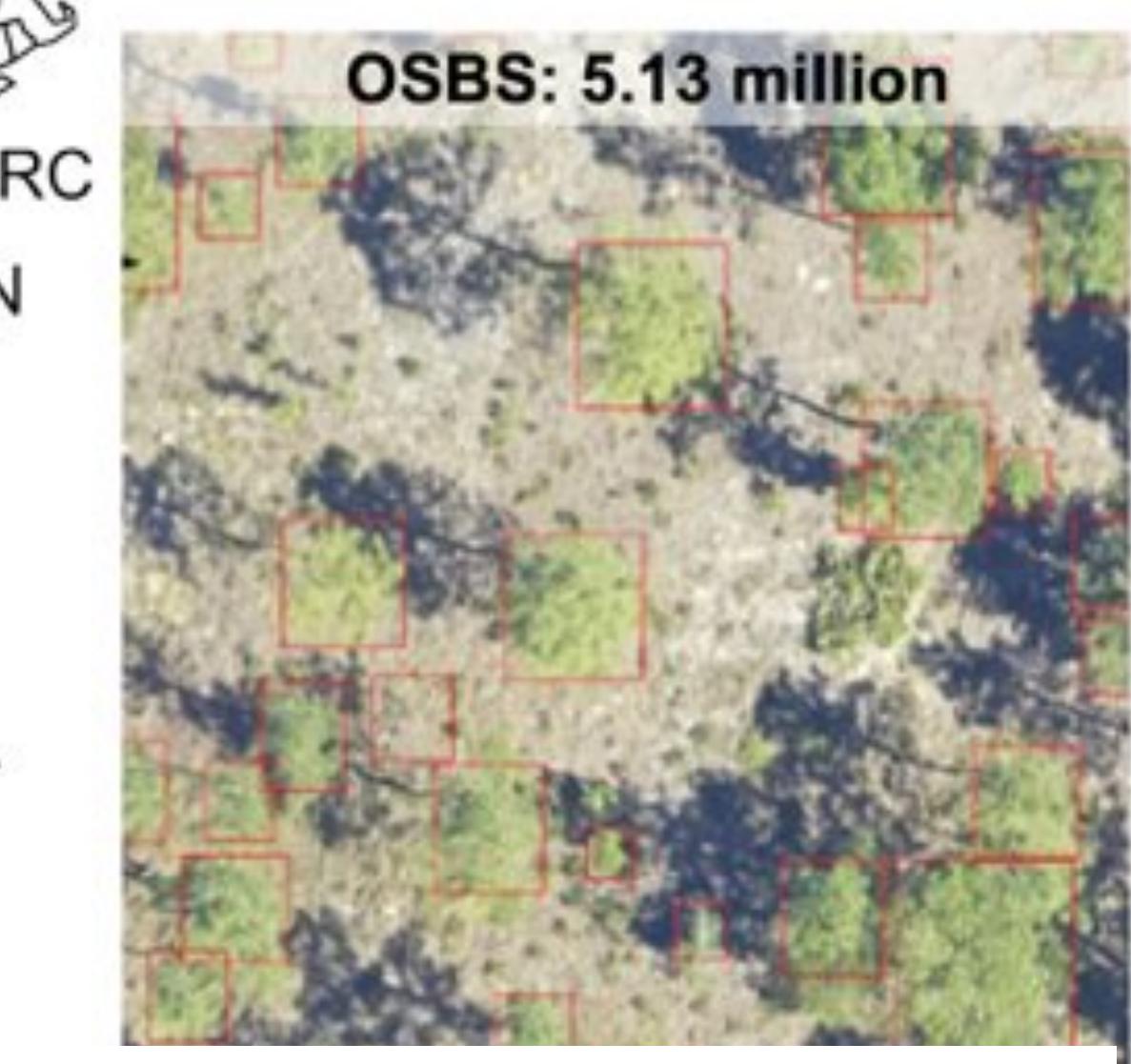
© Beery et al, Koh et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Class distribution is different for each static sensor location





Different
ecosystems have
both subpopulation
and visual
distribution shifts



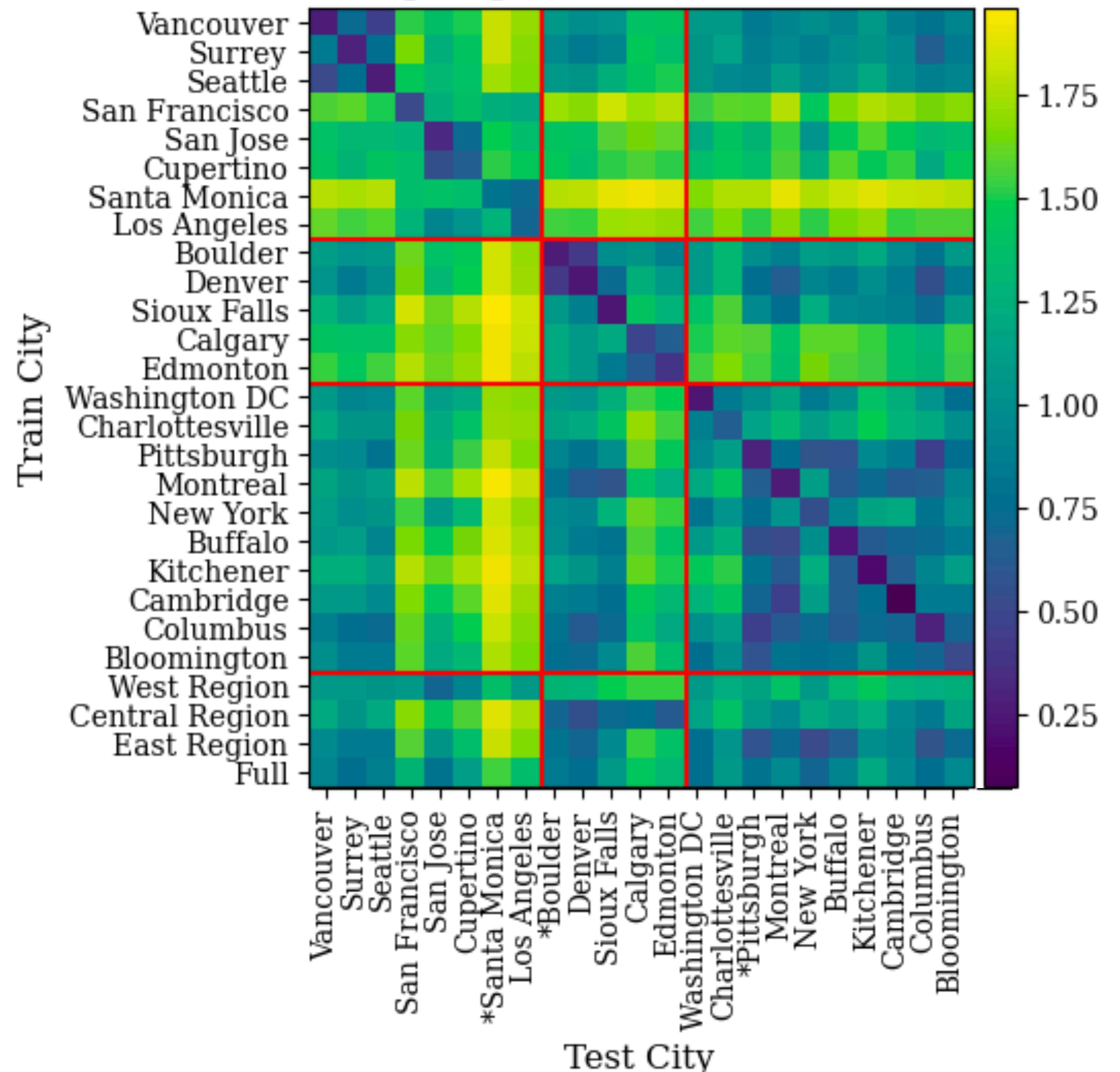
NEONCROWNS Dataset

<http://visualize.idtrees.org/>

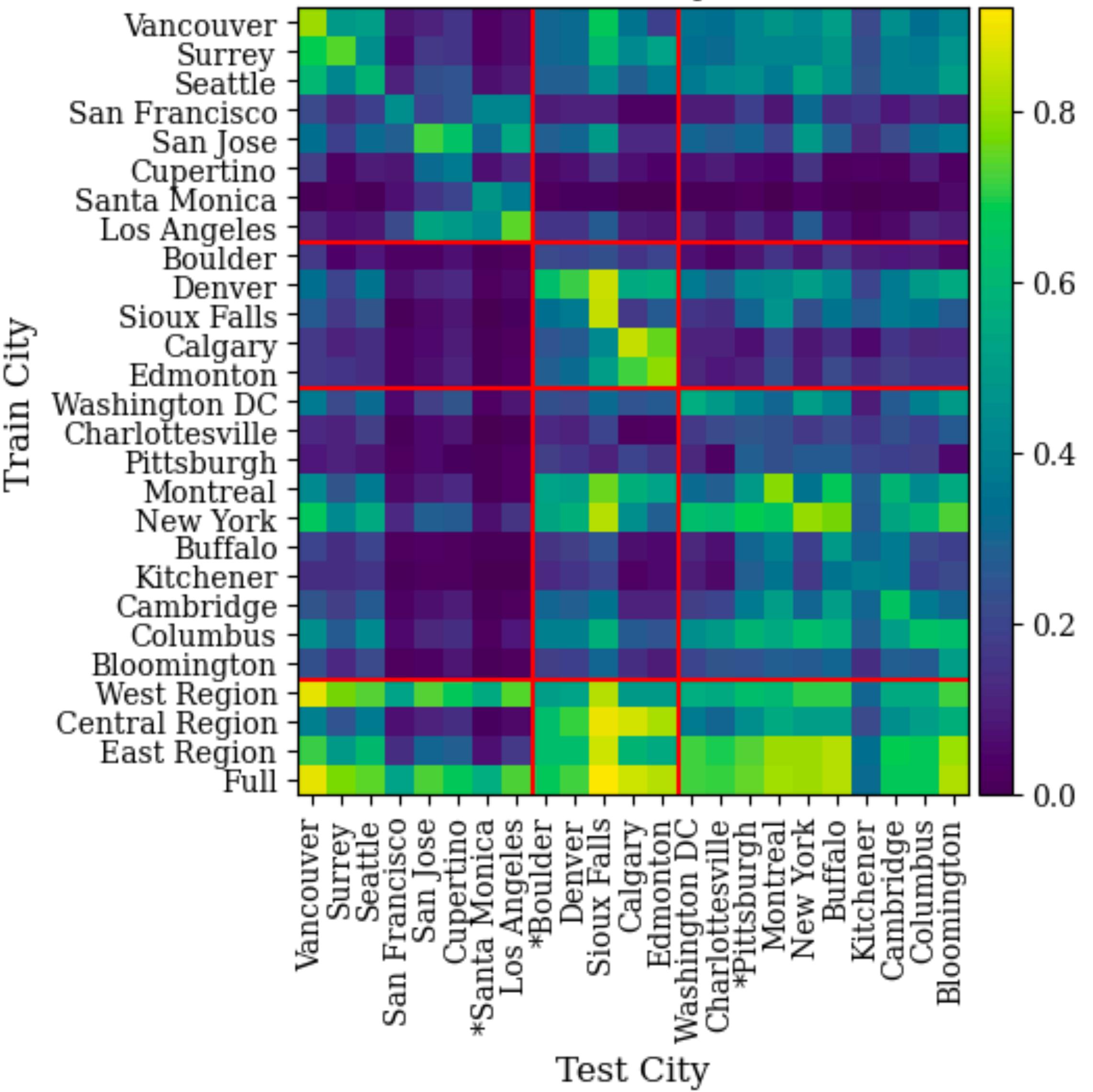
Weinstein et al., 2020

Performance has strong correlation with subpop. distribution similarity

L1 distance between normalized per-genus distributions



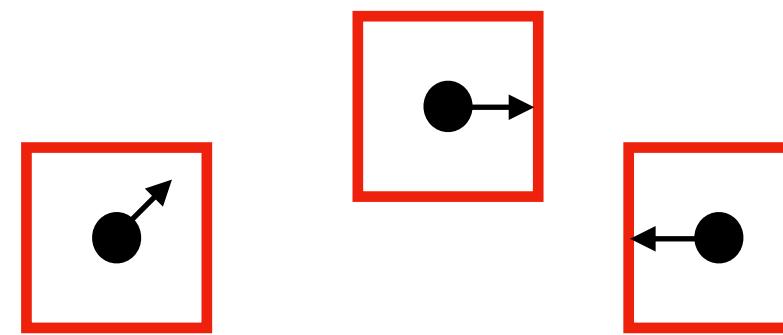
Street level accuracy across cities



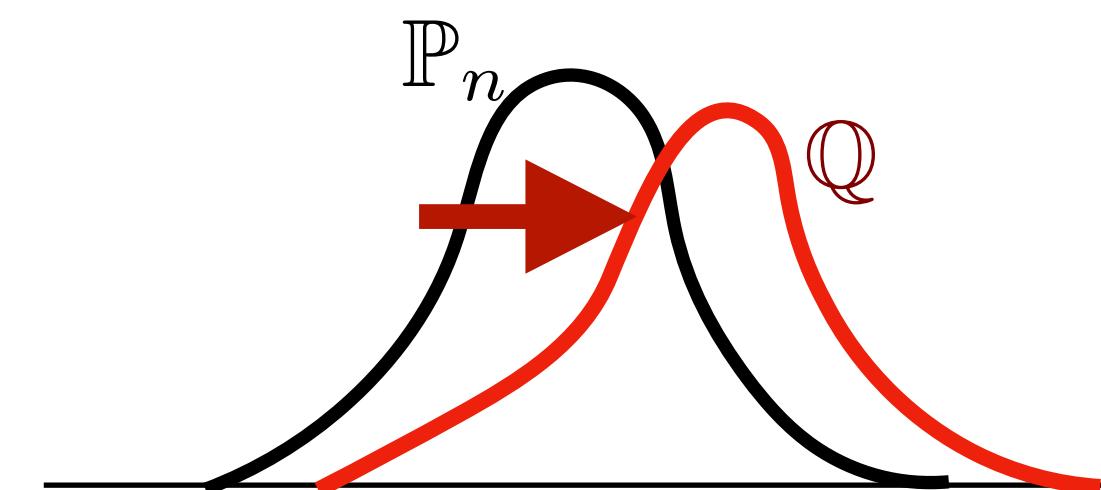
What to do about distribution shift?

One path: distributionally robust optimization

- So far: allowed to perturb each datapoint by a limited amount



- Alternative: we can **perturb the entire training distribution (sample)** by a certain amount, together



Distributionally robust optimization

- Standard training:

$$\frac{1}{n} \sum_{i=1}^n \text{Loss}(f_\theta(\mathbf{x}^{(i)}), y^{(i)}) = \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{P}_n} [\text{Loss}(f_\theta(\mathbf{x}), y)]$$

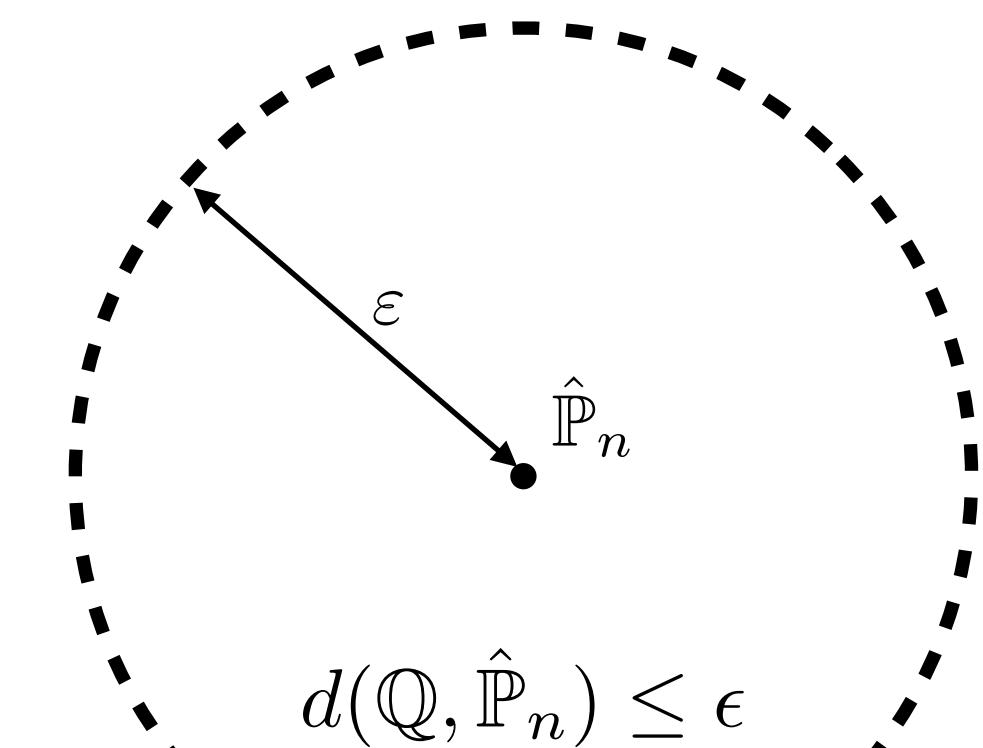
allow a small
perturbation of
training sample
(discrete distribution)

- Distributionally robust optimization (DRO):

$$\min_{\theta} \max_{\mathbb{Q}, D(\mathbb{Q}, \mathbb{P}_n) < \epsilon} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{Q}} [\text{Loss}(f_\theta(\mathbf{x}), y)]$$

e.g. re-weight or
perturb training data points

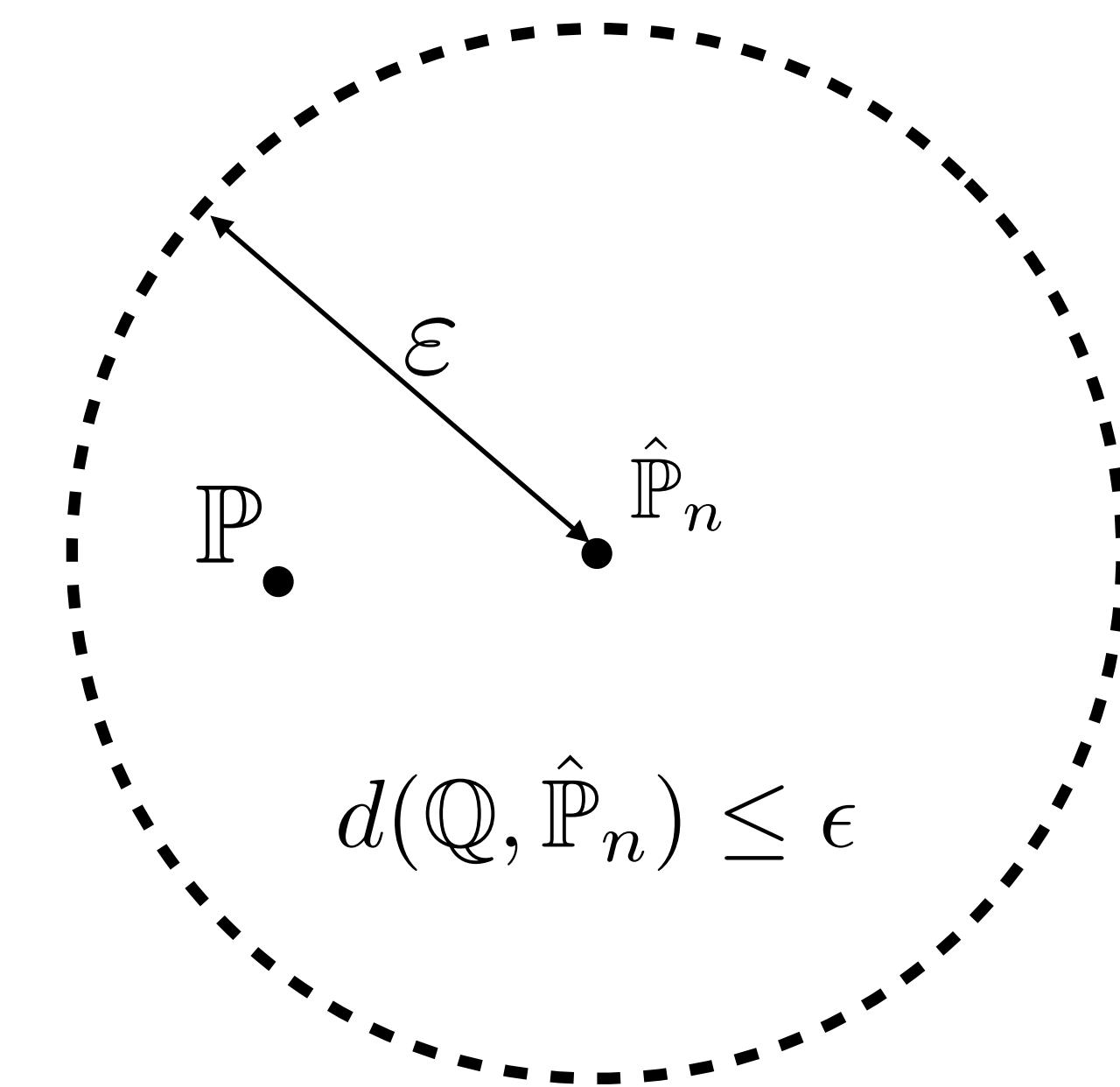
- Various choices of measuring “distance” between probability distributions: χ^2 -distance, Wasserstein distance, maximum mean discrepancy (MMD)...



DRO and generalization

$$\min_{\theta} \max_{\mathbb{Q}, D(\mathbb{Q}, \mathbb{P}_n) < \epsilon} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{Q}} [\text{Loss}(f_{\theta}(\mathbf{x}), y)]$$

- DRO optimizes for a set of training data sets/distributions
- Say underlying data distribution is \mathbb{P}
- Empirical training data is $\hat{\mathbb{P}}_n$
- If $D(\mathbb{P}, \hat{\mathbb{P}}_n) < \epsilon$, then we are guaranteed to perform well on \mathbb{P} too, i.e., generalize!



Application: DRO and class imbalance

- Assume population has K sub-groups (example: K=2).
- Usually: minimize “Empirical Risk” (average error)

$$\min_{\theta} \frac{1}{n} \left(\sum_{i \text{ in group 1}} \text{Loss}(x_i; \theta) + \sum_{j \text{ in group 2}} \text{Loss}(x_j; \theta) \right)$$

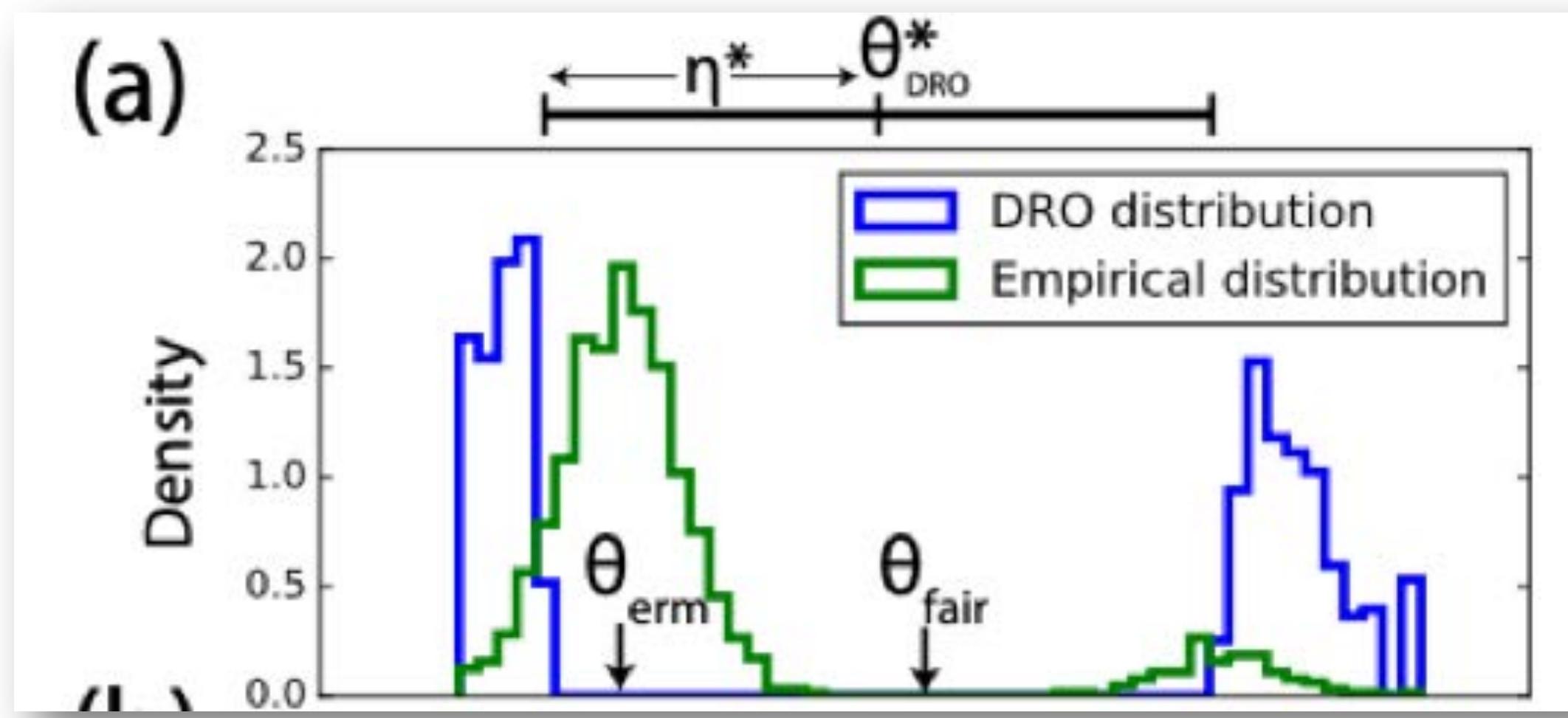
80% **20%**

- Here, 50% error on minority group makes only 10% average error.
(+ statistical patterns for minority may be different)
- We can “ignore” minority group and still get decent loss!

DRO and class imbalance

- Idea: automatically re-weight data via DRO
=> pay more attention to minority class

$$\min_{\theta} \max_{\mathbb{Q}, D(\mathbb{Q}, \mathbb{P}_n) < \epsilon} \mathbb{E}_{(\mathbf{x}, y) \sim \mathbb{Q}} [\text{Loss}(f_{\theta}(\mathbf{x}), y)]$$

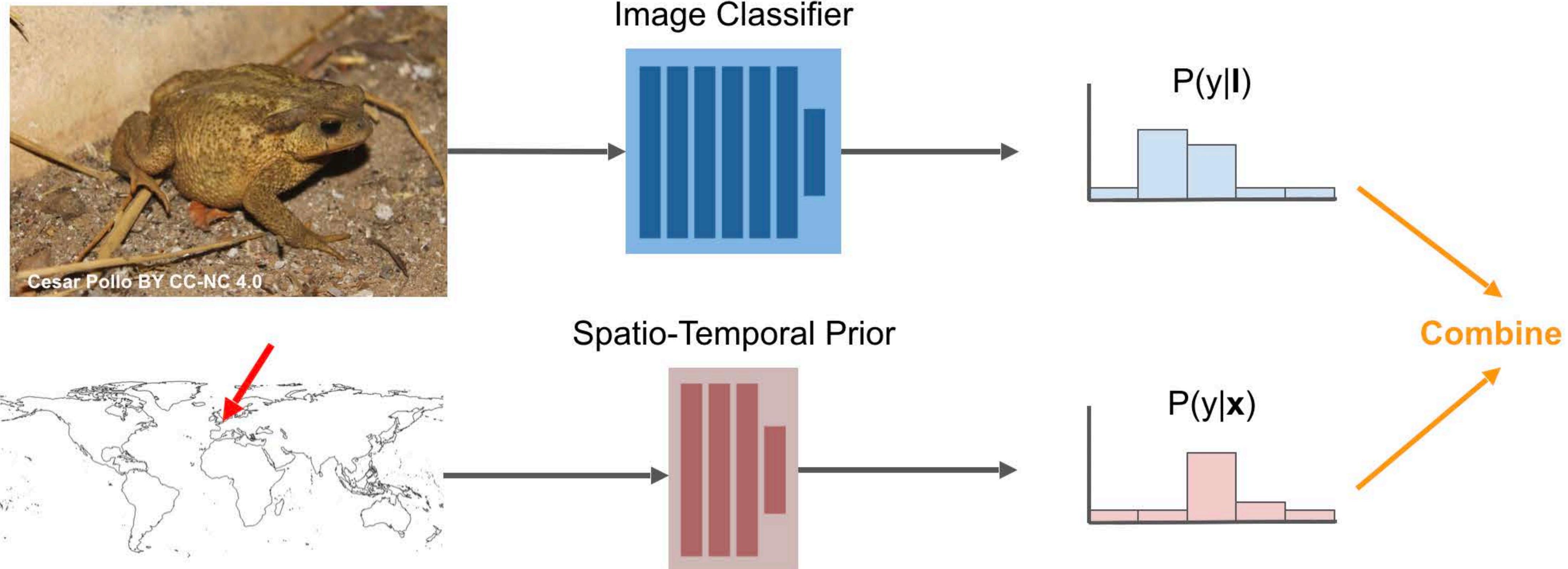


What to do about distribution shift?

- Distributionally robust optimization

Learn a spatiotemporal prior

$$P(y|I, \mathbf{x}) \propto P(y|I)P(y|\mathbf{x})$$



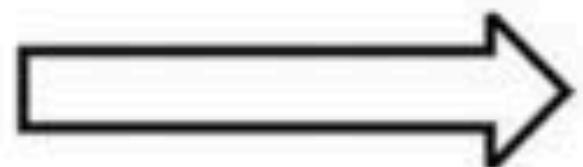
$\mathbf{x} = (\text{longitude}, \text{latitude}, \text{day})$

© Mac Aodha et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

What to do about distribution shift?

- Distributionally robust optimization
- Learn (or use) a prior for subpopulation shift

Domain



Adaptation

Source domain: ● ★ ▲ ■

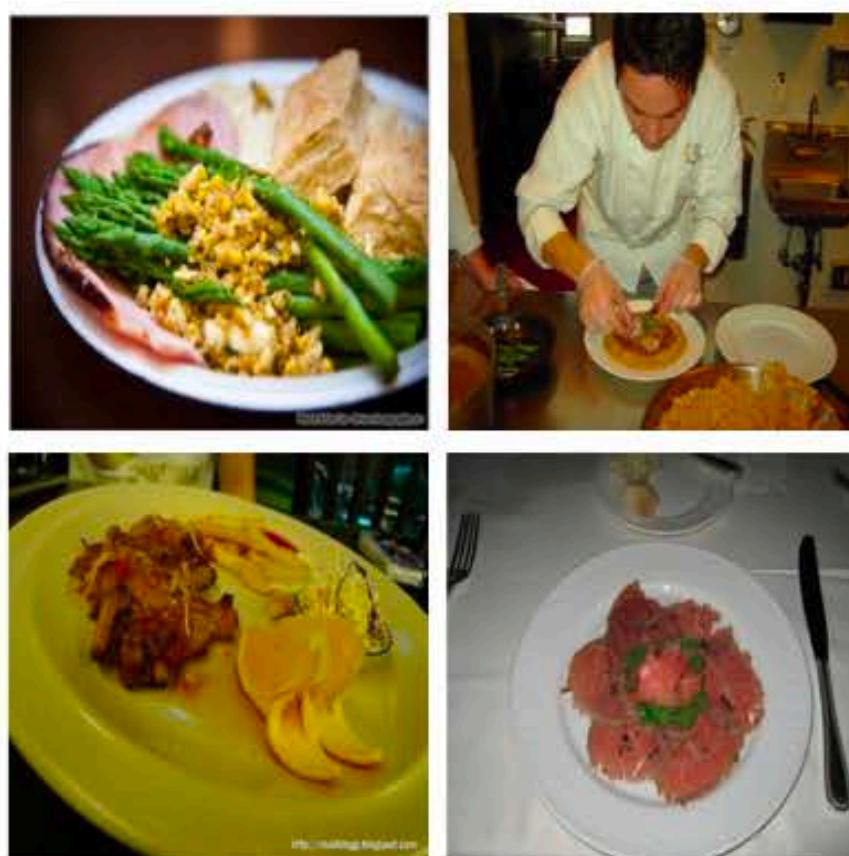
Target domain: □ △ ○ ★

© He et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

What to do about distribution shift?

- Distributionally robust optimization
- Learn (or use) a prior for subpopulation shift
- Domain adaptation (next lecture!)

Original Plates



ImageNet

Acquiring images of plates with utensils

Bing

Stable Diffusion

ImageNet*

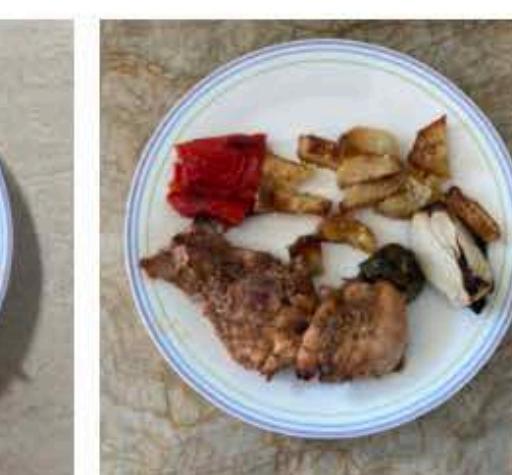
tray

tray

tray

plate

plate



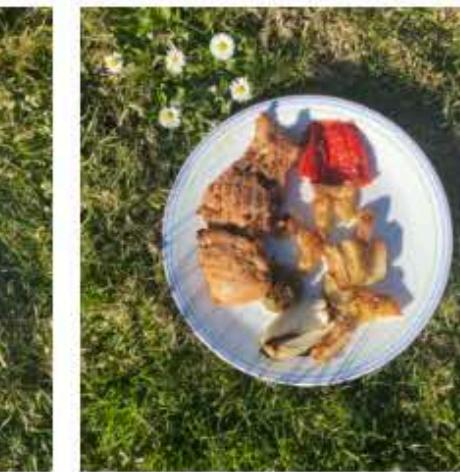
plate

tray

bucket

bucket

plate



plate

plate

© Vendrow et al. All rights reserved.
This content is excluded from our
Creative Commons license. For
more information, see
<https://ocw.mit.edu/help/faq-fair-use/>

Figure 8: Real images of plates, with and without food and either on a table or in the grass. Below each image is the predicted class by an ImageNet-trained ResNet50.

What to do about distribution shift?

- Distributionally robust optimization
- Learn (or use) a prior for subpopulation shift
- Domain adaptation (next lecture!)
- Diagnose failures

What to do about distribution shift?

- Distributionally robust optimization
- Learn (or use) a prior for subpopulation shift
- Domain adaptation (next lecture!)
- Diagnose failures
- Get training data that is representative of your test domain
(works better than any algorithm)

Summary

- Out-of-distribution generalization: big challenge, but helps understand what NNs learn.
 - Adversarial examples and training
 - Distribution shifts

MIT OpenCourseWare

<https://ocw.mit.edu>

6.7960 Deep Learning

Fall 2024

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>