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Data prediction problems (“structured prediction”)

Semantic segmentation

Automatic speech recognition
Hm'}mmw —> computers that talk
[Glass 2007, ...]

[Long et al. 2015, .

Text—to—photo Protein tolding

Prersees 0

Input sequence E

“this small bird has a pink
—
breast and crown...”

3D structure

[Reed et al. 2014, ...]

© Long et al., Glass, Reed et al., AlphaFold, Jumper et al. All rights reserved. This content is excluded from our Creative C(gnmons
license. For more information, see https://ocw.mit.edu/help/faqg-fair-use/

[AlphaFold, Jumper et al. 2021, ...]




Structured prediction

X is high-dimensional -

Model joint distribution of high-dimensional data P(X|Y =y)

In deep learning this is usually what we are interested in

Unstructured: Hp(X¢|Y =y)
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observation

pdaﬂ:a(f4 —

>

> (1

a) true data distribution

> (1

d) Gaussian predictive distribution
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po(A

b) point prediction (aka regression)

= all)

c) softmax distribution (aka classification)




Generative models have two important properties for structured prediction:

1. They can model a multimodal distribution
2. They can model joint dependences between multidimensional predictions
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Real or fake?

© color_byangelina. All rights reserved. This content is excluded from our Creative Commons
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Deep learning in 2012

Use a hypothesis space that can model complex structure
(e.g., a CNN, nearest-neighbor)

L.earner

Objective
Data — | seessessassasnnsnnns B N f

Optimizer




Why deep learning

Deep learning

Performance

Amount of data

How do data science techniques scale with amount of data?
[Slide credit: Andrew Ng]



[Photo credit: Fredo Durand] (Colors represent one-hot codes)

alg IIlJ}_Il 4:X7y [L<F(X)7 Y)]
/ Objective function
Hypothesis space (loss)

© Fred Durand. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
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yH X W x 3

HxWxK

Semantic Segmentation

L.earner

Objective

N
f*=argmin ) H(y;,yi)
fer =

Hypothesis space

Convolutional neural net

Optimizer
Stochastic gradient descent
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HxW x3
HxW x3

Sat2Map

LLearner
Ob jective

= argmmz (fo(x)i —yi)°

Hypothesis space

Convolutional neural net

Optimizer
Stochastic gradient descent
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INnput Deep net output
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Structured prediction

Use an objective that can model structure! (e.g., a graphical model, a GAN, etc)

L.earner

Data —s | oo N f
Hypothesis space

Optimizer
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Image-to-image

|1With conditional GANs
with conditional VAEs



Conditional GAN



For example: pix2pix [Isola et al. 2017]

(Generator
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11— real or synthetic?

g tries to synthesize fake images that fool d

d tries to identity the tfakes
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> synthetic (0.9)

> real (0.1)

d;’; — arg mg?x Cx.y log dy(ge(x))|+|log(l — dy(y))|
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g tries to synthesize take images that fool d:

0

~

4

“X,Y

log dy(ge(x)).

21

> real or synthetic?



> real or synthetic?

g tries to synthesize fake images that fool the best d:

arg Ux,ylog dg(ge(x)) + log(1 — dg(y))
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, Loss Function
s

g's perspective: d is a loss function.

Rather than being hana-designeq, it is learned and
hignly structured.
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> real or synthetic?

.y | +log(1 —dg(y))
arg m@in max Ix.y|logdy(ge(x))




reall

arg min max Ey [log d (90 (x)) + log(1 — dy(y))
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real or synthetic

pair ?

arg min max Ey [log d (90 (x)) + log(1 — dy(y))

26



tic
real or synthe

pair ?

..........

1
g(
y
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11 TaxX
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ynthetic pair
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real pair

..........

1
g(

0 ¢
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real or synthetic

pair
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Training Details: Loss function

gp = arg min max Lecnn(0, @) +|ALr1(0)

v

Stable training + fast convergence

[c.t. Pathak et al. CVPR 2016]
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| abels = Facades

Input

Data from [Tylecek, 2013]




Patch Discriminator

1 x1 16 x 16 70 x 70 286 X 286
Discriminator patch size
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Why deep learning

Deep learning

Performance

Amount of data

How do data science techniques scale with amount of data?
[Slide credit: Andrew Ng]



Performance

Why structured objectives

(cartoon)

Deep learning

Older learning algorithms

Amount of data

35



Performance

Why structured objectives

(cartoon)

DL w/ structured objective
(conditional generative models)

DL w/ unstructured objective
(e.qg., least-squares regression)

//—>

Older learning algorithms

—}
Amount of data
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Input Unstructured prediction (L1)
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INnput

38



Conditional VAE



Modeling multiple possible outputs

Possible outputs

40



Modeling multiple possible outputs
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Context
Frame

Finn et al.

(2016)

Time

-xample from [Babaeizadeh et al., ICLR 2018
see also [V\Qezalker et al., ECCV 2016], [Xue*, Wu*, et al., NIPS 2016




Target

X
Observation

A

y

—xample from |

see also [V\{glker et al., ECCV 2016], [Xue*, Wu*, et al., NIPS 2016

Reconstruction

Babaeizadeh et al., ICLR 2018




Target

X
Observation

A

y

—xample from |

see also [V\{glker et al., ECCV 2016], [Xue*, Wu*, et al., NIPS 2016

Reconstruction

Babaeizadeh et al., ICLR 2018




X
Observation

N\

Yy Yy
Target Reconstruction
> 7 >
£l

-

Z learns to encode the missing information necessary
to predict y from x, i.e. the direction in which the
purple box moves

- Xa
see also [Walker et al.,

mple from [Babaeizadeh et a

—CCV 2016], [Xue*, Wu*, et a

L 1C
., NI

'R 2018
bS 2016




Observation

Prediction

deh et al., ICLR 2018

iza
Xue*, Wu*, et al., NIPS 2016

xample from [Babae

CCV 2016], |

see also [V\leker et al.,



Observation

Prediction

deh et al., ICLR 2018

iza
Xue*, Wu*, et al., NIPS 2016

xample from [Babae

CCV 2016], |

see also [V\leker et al.,



Observation

Prediction

deh et al., ICLR 2018

iza
Xue™, Wu*, et al., NIPS 2016

xample from [Babae

CCV 2016], |

see also [Walker et al.,
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Modeling multiple possible outputs

[BiCycleGAN, Zhu et al., NeurlPS 2017]
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Concept: You can control your data either via
explicit inputs or latent variables

50



lext-to-text

Lwith autoregressive models



Autoregressive models are conditional generative models

“Colorless green Language

1. Tralnlng ideas sleep "o model

—> “furiously”

(Predict next characters)
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Autoregressive models are conditional generative models

[Review] + “The

2. Predicting  sentiment in this __, |lAD8UAgE| ., ..o
review 1s o model

(Predict next characters)
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G PT—3 [Brown et al., 2020] https://arxiv.org/pdt/2005.14165.pdt

I had a horrible experience with this airline. The flight was delayed _five_hours. Then, they lost my luggage. I had to
wait a whole week to get the luggage back. I didn't have any changes of clothes so I wasted a lot of money to buy a
few things to wear. When I finally got my luggage back, it was missing half my things. I will never fly with this airline

again.

The sentiment in this review is negative.
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|mage-to-text

Lwith an autoregressive model
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What is this slide showing and how does it relate to the way you
work, ChatGPT?

— Image Encoder -

&) This slide shows a model architecture for a vision-language transformer, often used in image-

captioning models. The components include:

1. Image Encoder: On the left, where image inputs are processed through self-attention layers.

This encoder extracts features from the image, representing various parts of the visual input.

2. Cross-Attention Layer: The encoder's output interacts with the text decoder through cross-
attention, enalbling the text to attend to image features and guide the generation of

descriptive captions.
Created with ChatGPT.

T — e

S7



Does ChatGPT know how its own brain works?

How This Relates to How | Work

Similar to this architecture, my responses often involve "attention" to different parts of your input.
Instead of visual data, | focus on your conversational context and keywords, determining the next
part of the response based on previous parts of the conversation. In this way, | function similarly to
a text decoder with attention mechanisms to retain consistency and relevance in dialogue.
However, unlike this model's image encoding, | don't process visual data directly, but rely on text

representations and information you share about images.

Created with ChatGPT.
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lext-to-image

Lwith all models combined!



General strategy for domain translation

Prediction error

Encoder Decoder

60



Image space

f

“
.
-
-

Encoder

Text-to-image

Latent space

Decoder

61

Text space

P
.
.

Prediction
error

A

t

a yellow
bird
sitting on
a tree
branch




Text-to-image

Text space Latent space Image space

i g !

R TNV AN ¢ Lo
K _ : Prediction
: : { error A yellow
: bird sitting
‘ ‘ g on a tree
Encoder Decoder branch.

t
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Text-to-image VAL

Observation

perch.

A scarlet macaw
sitting on a

¢ ()

Target

i

Text Encoder
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For example: DALL-E 1 [Ramesh et al. 2021]
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Prediction




Text-to-image VAL

Observation

of a robin,
facing left.

A profile photo

(%)

Text Encoder

—f

TAREN N(0,1)

For example: DALL-E 1 [Ramesh et al. 2021]
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Image Decoder

Prediction ¢




Text-to-image diffusion model
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A profile photo jb
of a robin,
facing left.

X , Yt Yit—1
For example: DALL-E 2 [Ramesh et al. 2022], Stable Diffusion [Rombach*, Blattman™* et al. 2022]
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Text provides information as to what the noiseless image should look like

A robin on a
background.

-

A robin on a
pink background. »
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Text-to-image diffusion model

Inputs Text-to-Image Ouput

Text Encoder

A profile photo
of a robin, :
facing left. , JF
¢ ()

|
0

z\") ~ N (0,1) Image decoder Prediction Z(i)

For example: DALL-E 2 [Ramesh et al. 2022], Stable Diffusion [Rombach*, Blattman™* et al. 2022]
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Visual Question Answering (VQA)

What animal ef? E What color
£ - It

yellow

is this r///////1 E is the bird F;__l_br///////q
é]t Golden palm E L’/////// S]t
\ \

[Antol*, Agrawal* et al., ICCV 2015]
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LLaVA

Language Response X ., . . .

Language Model f¢

K\K\Kﬁ ataYe)

Proiection W
rojection Z ?H

Vision Encoder
X

v Image Xq Language Instruction

Figure 1: LLaVA network architecture.

[“Visual Instruction Tuning”, Liu*, Li*, et al. 2023]
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Mixing ideas from GANs, VAEs, and Autoregressive models

real/fake
r f

Codebook 2 Transformer

0

,.I|||I|.|,
p(s) = [ plsils<i) 5.

1

- | = - | -
- e e

f r
f r
r r

*

CNN
- Discriminator

© Esser, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

https://arxiv.org/pdf/2012.09841.pdf  [“Tamipg Transformers”, Esser, Rombach, Ommer 2020]



Unpaired Translation

Cartoon © Science and Technology. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

[Includes slides from Jun-Yan Zhu, Taesung Park]

[Cartoon: The Corpputer as a Communication Device, Licklider & Taylor 1968]
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Unpaired

© Zhu, et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/




real or synthetic

pair

arg m@in mq‘?x Cx.y [log dy(x, go(x)) + log(l — dy(x,y))]

Creative Commons license . For more informat ion, see
https://ocw.mit.edu/help/fag-fair-use/
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real or synthetic

pair ?

argminmax Ex y| log D(x,G(x)) + log(1 — D(x,y)) |

G D

No Iinput-output training pairs!

© Zhu, et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/
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real painting
or synthetic?

Arg min max ix yllogdg(ge(x)) +log(1l — dy(y))

Usually loss functions check it output matches a target instance

GAN loss checks it output is part of an admissible set

© Zhu, et al. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/
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Reall

© Zhu, et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/
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—Hﬂﬂ— Real too!

Nothing to force output to correspond to input

© Zhu, et al. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/
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CycleGAN, or there and back aGAN

© Zhu, et al. All rights Feserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

[Zhu*, Park* et al. 2017], [Yi et al. 2017], [Kim et al. 2017]
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CycleGAN, or there and back aGAN

© Zhu, et al. All rights réserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/

[Zhu*, Park* et al. 2017], [Yi et al. 2017], [Kim et al. 2017]
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Cycle Consistency Loss

cycle-consistency

- Y 170 @ | i 1 AT e\ ..t IOSS
cycle-consistency

loss




Unique solution?

(0,2) (1,2) (0,2) (1,2)

1 -2b, -1 [1f 2,
W‘(o 4—2b2) W‘( )

Af————, Ap—
(Or;) (L?) (013) (1::)

10,0) (0,0)

© Galanti, Wolf, Benaim. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

[Galanti, Wolf, Benaim, ICLR 2018]
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Unpaired translation in language
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© O e o - e o,
O & & ® N
@ observed source sentence @ observed target sentence -
() unobserved translation of a target sentence (O unobserved translation of a source sentence )-(A
O

X system translation of a target sentence X system translation of a source sentence

© Lample, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

[“Phrase-Based & Neural Unsupervised Machine Translation”, Lample et al. 2018]
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Concept: paired data is not always necessary for
grounding (finding a unique mapping between two domains)
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