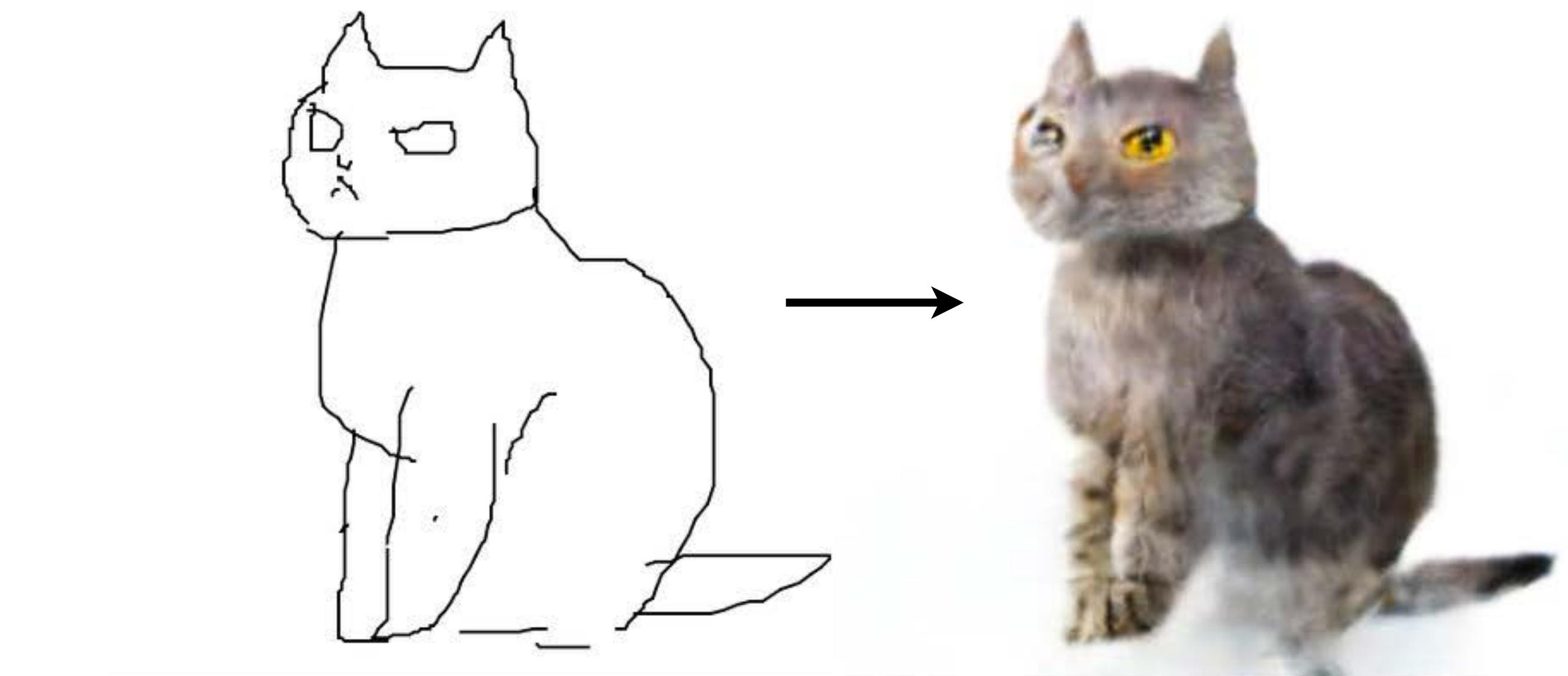


Lecture 16: Deep Generative Models III

Speaker: Phillip Isola



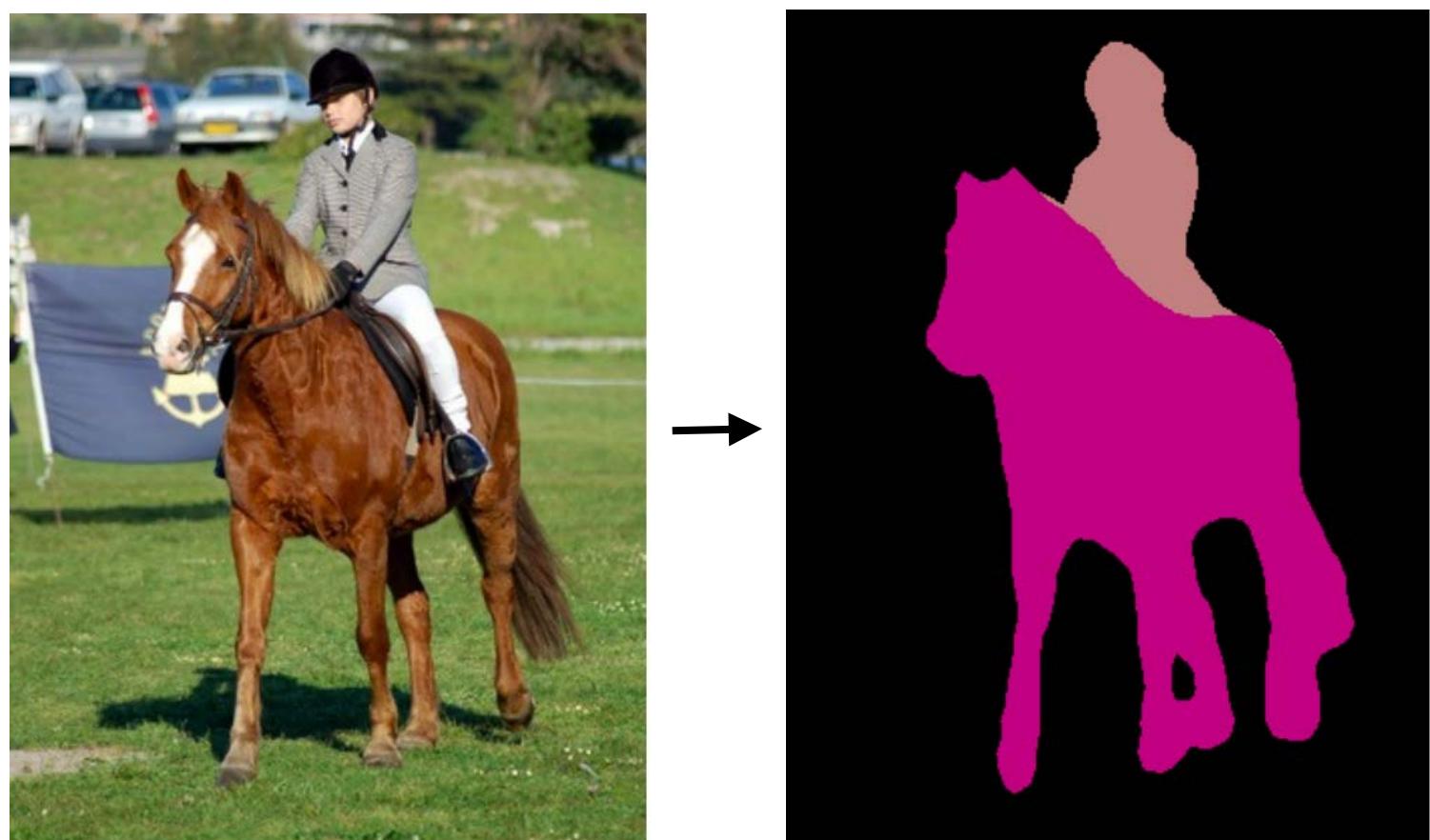
Created with edges2cats; Pix2Pix.

Deep generative models III

- Structured prediction
 - Image-to-image
 - Text-to-text
 - Image-to-text
 - Text-to-Image
- Unpaired translation

Data prediction problems (“structured prediction”)

Semantic segmentation

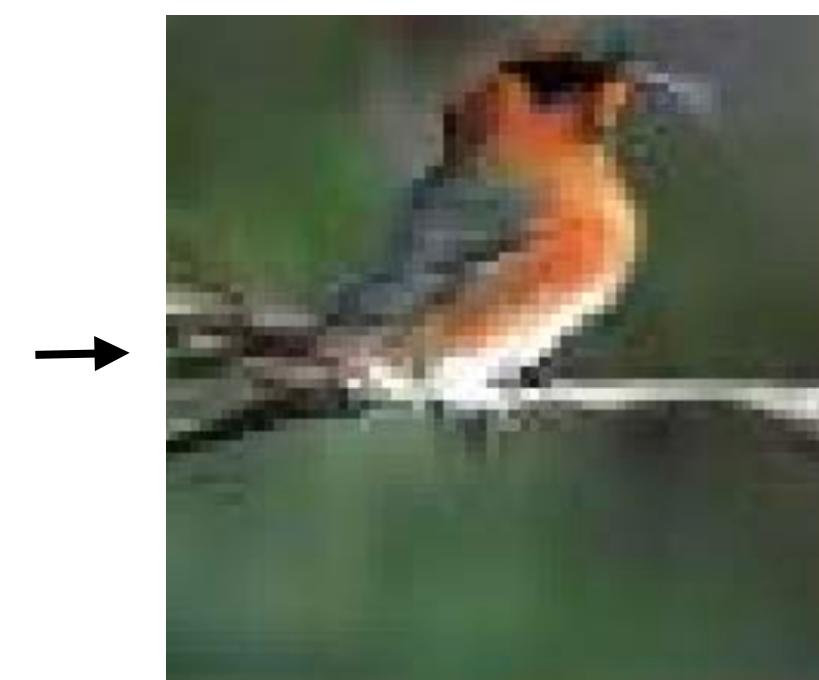


[Long et al. 2015, ...]

Automatic speech recognition

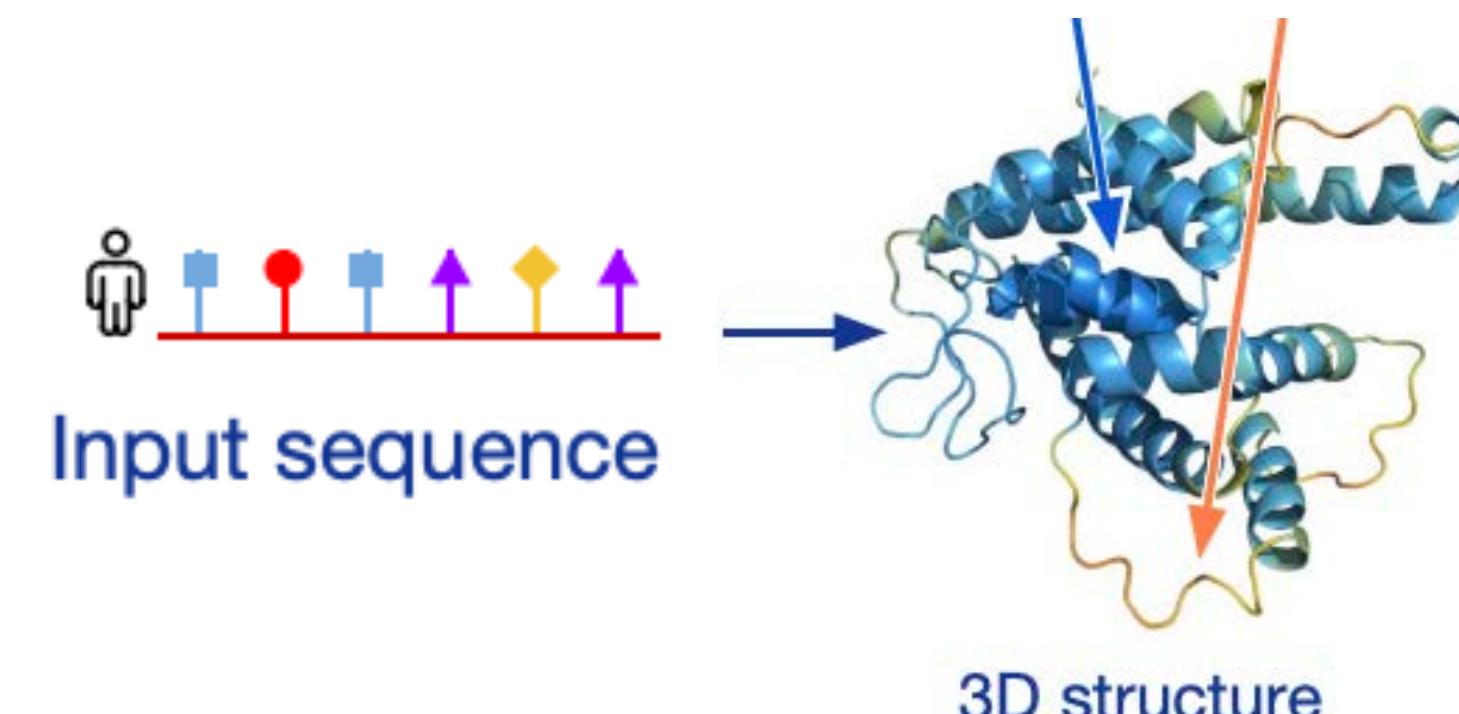
Text-to-photo

“this small bird has a pink
breast and crown...”



[Reed et al. 2014, ...]

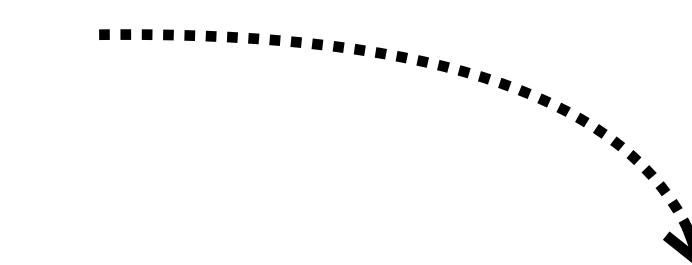
Protein folding



[AlphaFold, Jumper et al. 2021, ...]

Structured prediction

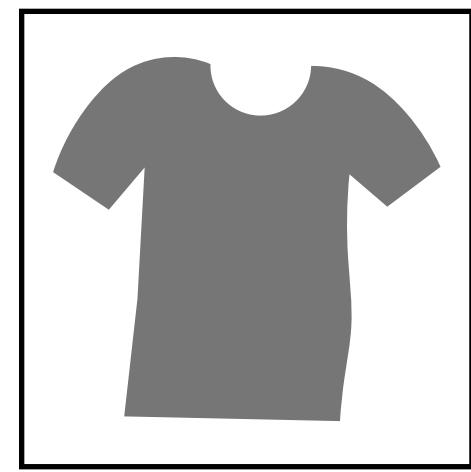
\mathbf{X} is high-dimensional



Model *joint* distribution of high-dimensional data $P(\mathbf{X}|\mathbf{Y} = \mathbf{y})$

In deep learning this is usually what we are interested in

Unstructured: $\prod_i p(X_i|\mathbf{Y} = \mathbf{y})$

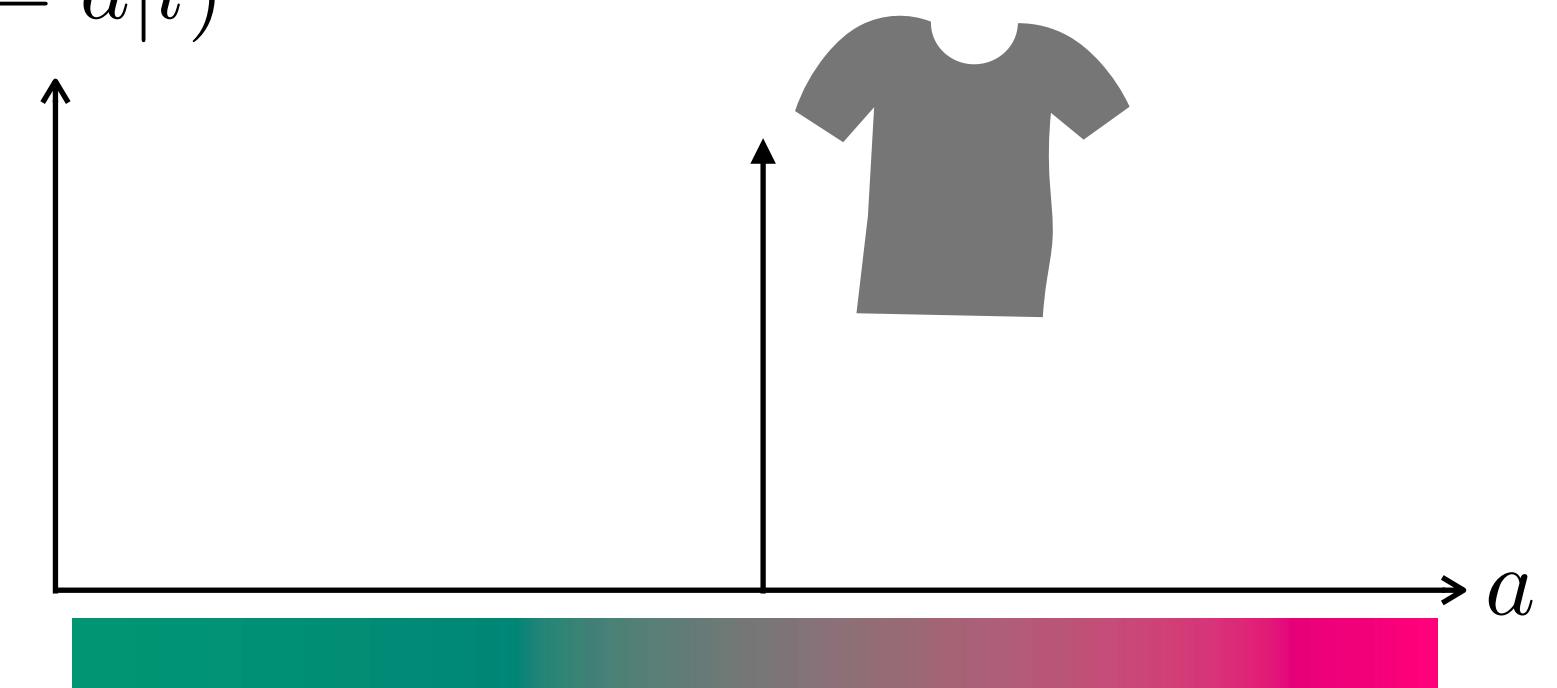


observation

$$p_{\text{data}}(A = a|l)$$

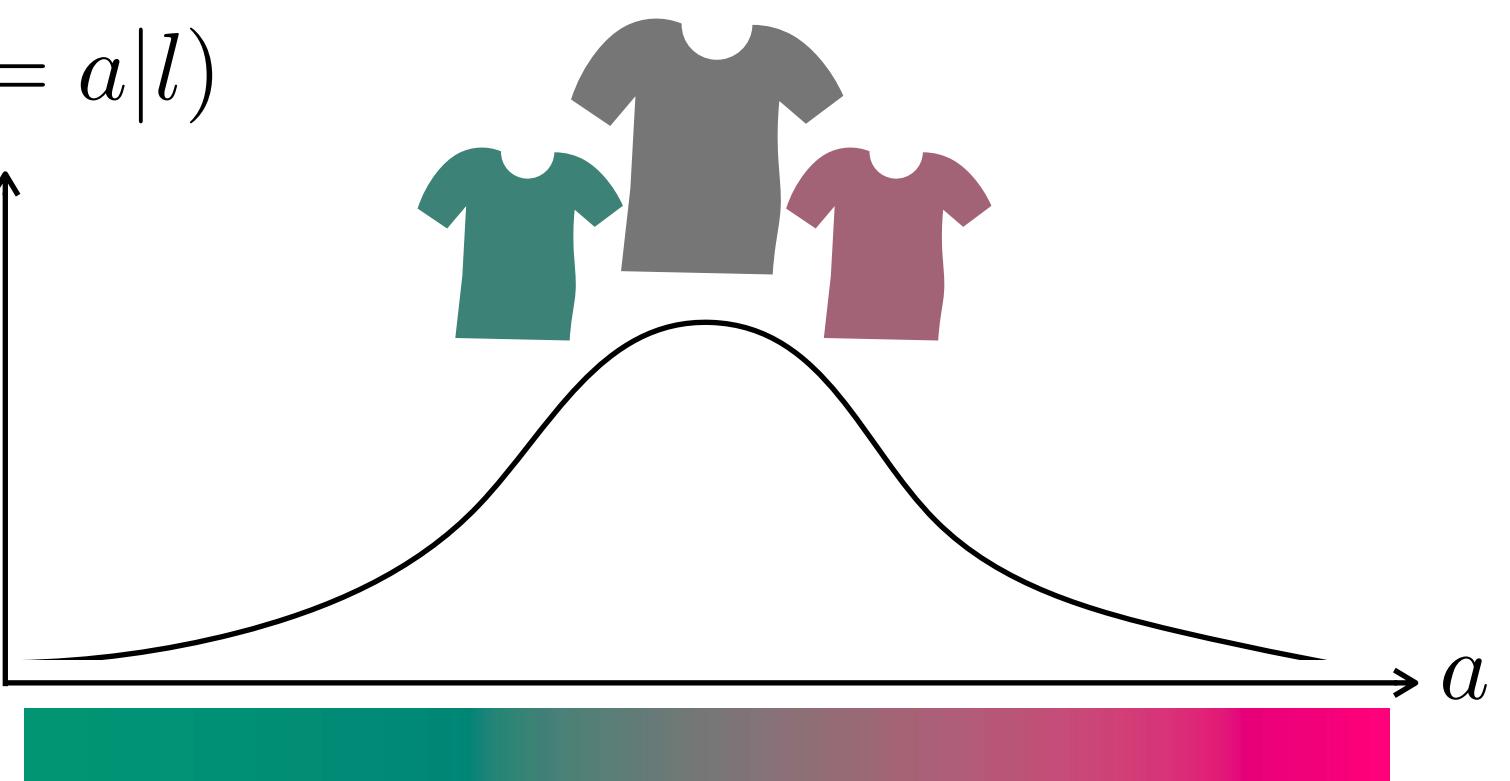
a) true data distribution

$$p_{\theta}(A = a|l)$$



b) point prediction (aka regression)

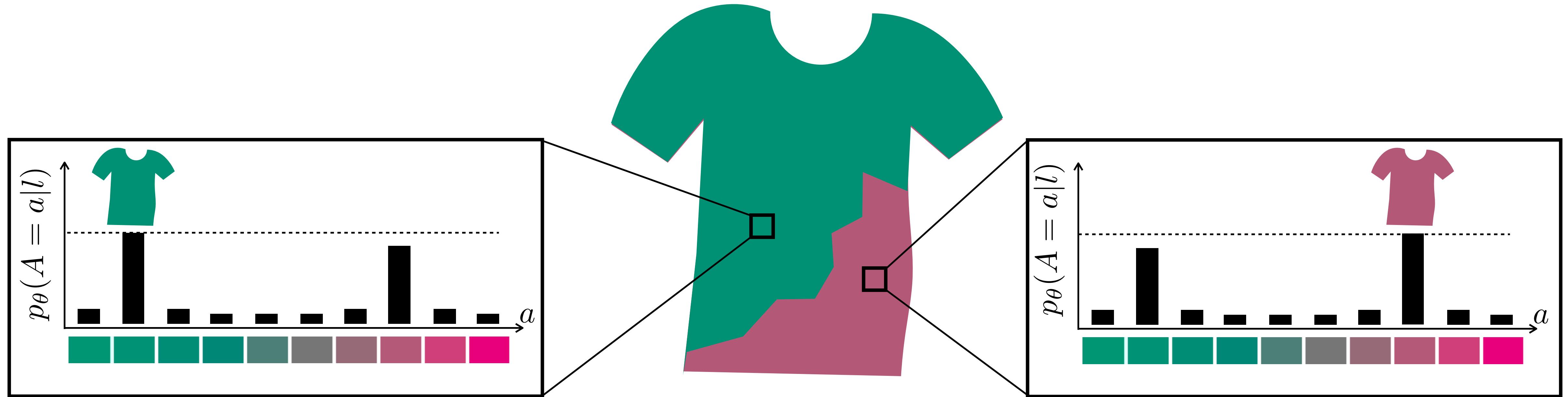
$$p_{\theta}(A = a|l)$$



d) Gaussian predictive distribution

$$p_{\theta}(A = a|l)$$

c) softmax distribution (aka classification)



Generative models have two important properties for structured prediction:

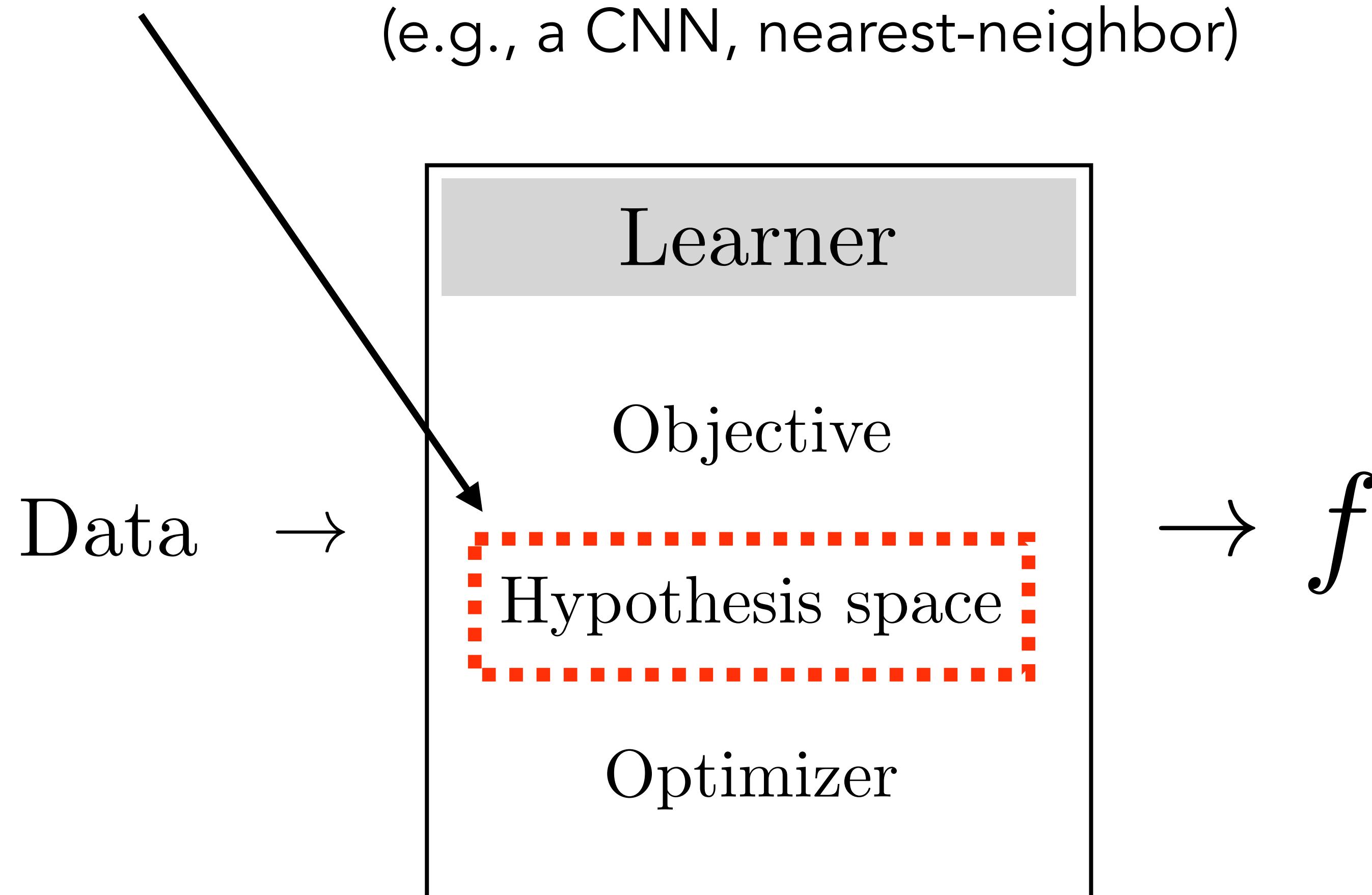
1. They can model a multimodal distribution
2. They can model joint dependences between multidimensional predictions

Real or fake?

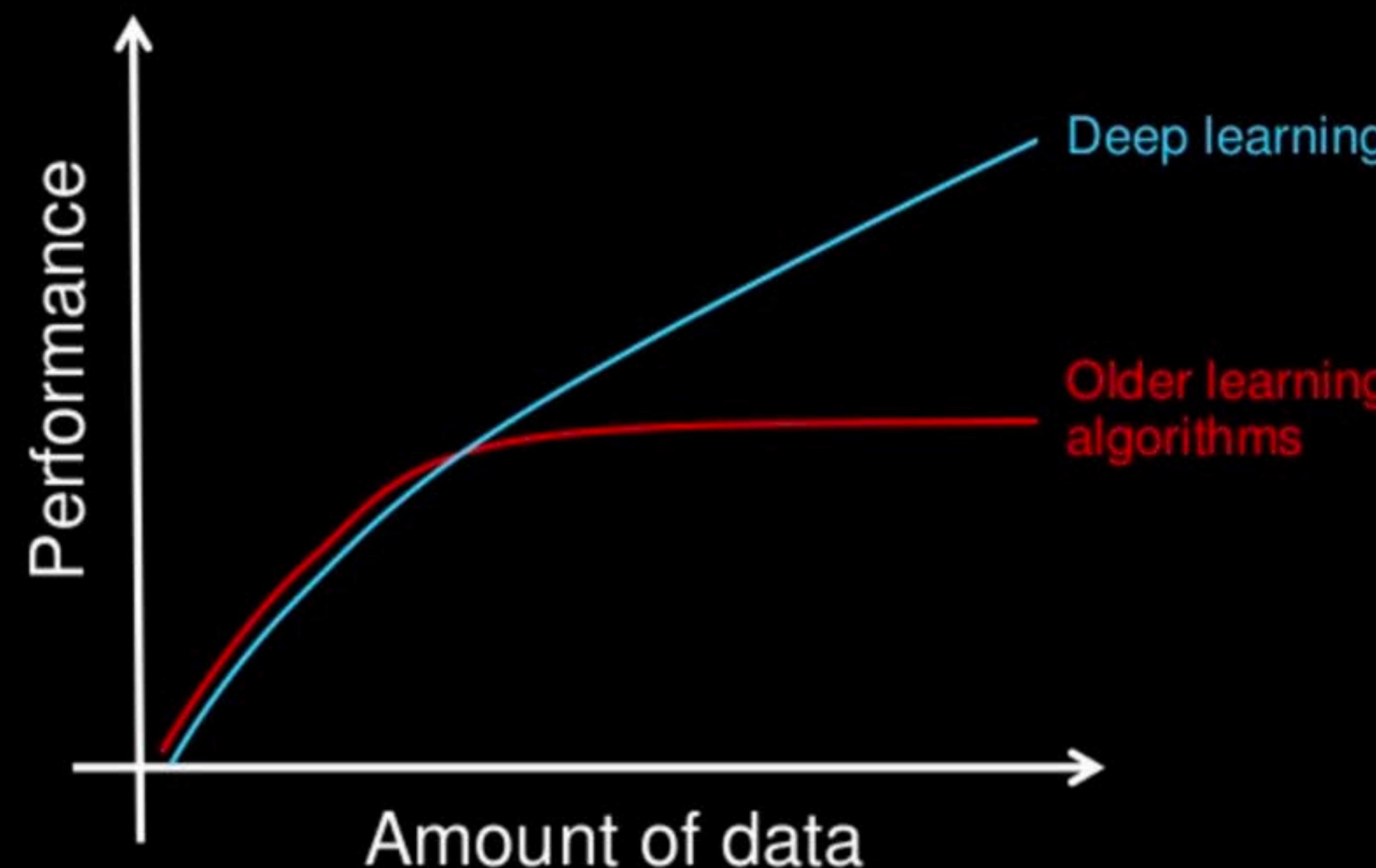
Real or fake?

Deep learning in 2012

Use a **hypothesis space** that can model complex structure
(e.g., a CNN, nearest-neighbor)



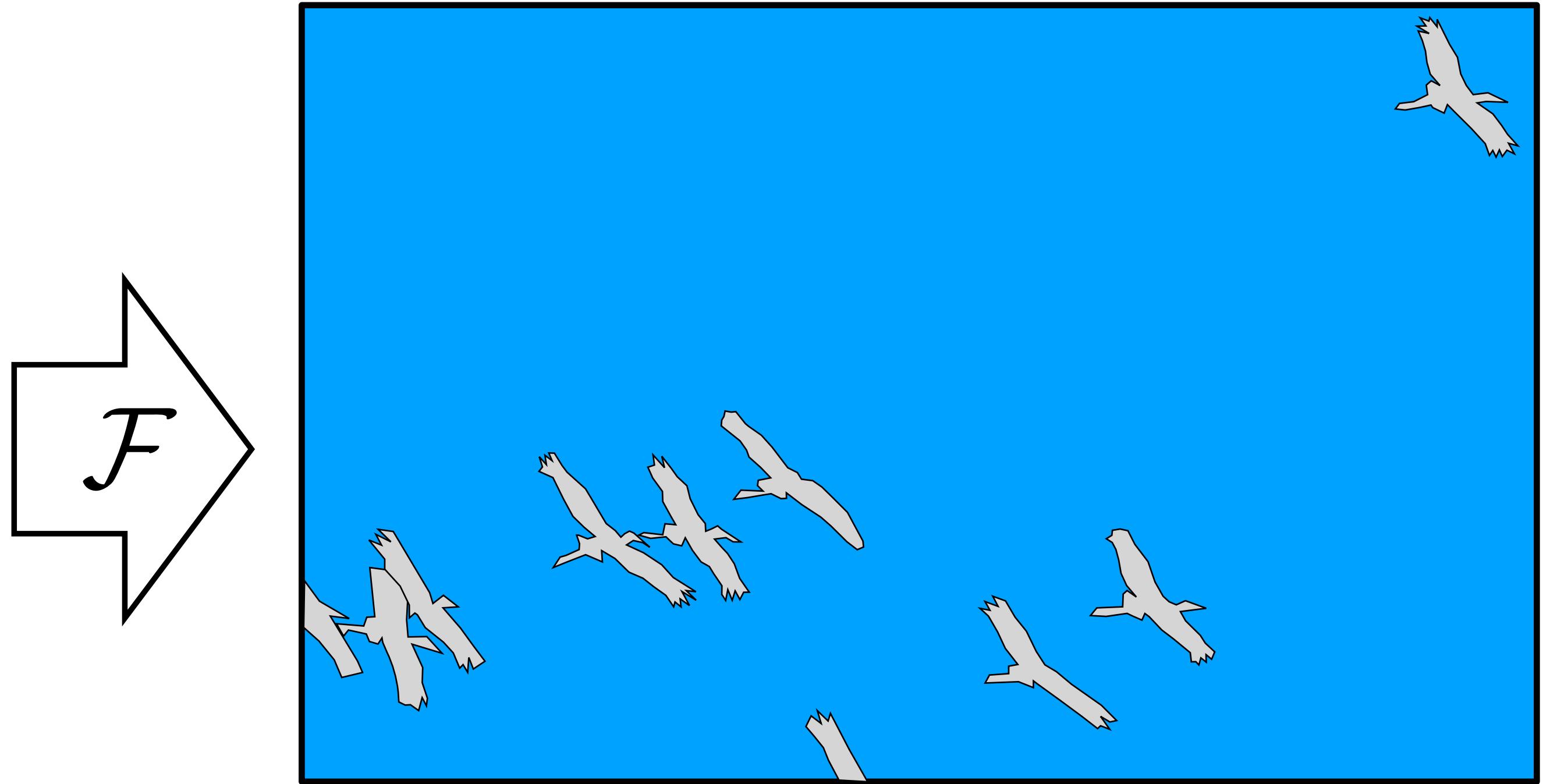
Why deep learning



How do data science techniques scale with amount of data?

[Slide credit: Andrew Ng]

[Photo credit: Fredo Durand]



(Colors represent one-hot codes)

$$\arg \min_{\mathcal{F}} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [L(\mathcal{F}(\mathbf{x}), \mathbf{y})]$$

Objectives

Hypothesis space

Objective function
(loss)

Semantic Segmentation

Data

$$\{ \begin{matrix} \mathbf{x} \\ \text{image of birds in flight} \end{matrix} , \begin{matrix} \mathbf{y} \\ \text{image of birds in flight with semantic segmentation mask} \end{matrix} \}$$

$$\{ \begin{matrix} \mathbf{x} \\ \text{image of a colorful bird} \end{matrix} , \begin{matrix} \mathbf{y} \\ \text{image of a colorful bird with semantic segmentation mask} \end{matrix} \}$$

⋮

$$\mathbf{x} \in \mathbb{R}^{H \times W \times 3}$$

$$\mathbf{y} \in \mathbb{R}^{H \times W \times K}$$



Learner

Objective

$$f^* = \arg \min_{f \in \mathcal{F}} \sum_{i=1}^N H(\mathbf{y}_i, \hat{\mathbf{y}}_i)$$

Hypothesis space

Convolutional neural net

Optimizer

Stochastic gradient descent

→ f

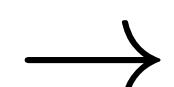
Sat2Map

Data

$$\left\{ \begin{array}{c} \mathbf{x} \\ \left\{ \begin{array}{c} \text{map} \\ , \\ \text{satellite} \end{array} \right\} \end{array} \right.$$

$$\left\{ \begin{array}{c} \mathbf{x} \\ \left\{ \begin{array}{c} \text{map} \\ , \\ \text{satellite} \end{array} \right\} \end{array} \right.$$

:



$$\mathbf{x} \in \mathbb{R}^{H \times W \times 3}$$

$$\mathbf{y} \in \mathbb{R}^{H \times W \times 3}$$

Learner

Objective

$$\theta^* = \arg \min_{\theta} \sum_{i=1}^N (f_{\theta}(\mathbf{x})_i - y_i)^2$$

Hypothesis space

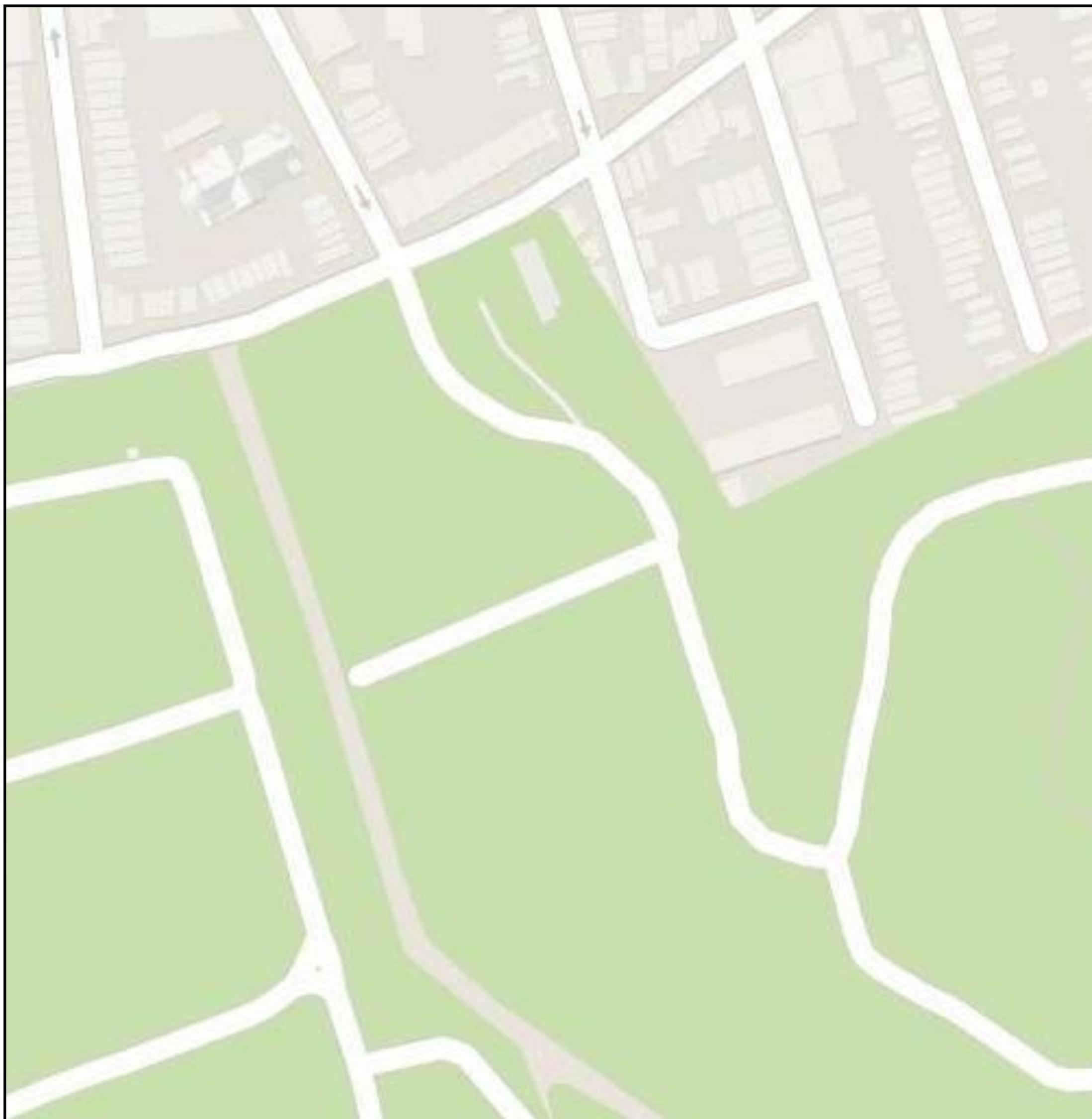
Convolutional neural net

Optimizer

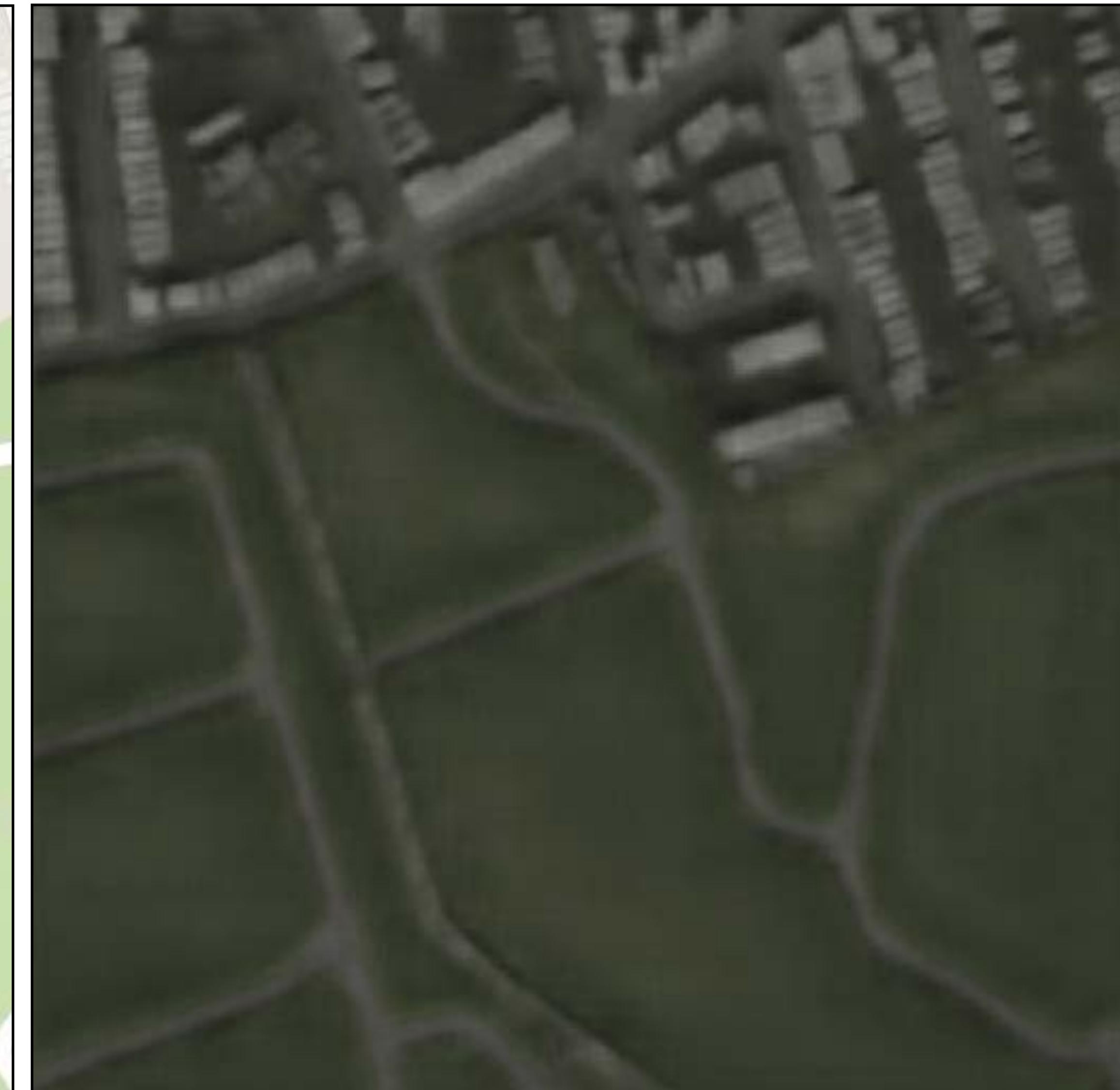
Stochastic gradient descent

$\rightarrow f$

Input



Deep net output



Structured prediction

Use an **objective** that can model structure! (e.g., a graphical model, a GAN, etc)

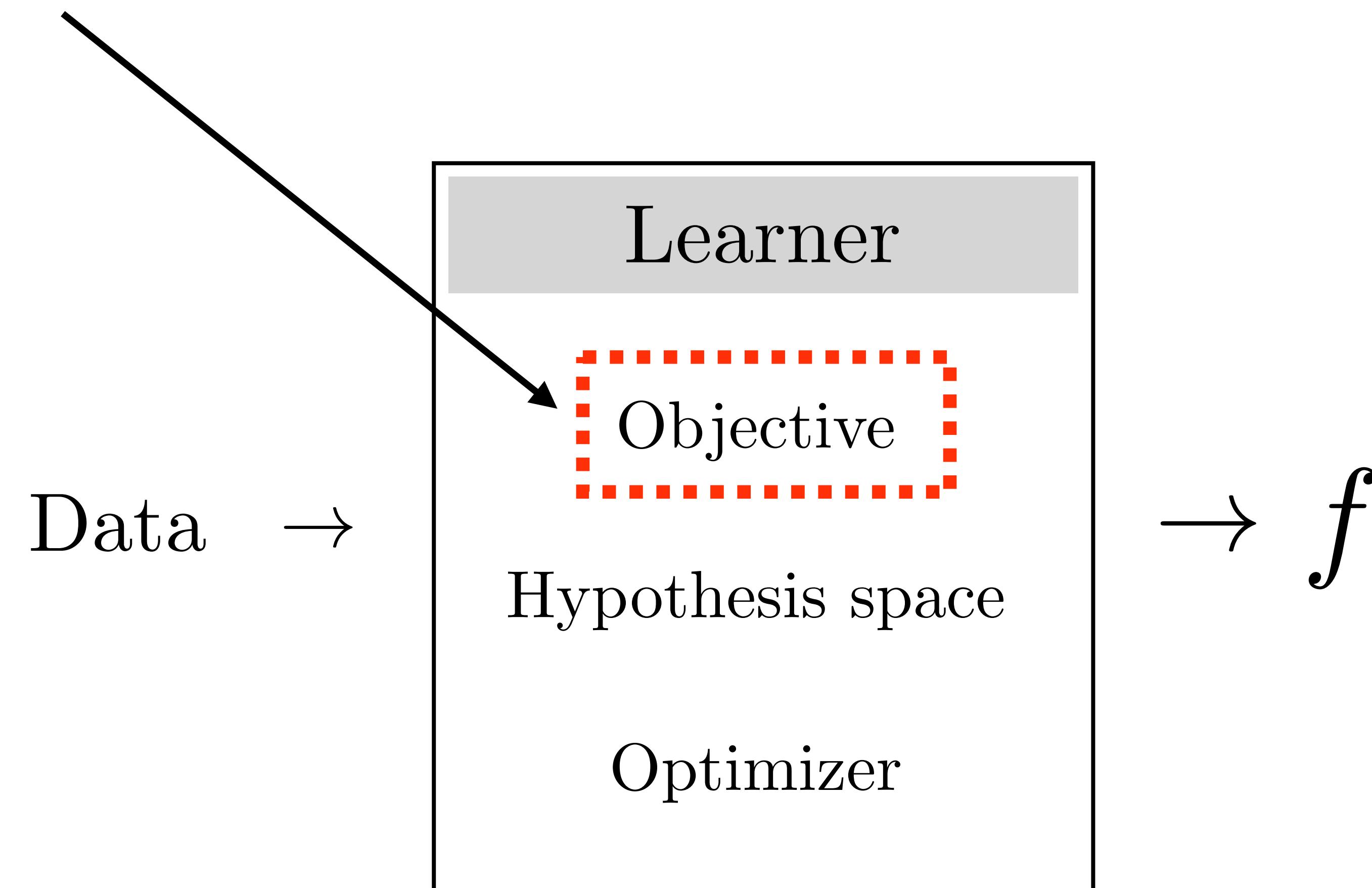
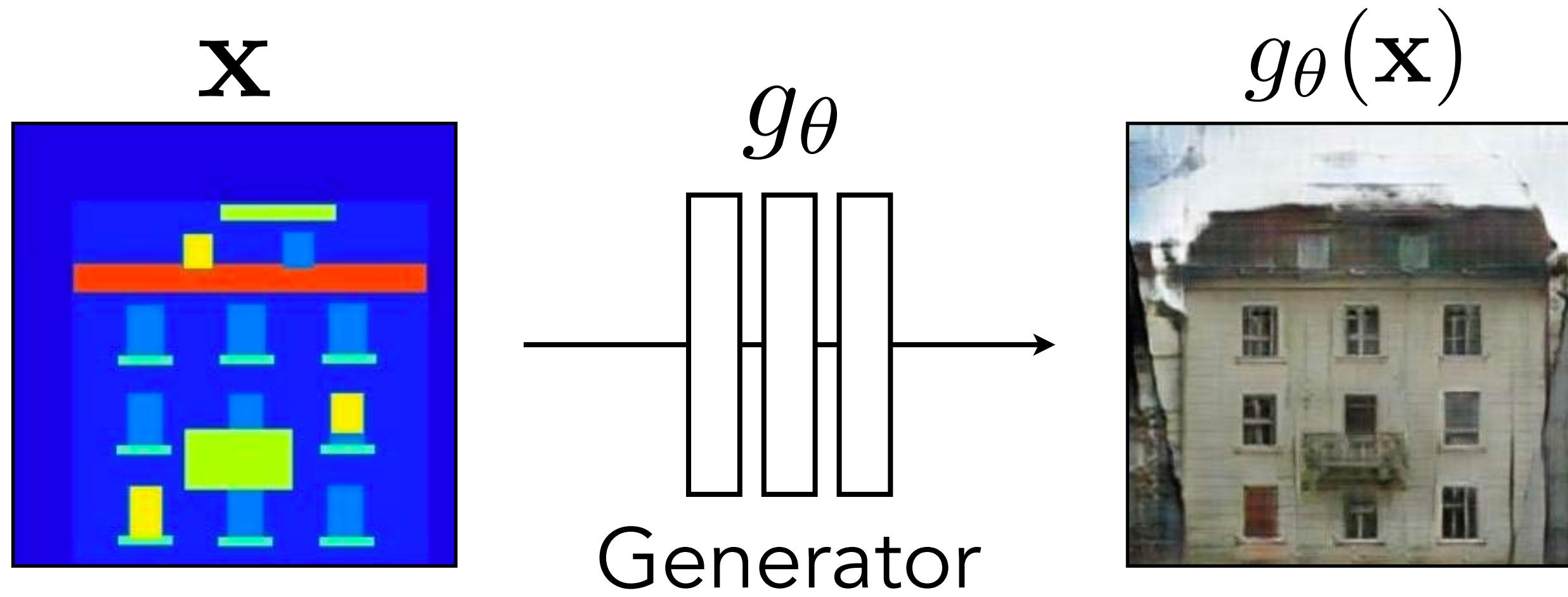


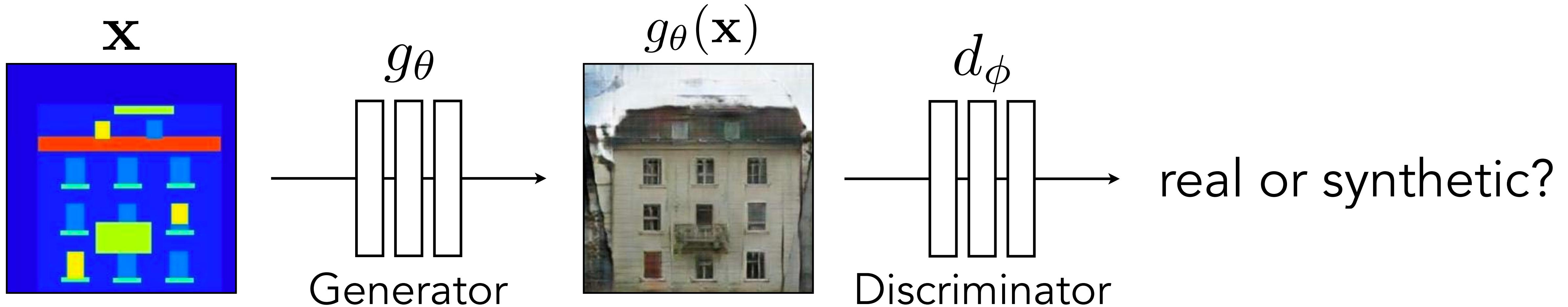
Image-to-image

- with conditional GANs
- with conditional VAEs

Conditional GAN

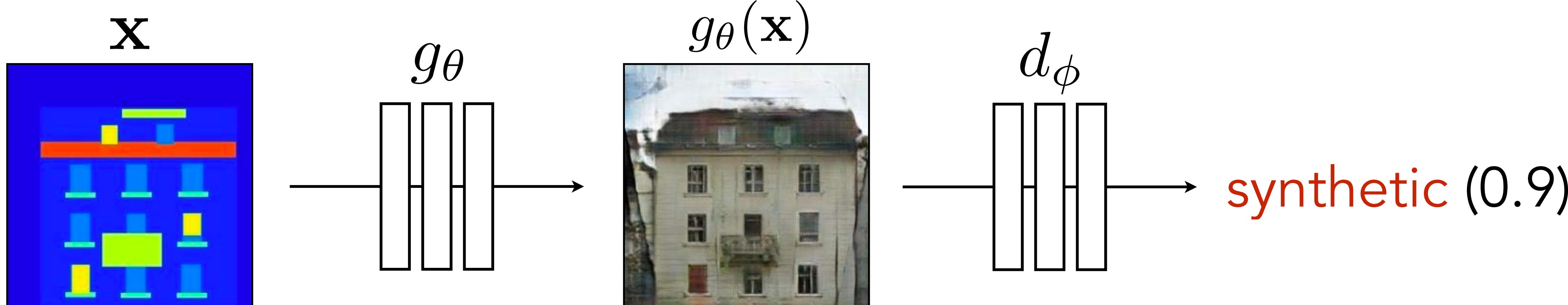


For example: pix2pix [Isola et al. 2017]

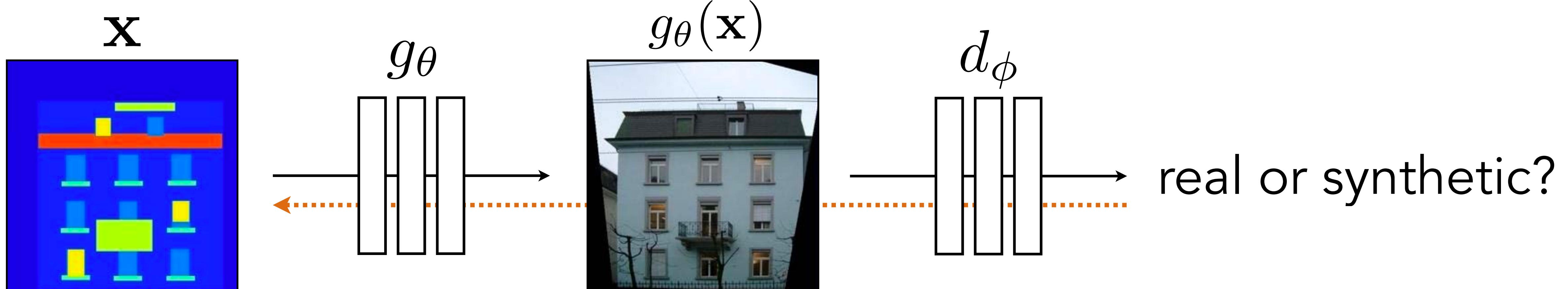


g tries to synthesize fake images that fool d

d tries to identify the fakes

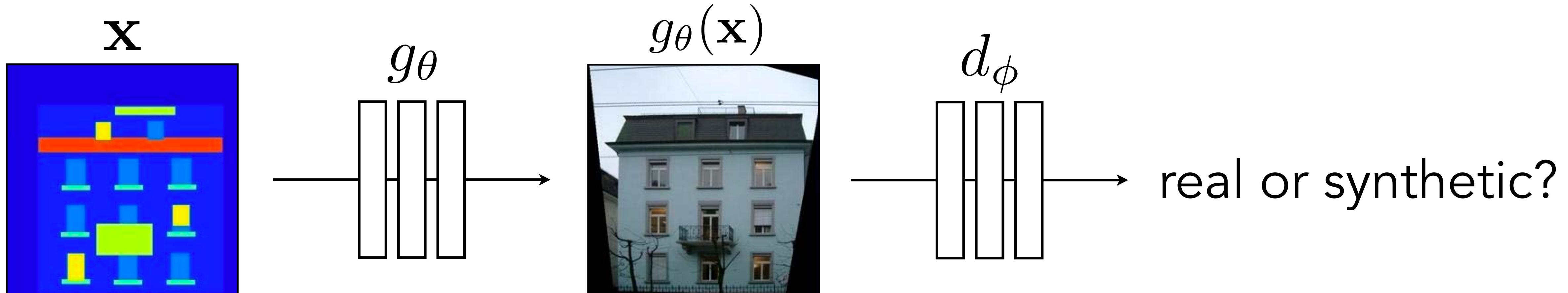


$$d_\phi^* = \arg \max_{\phi} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\log d_\phi(g_\theta(\mathbf{x})) + \log(1 - d_\phi(\mathbf{y}))]$$



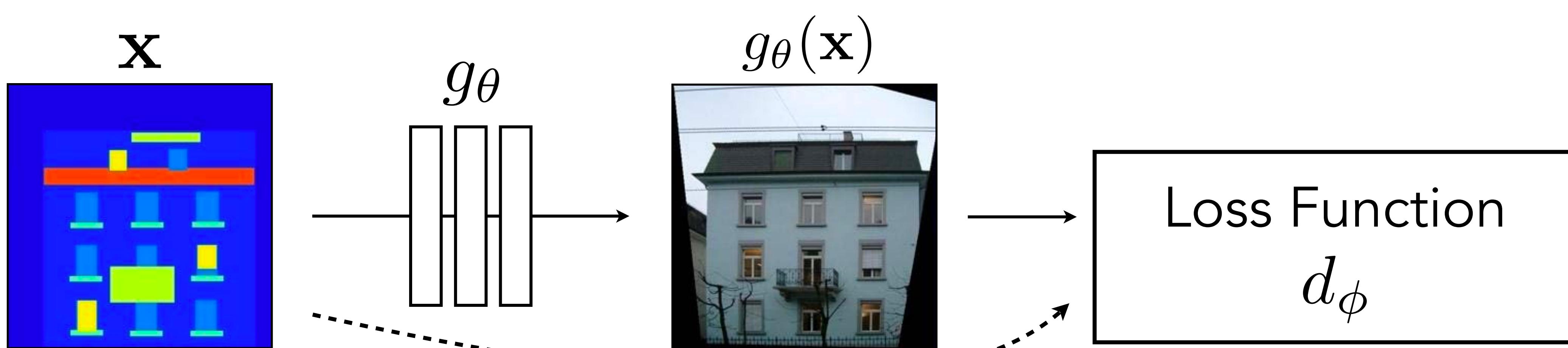
g tries to synthesize fake images that *fool* d :

$$g_\theta^* = \boxed{\arg \min_{\theta} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\log d_\phi(g_\theta(\mathbf{x}))]}$$



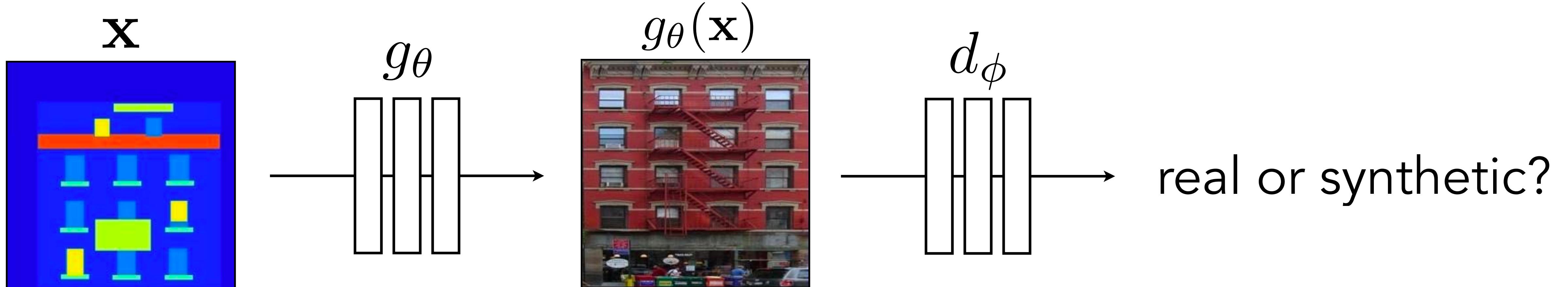
g tries to synthesize fake images that *fool* the *best* d :

$$\arg \min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\log d_\phi(g_\theta(\mathbf{x})) + \log(1 - d_\phi(\mathbf{y}))]$$

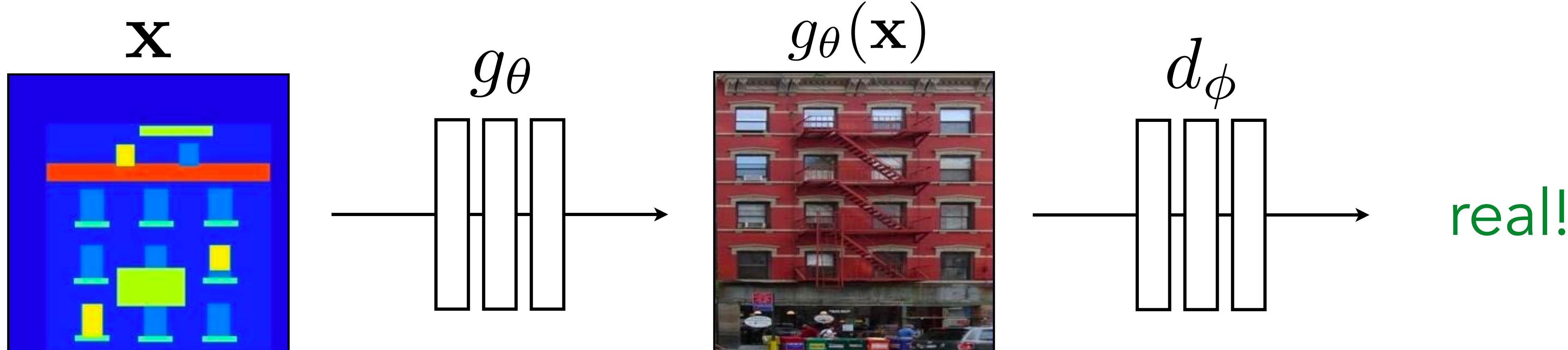


g 's perspective: d is a loss function.

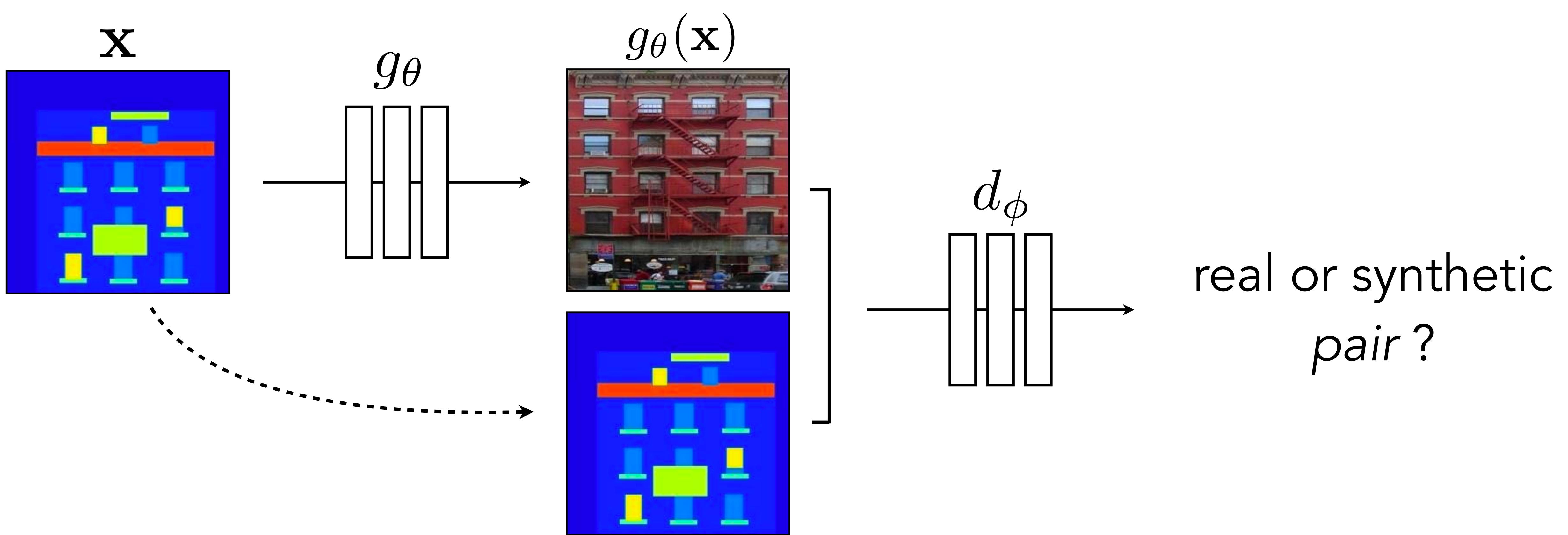
Rather than being hand-designed, it is *learned* and *highly structured*.



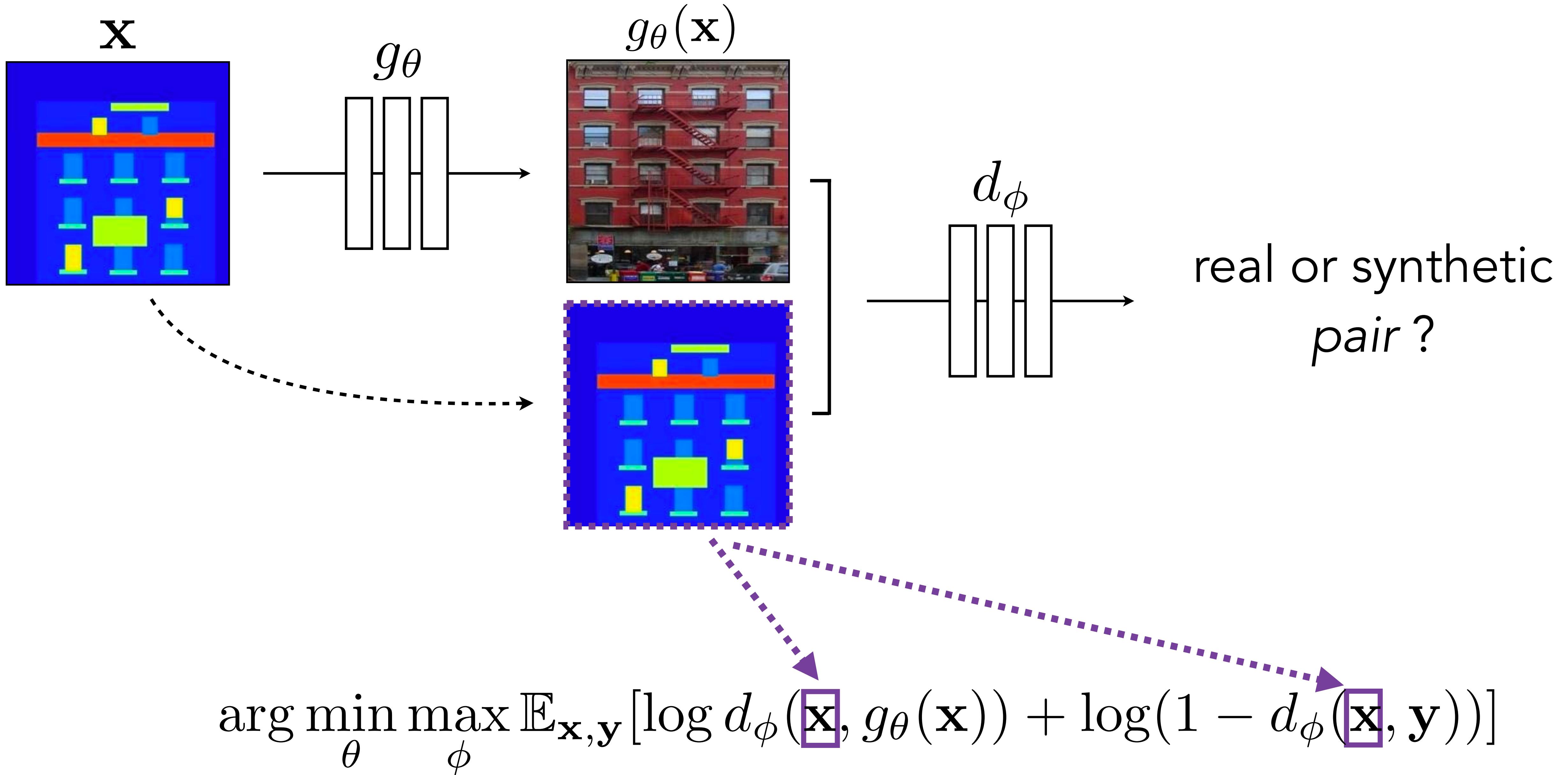
$$\arg \min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\log d_{\phi}(g_{\theta}(\mathbf{x})) + \log(1 - d_{\phi}(\mathbf{y}))]$$

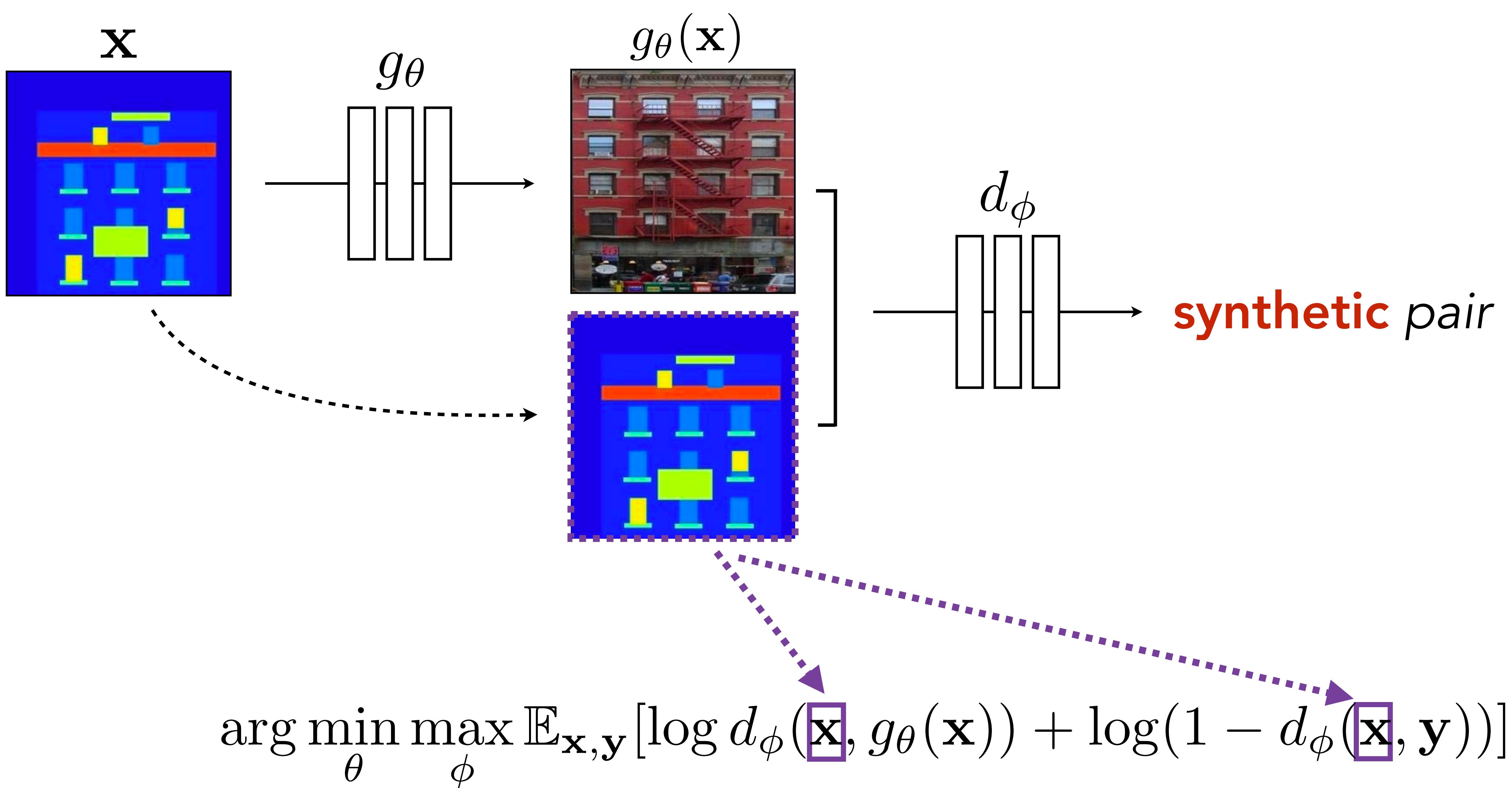


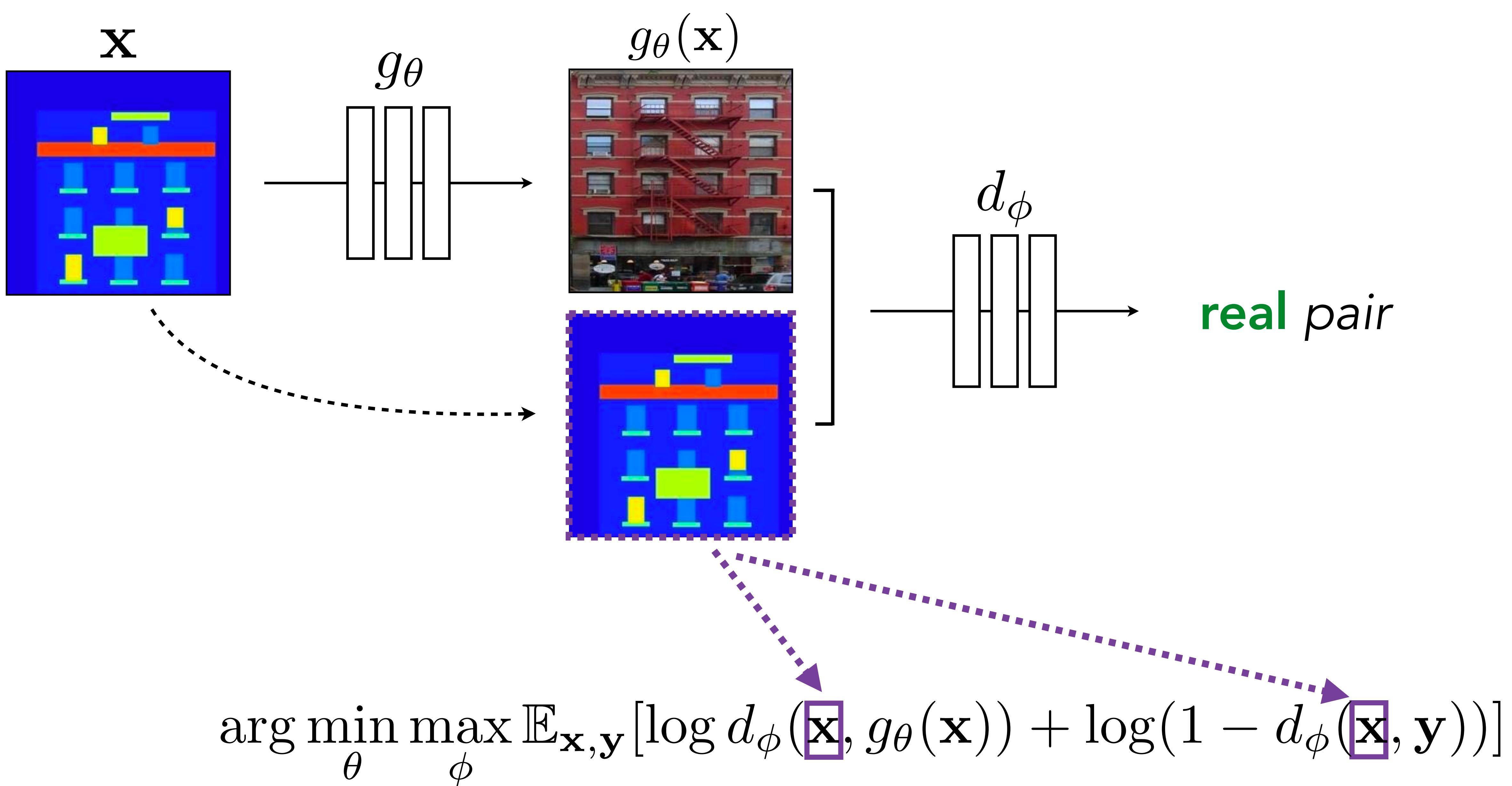
$$\arg \min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\log d_{\phi}(g_{\theta}(\mathbf{x})) + \log(1 - d_{\phi}(\mathbf{y}))]$$

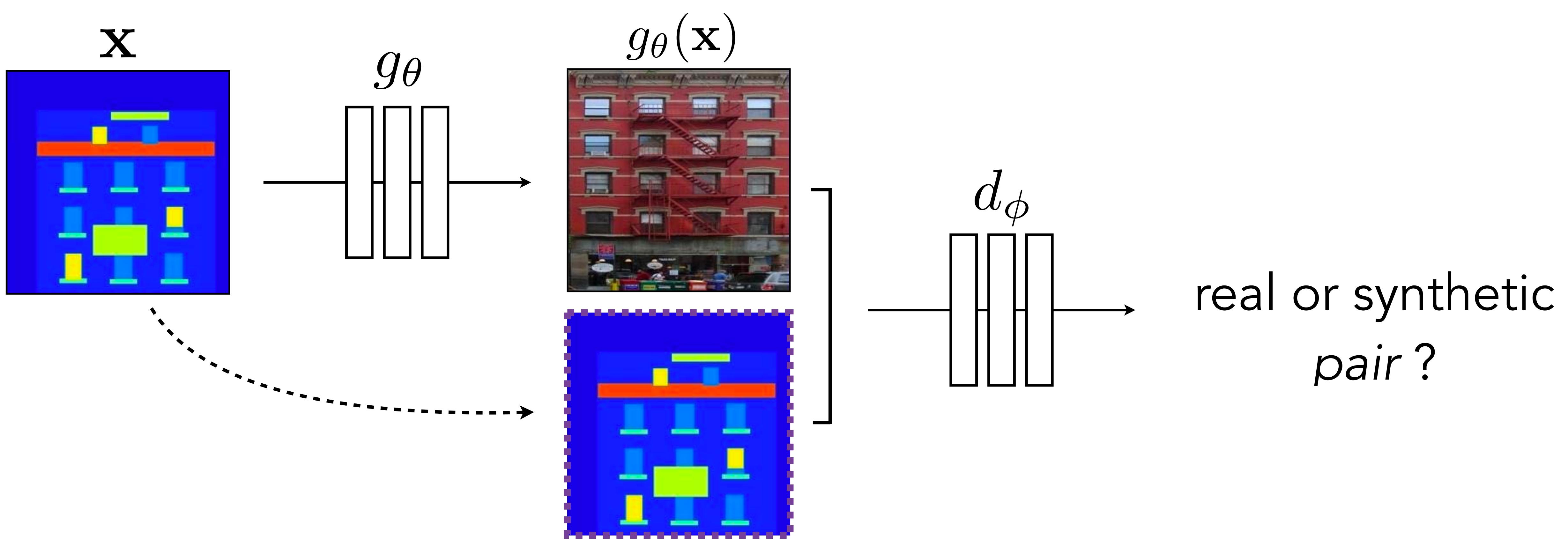


$$\arg \min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\log d_\phi(g_\theta(\mathbf{x})) + \log(1 - d_\phi(\mathbf{y}))]$$





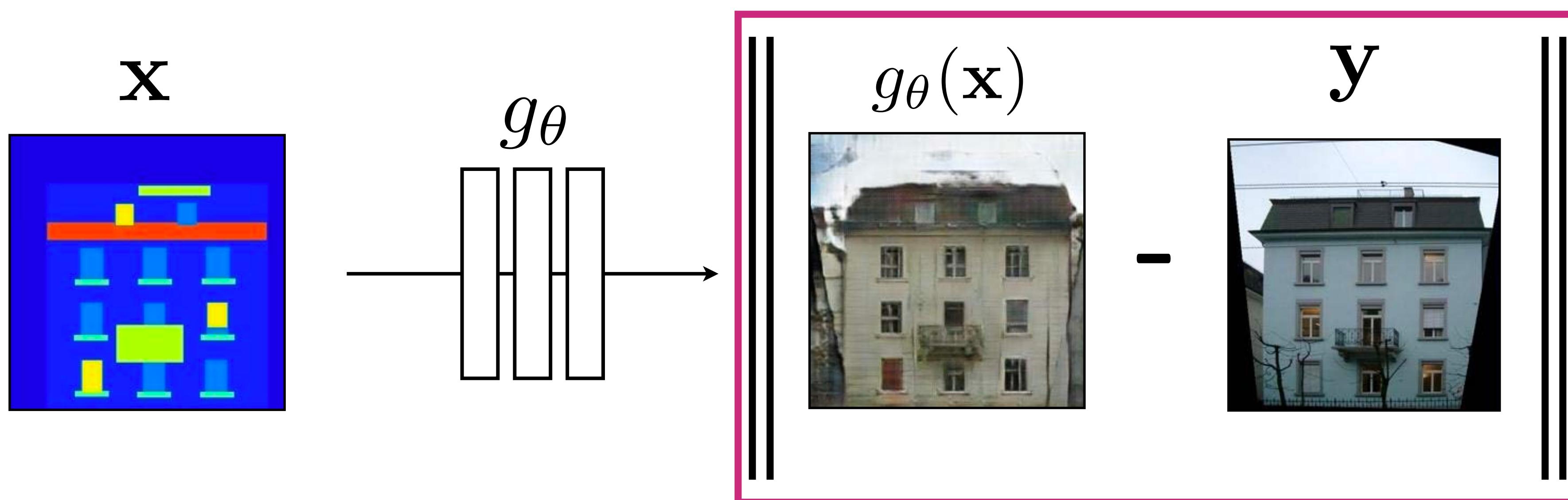




$$\arg \min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\log d_{\phi}(\mathbf{x}, g_{\theta}(\mathbf{x})) + \log(1 - d_{\phi}(\mathbf{x}, \mathbf{y}))]$$

Training Details: Loss function

$$g_\theta^* = \arg \min_{\theta} \max_{\phi} \mathcal{L}_{\text{cGAN}}(\theta, \phi) + \boxed{\lambda \mathcal{L}_{\text{L1}}(\theta)}$$

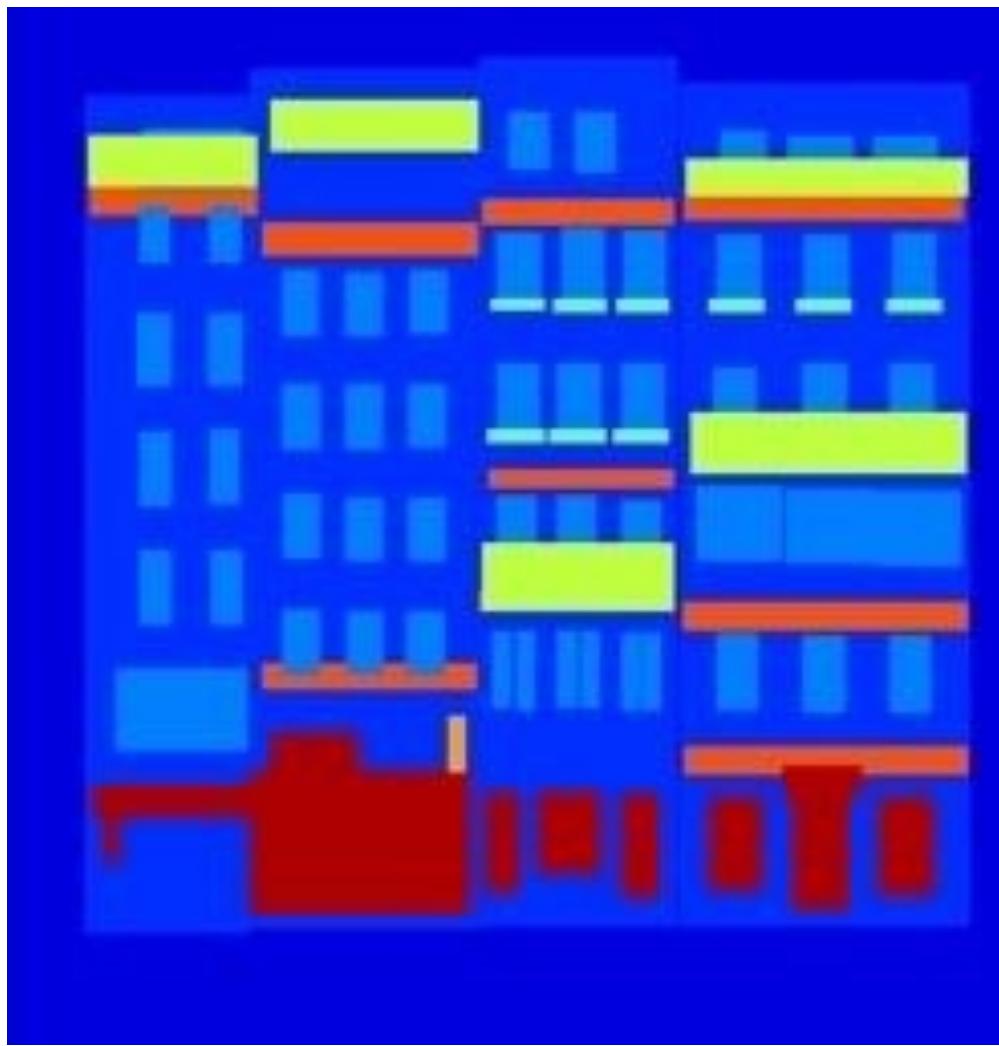


Stable training + fast convergence

[c.f. Pathak et al. CVPR 2016]

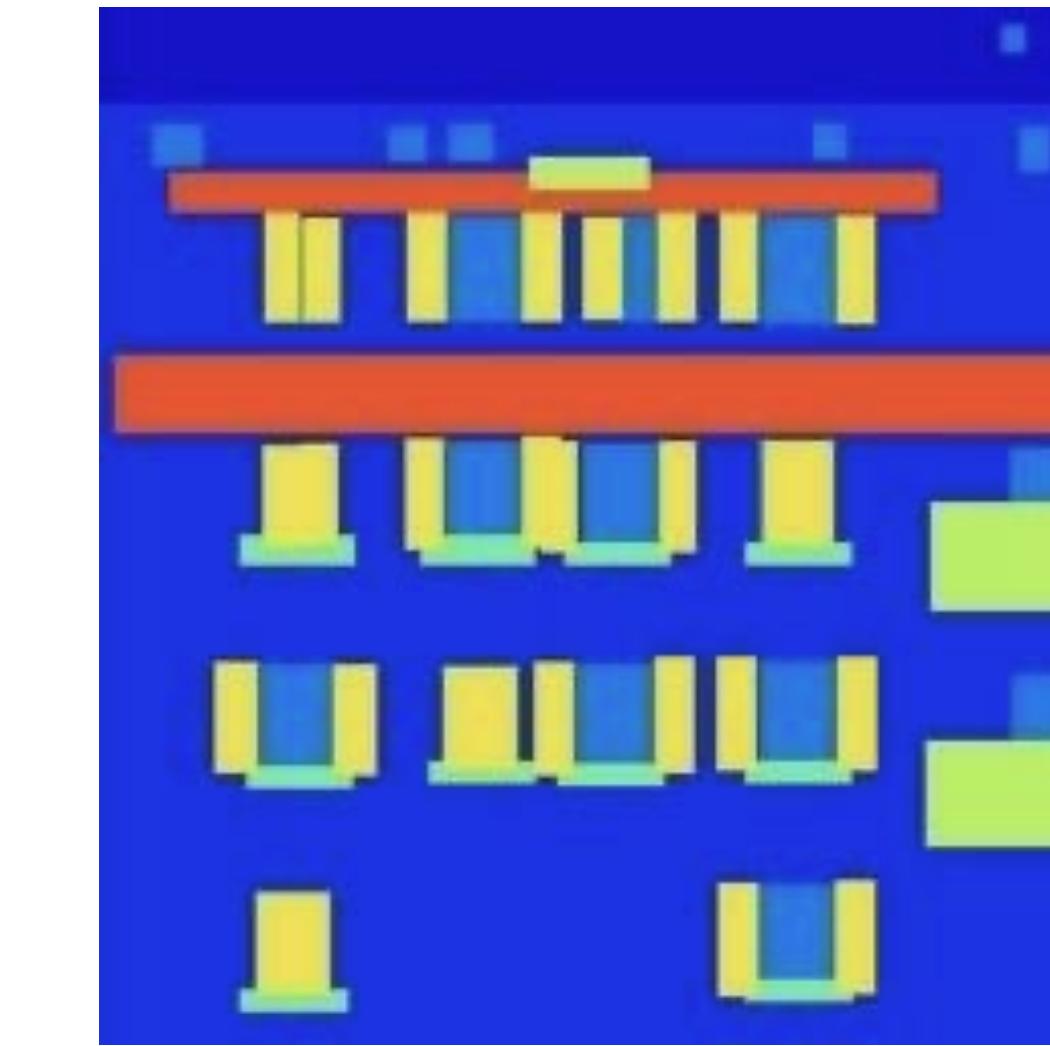
Labels → Facades

Input

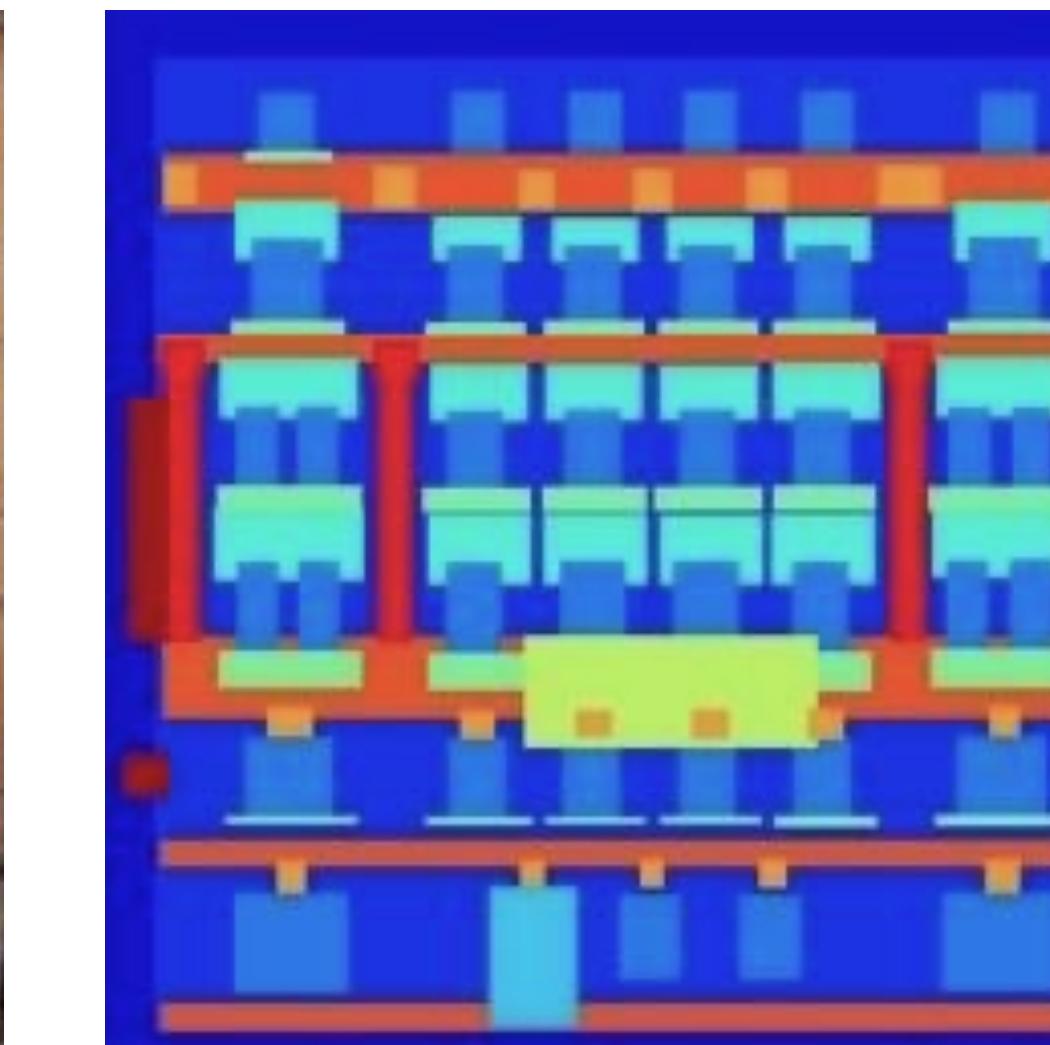


Output

Input

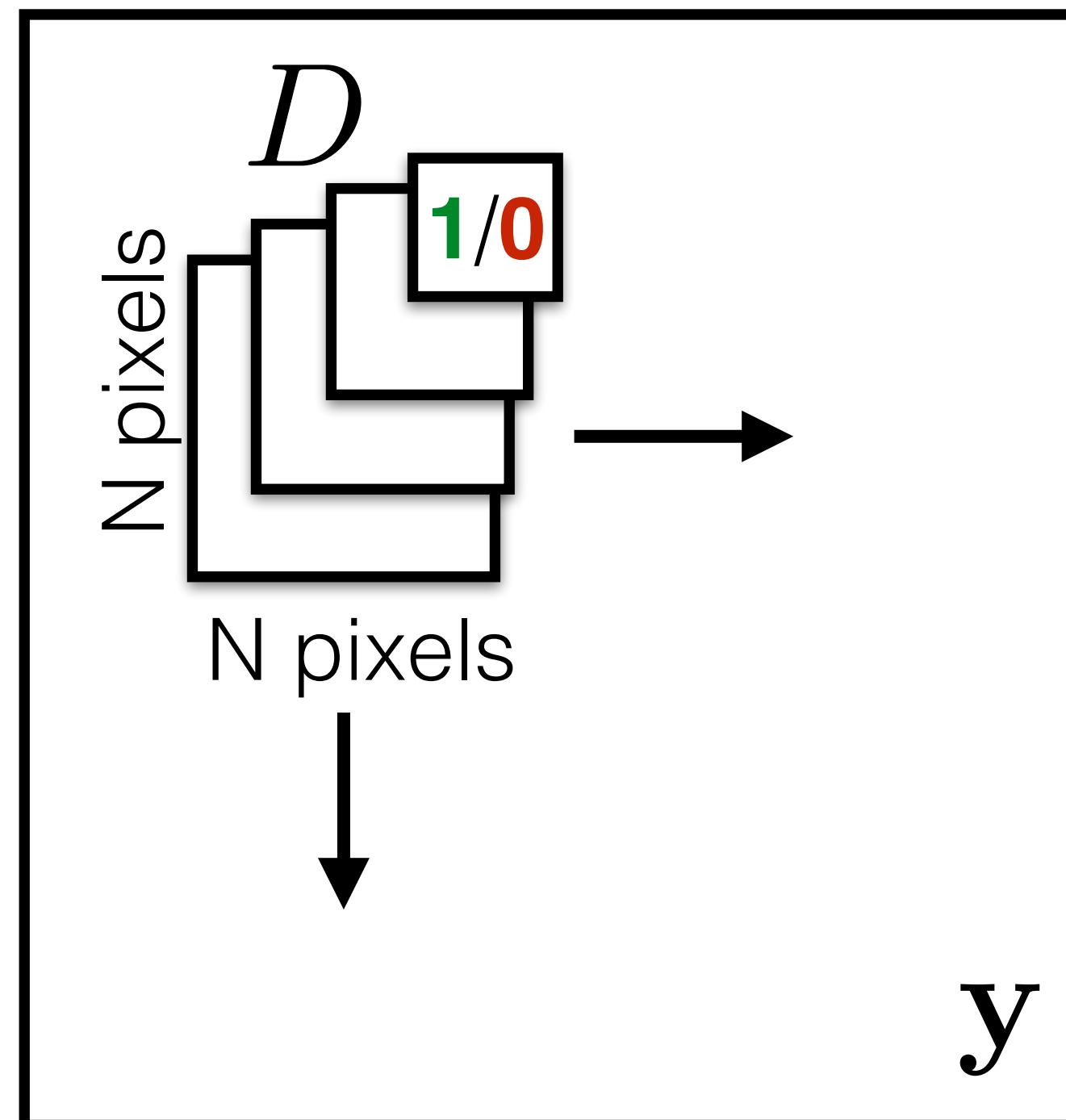
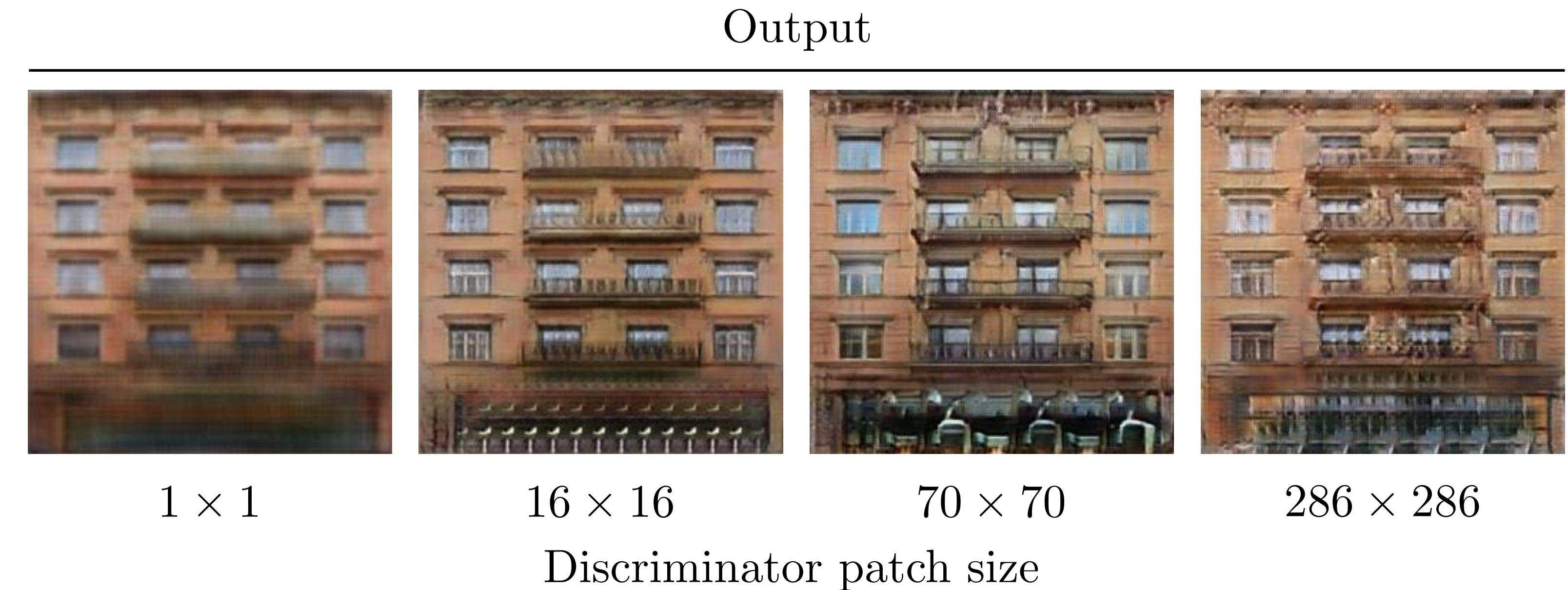


Output

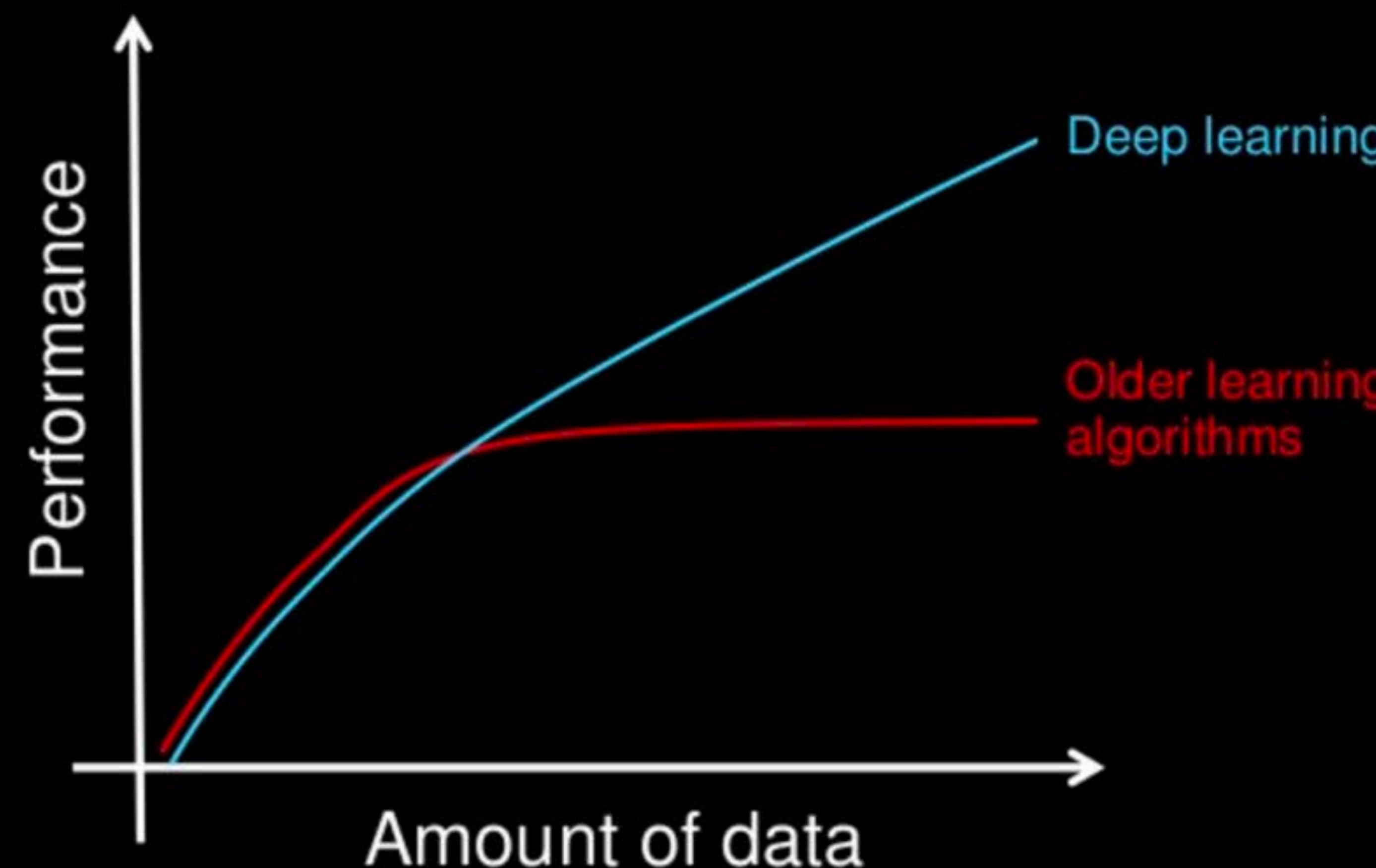


Data from [Tylecek, 2013]

Patch Discriminator



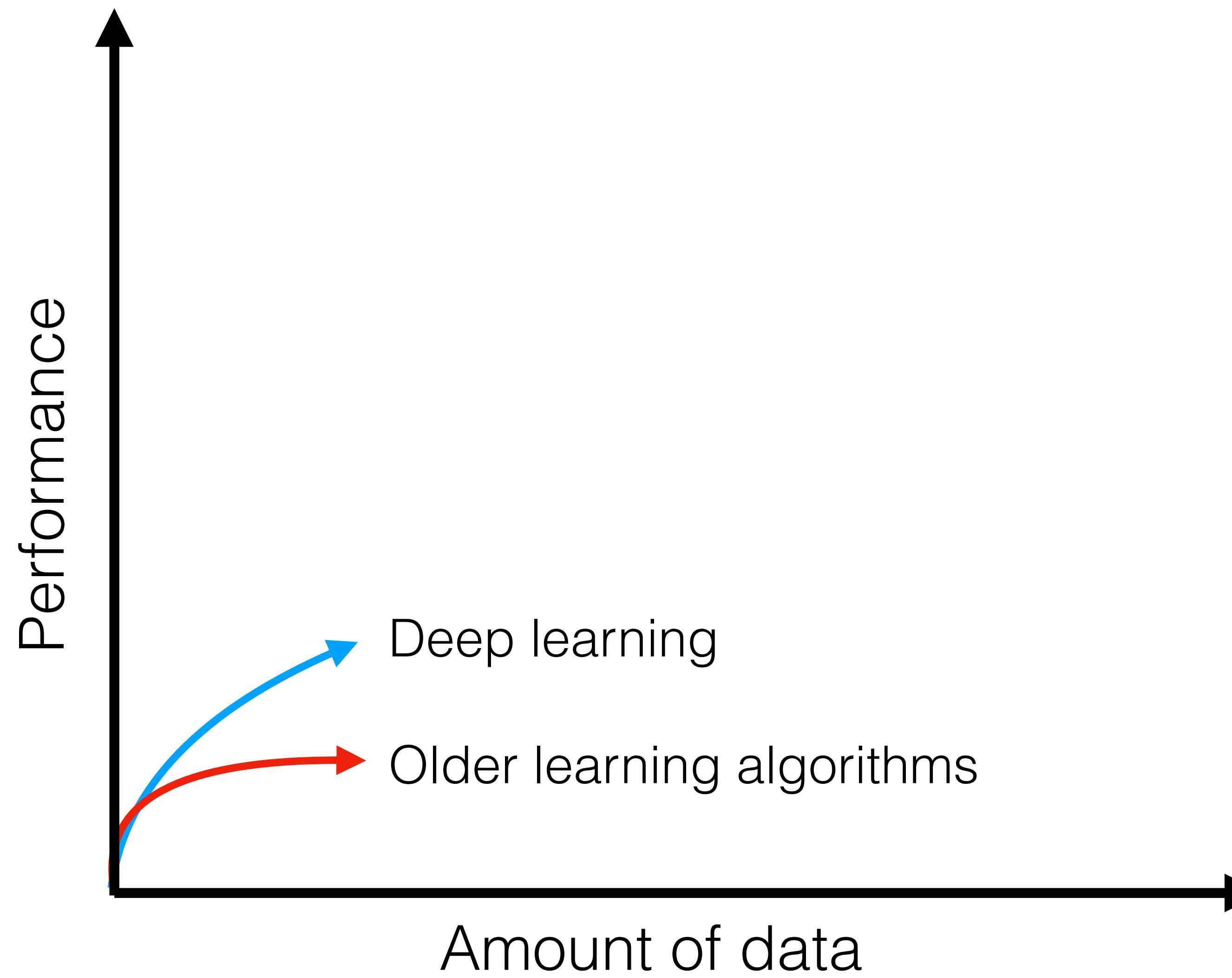
Why deep learning



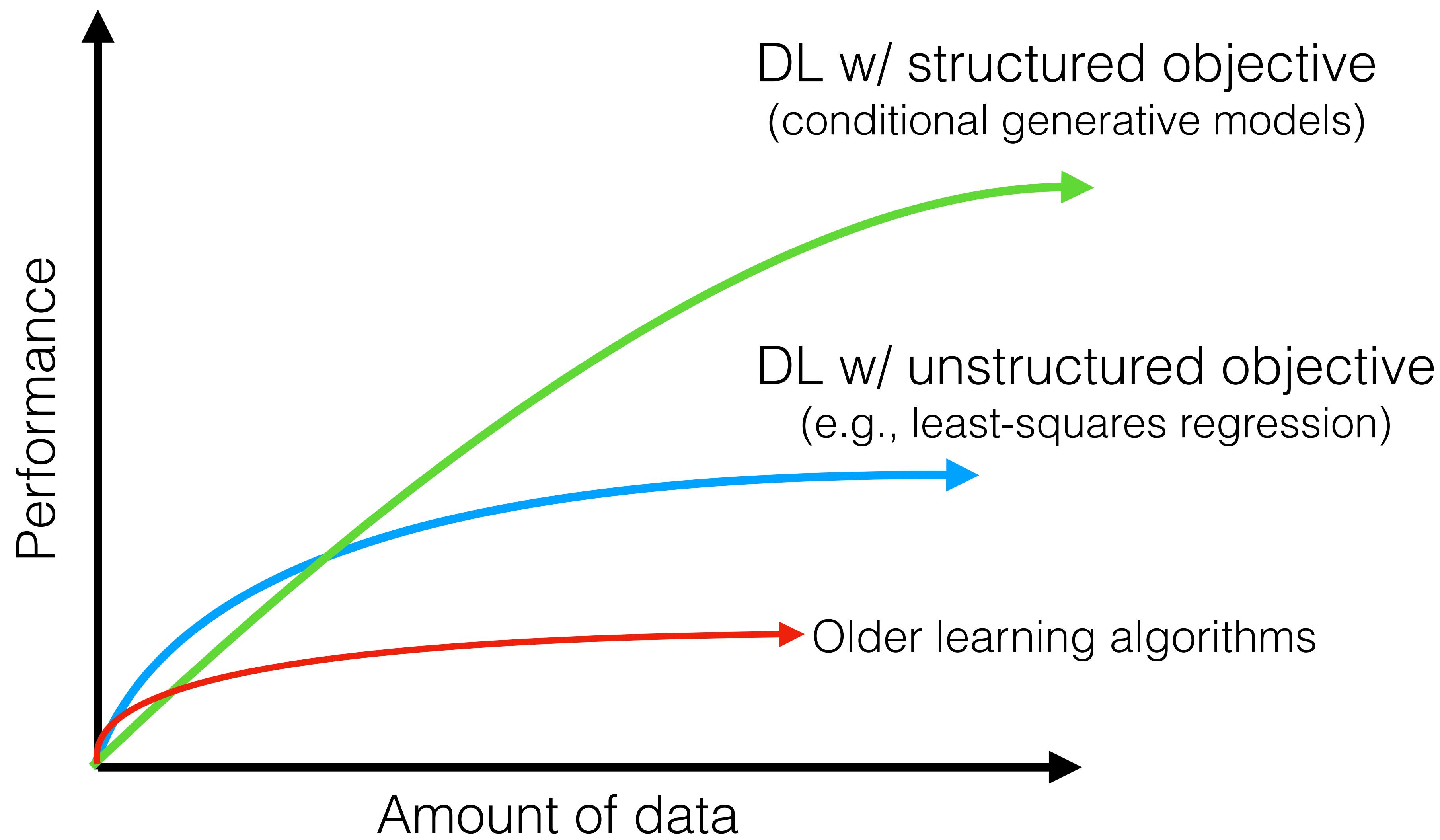
How do data science techniques scale with amount of data?

[Slide credit: Andrew Ng]

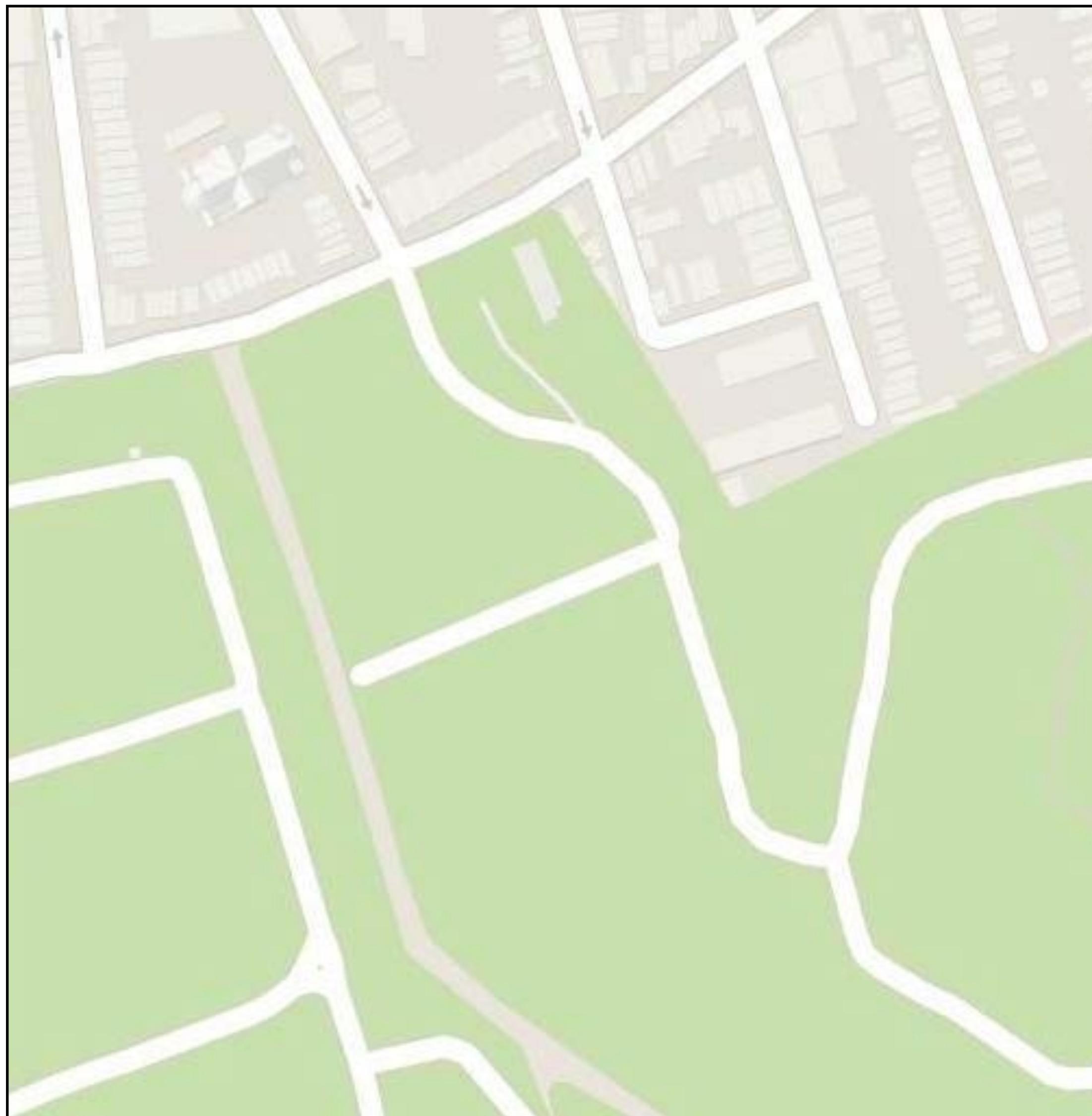
Why structured objectives (cartoon)



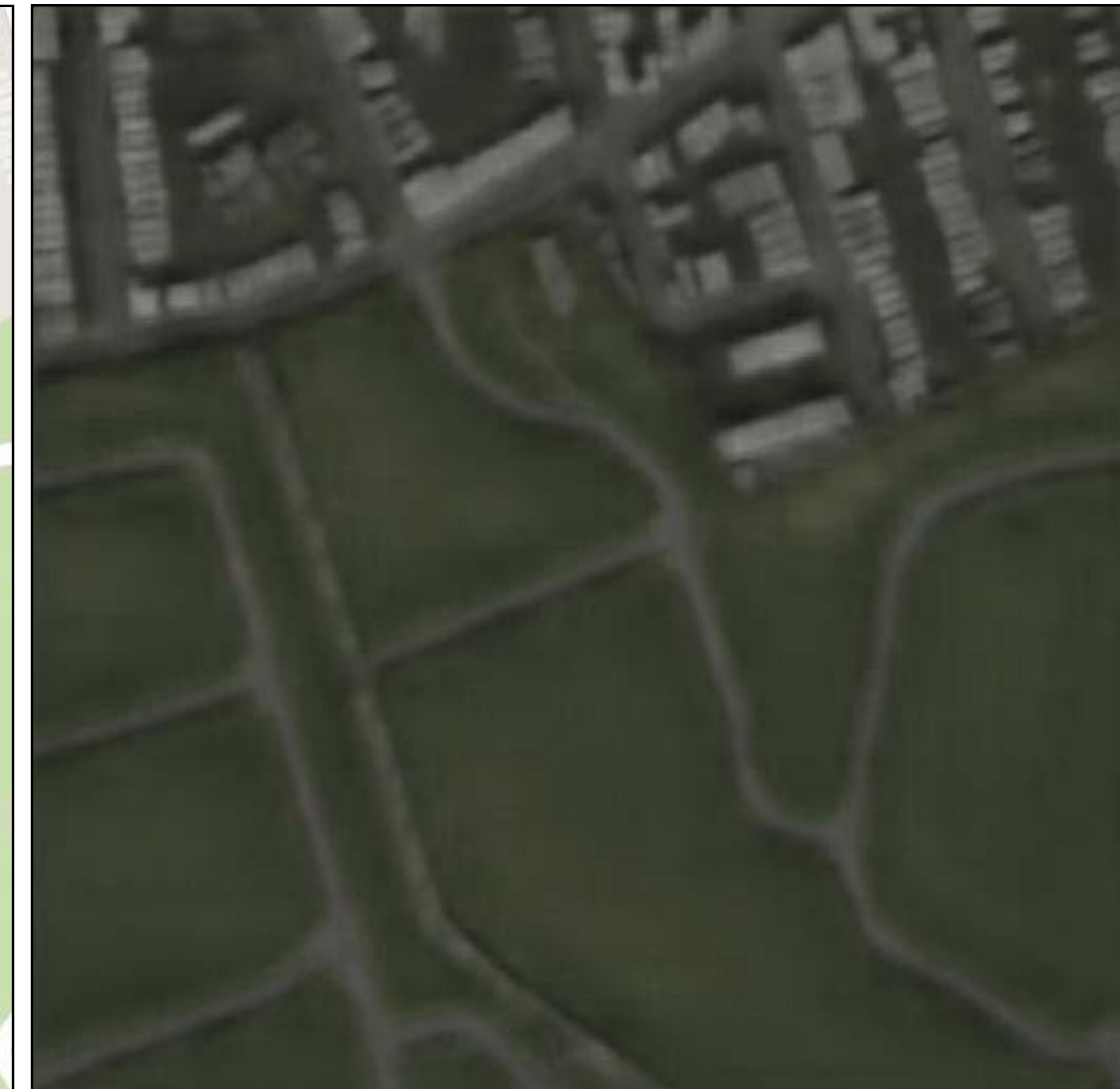
Why structured objectives (cartoon)



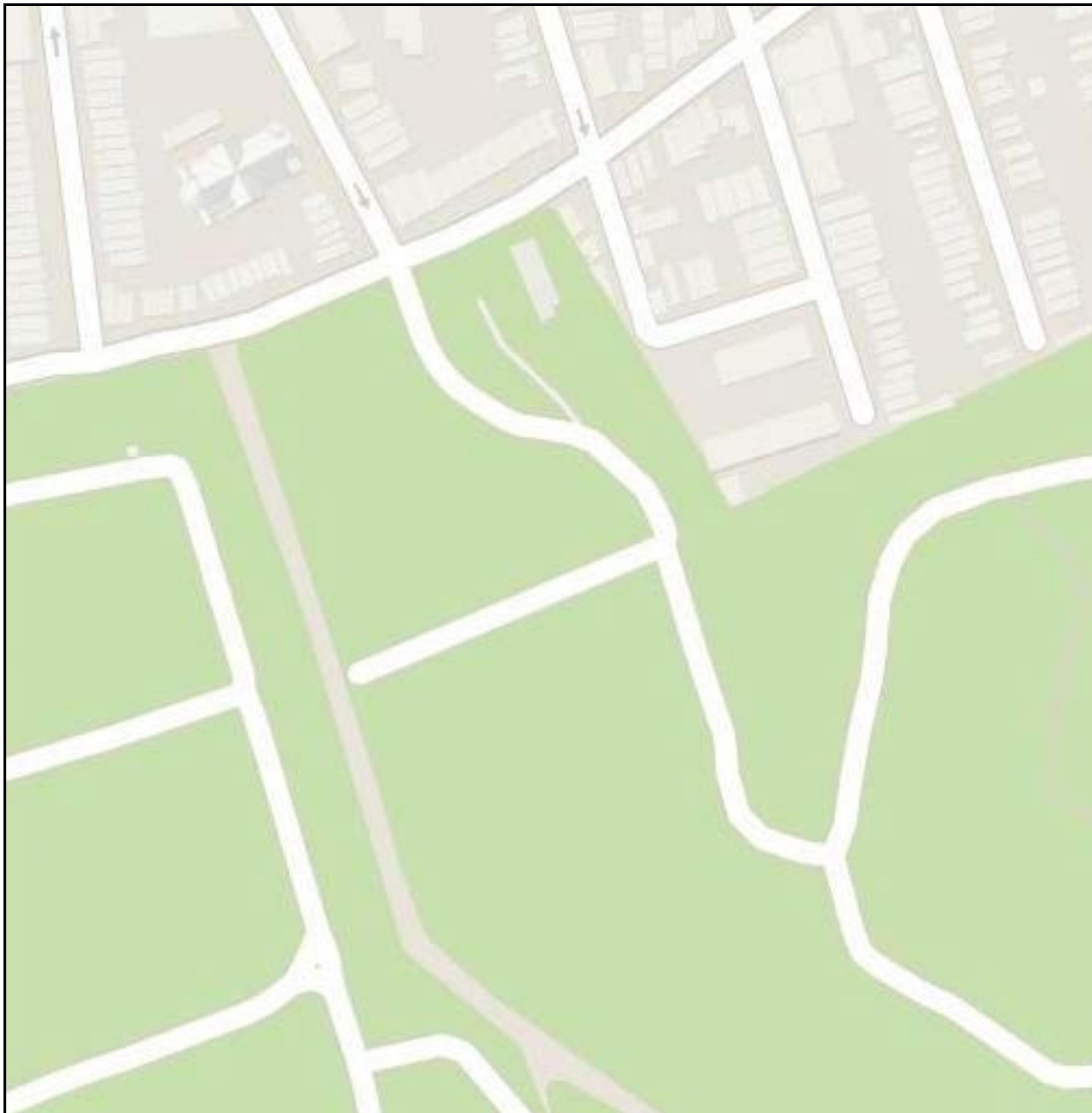
Input



Unstructured prediction (L1)



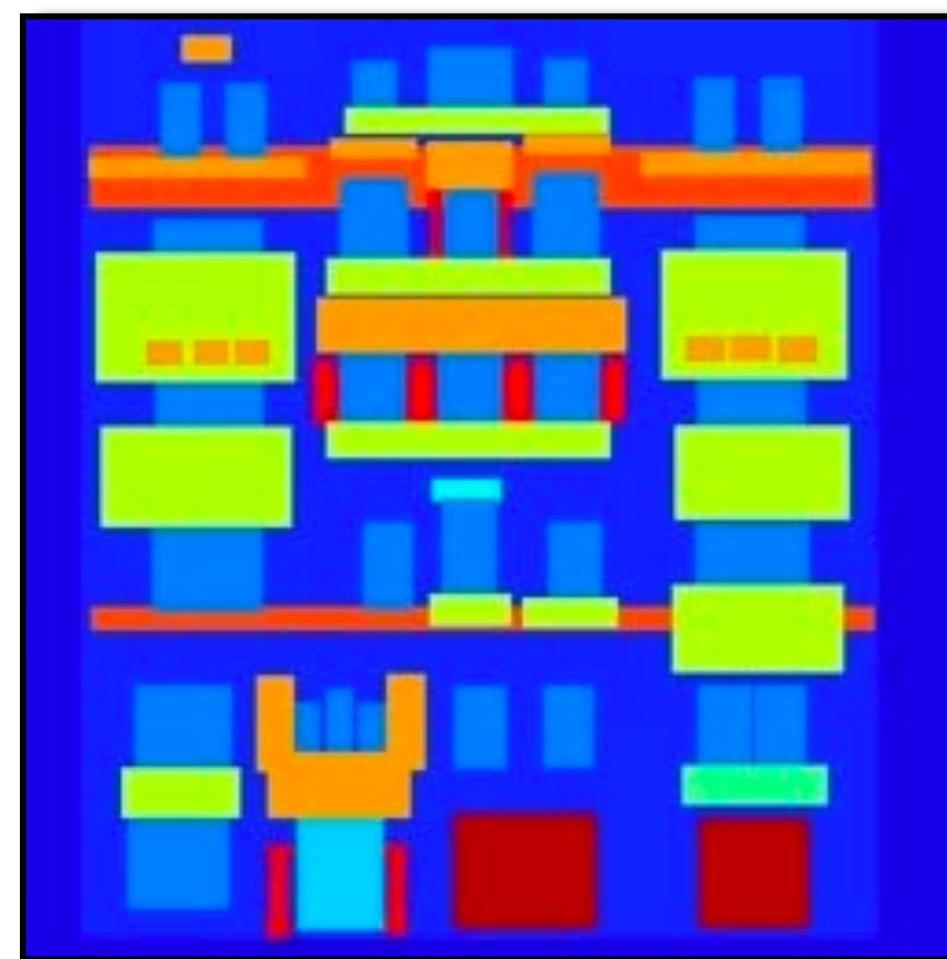
Input



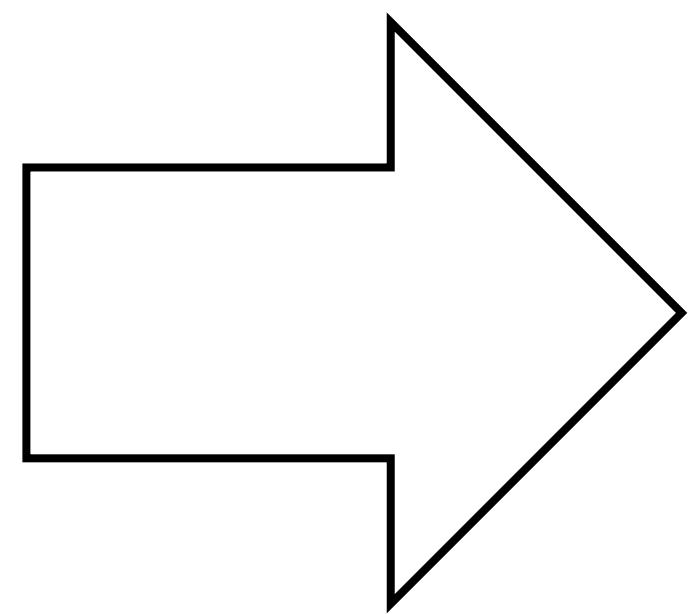
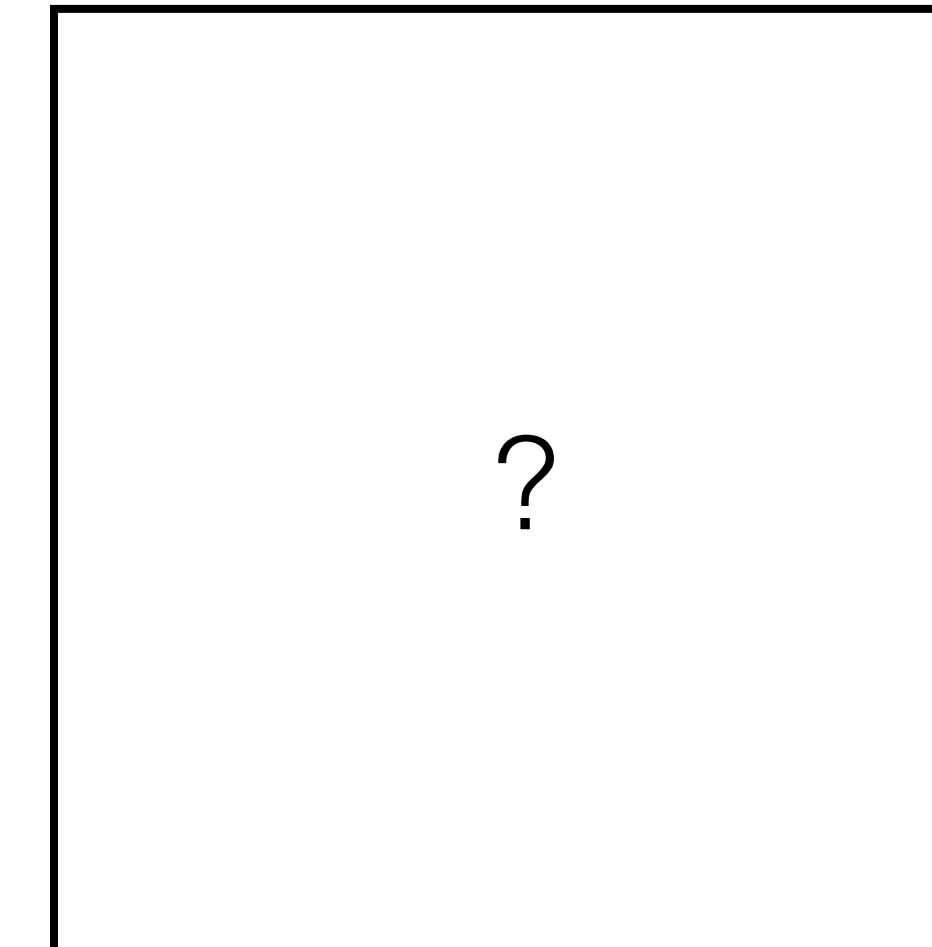
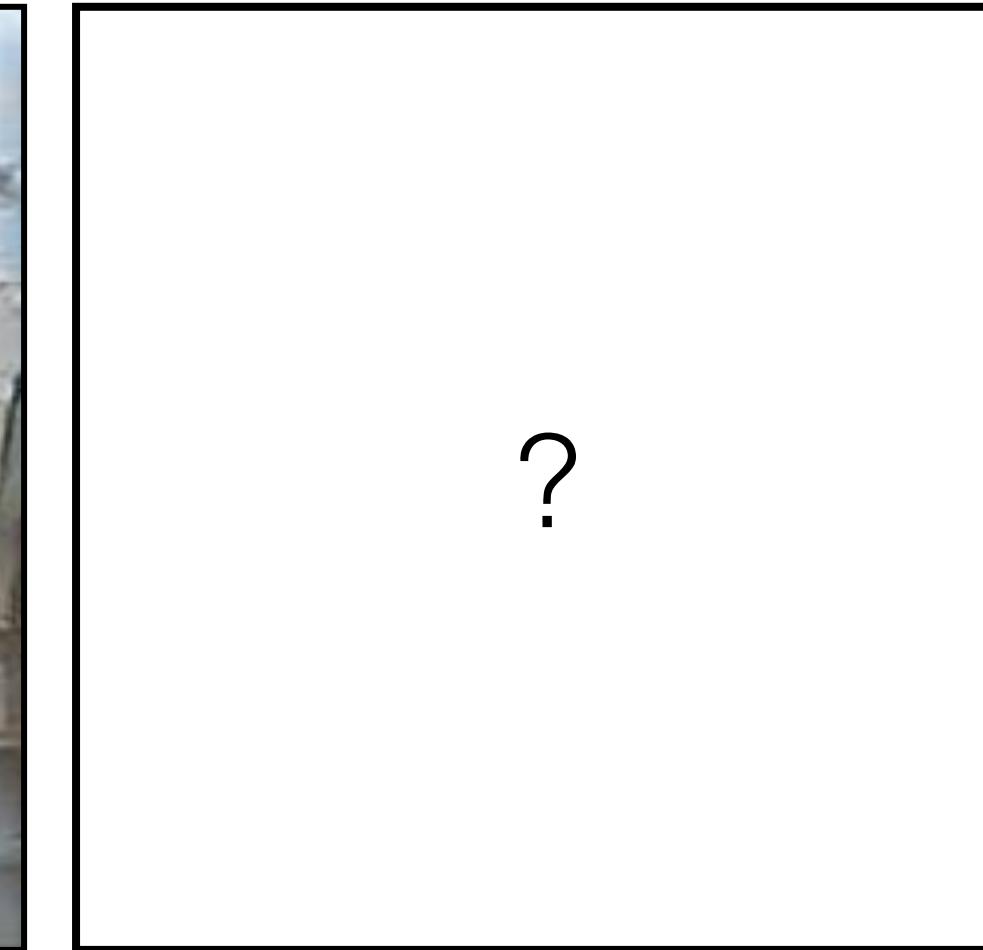
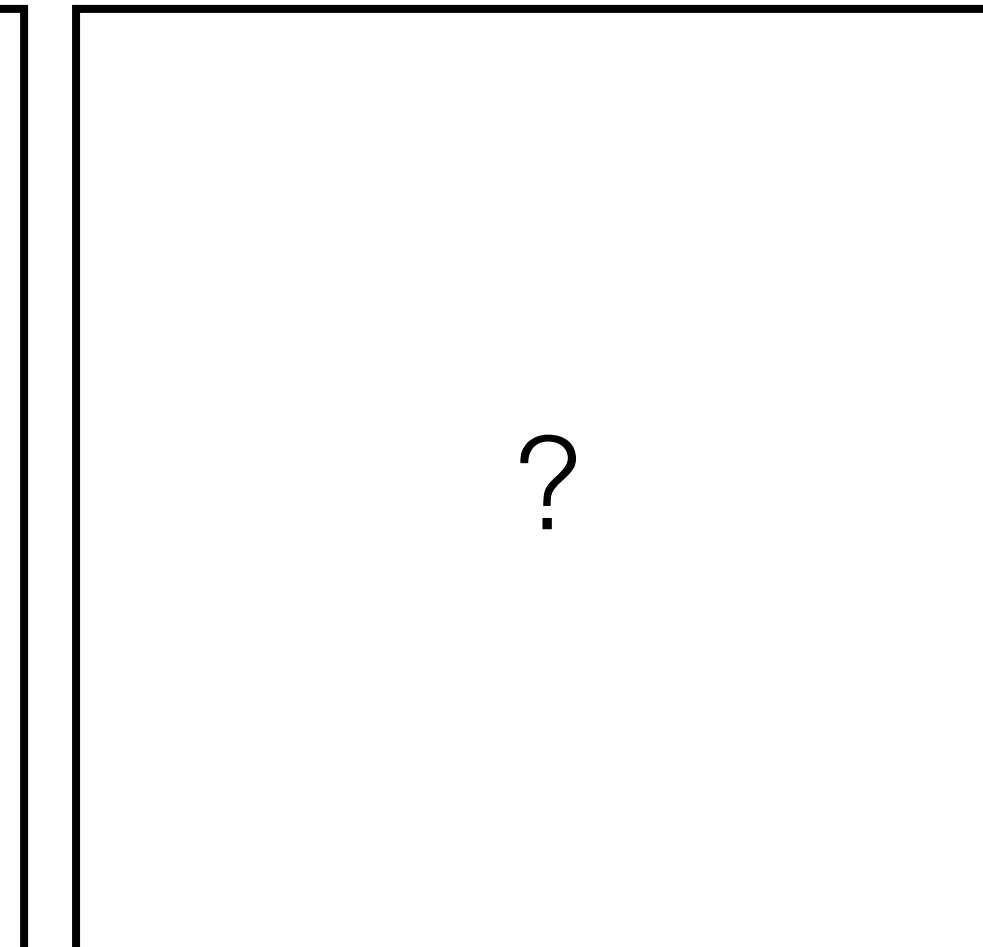
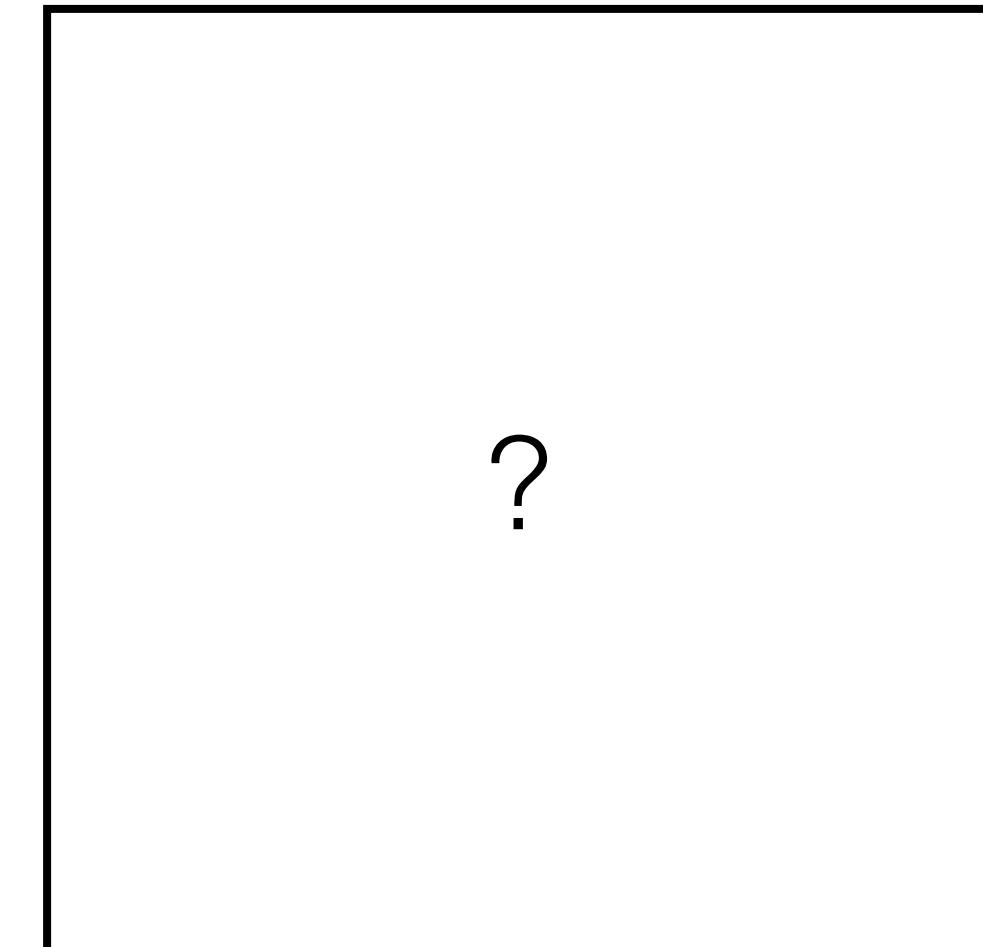
Structured Prediction (cGAN)

Conditional VAE

Modeling multiple possible outputs

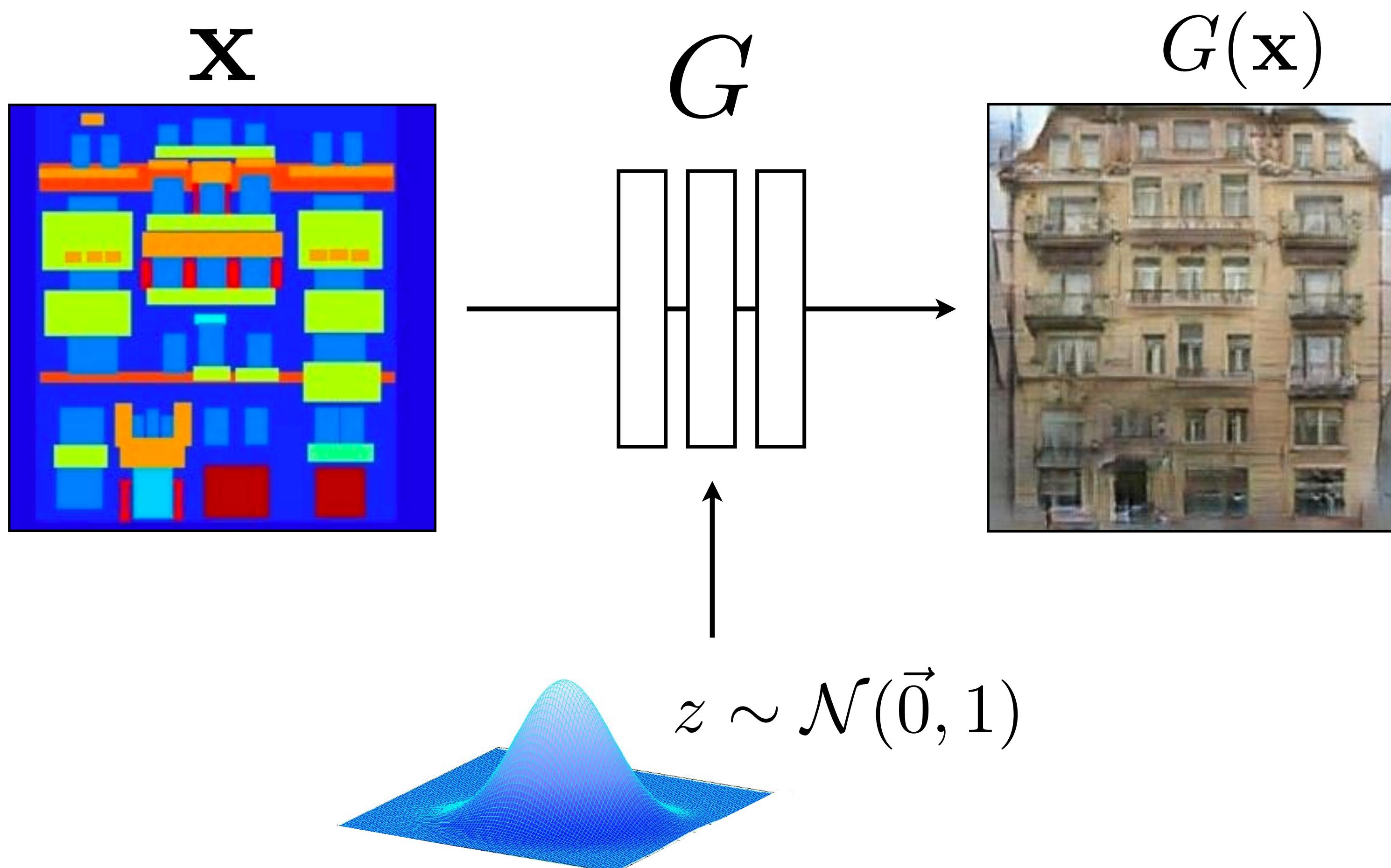


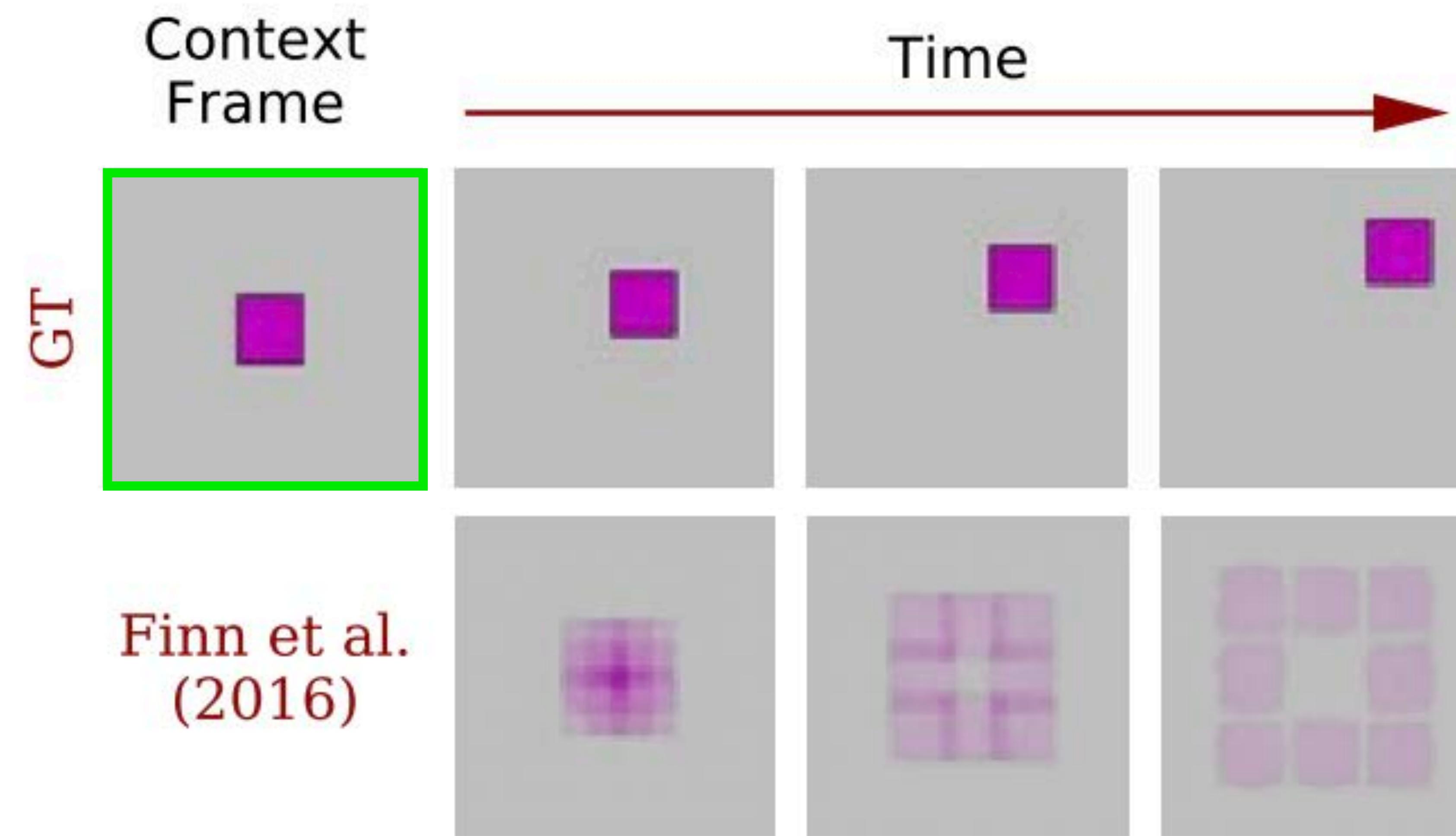
Input



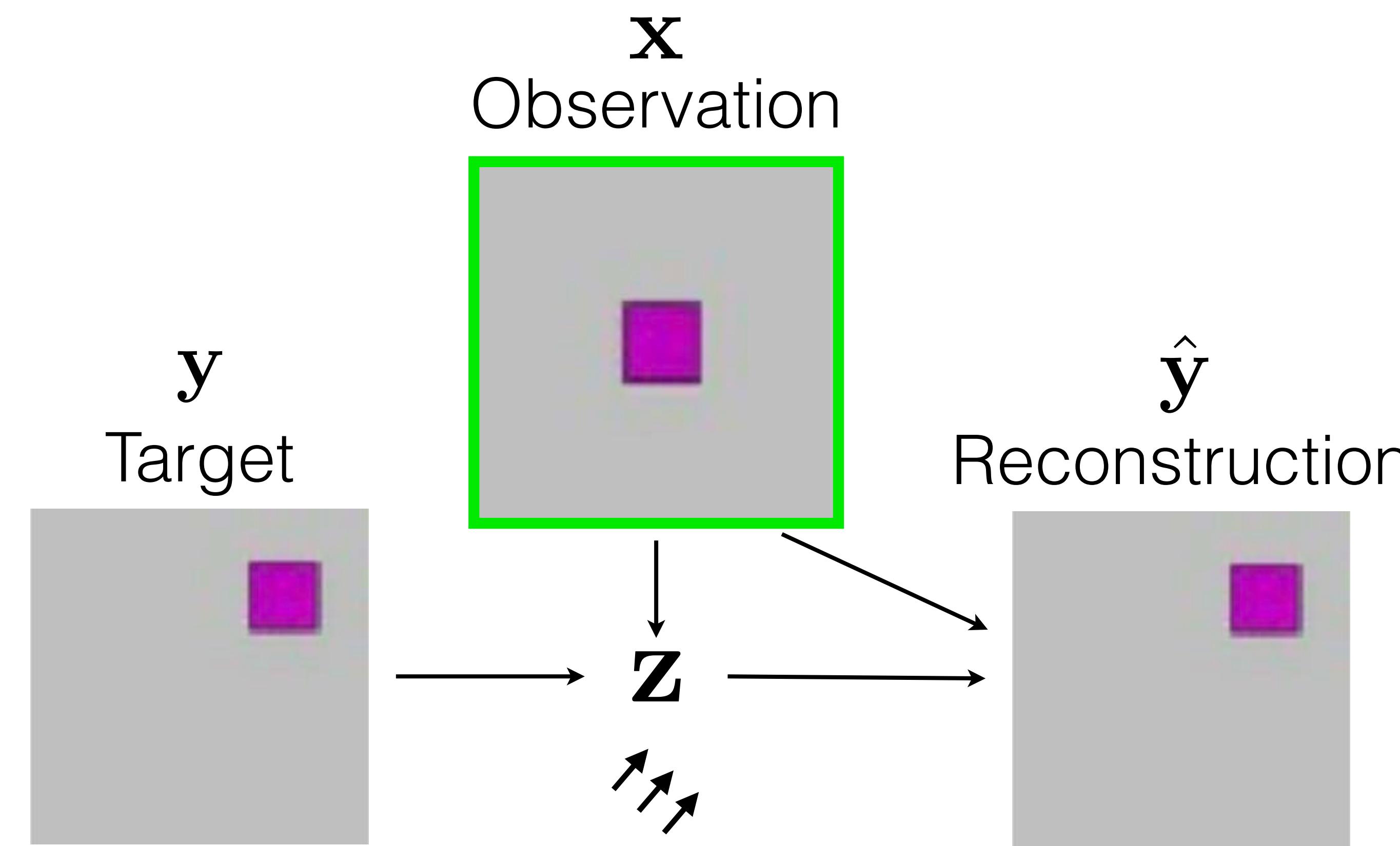
Possible outputs

Modeling multiple possible outputs



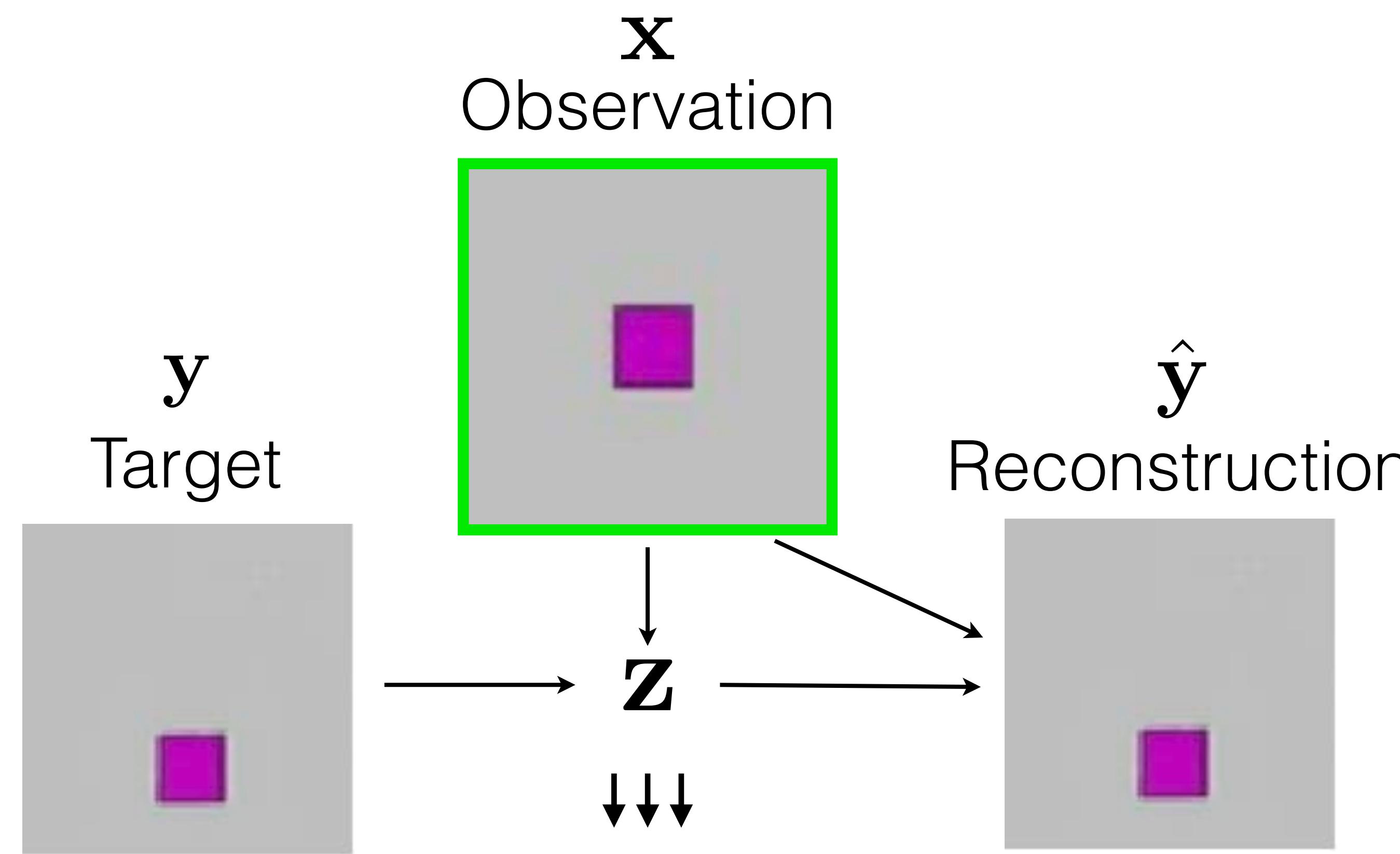


Example from [Babaeizadeh et al., ICLR 2018]
see also [Walker et al., ECCV 2016], [Xue*, Wu*, et al., NIPS 2016]

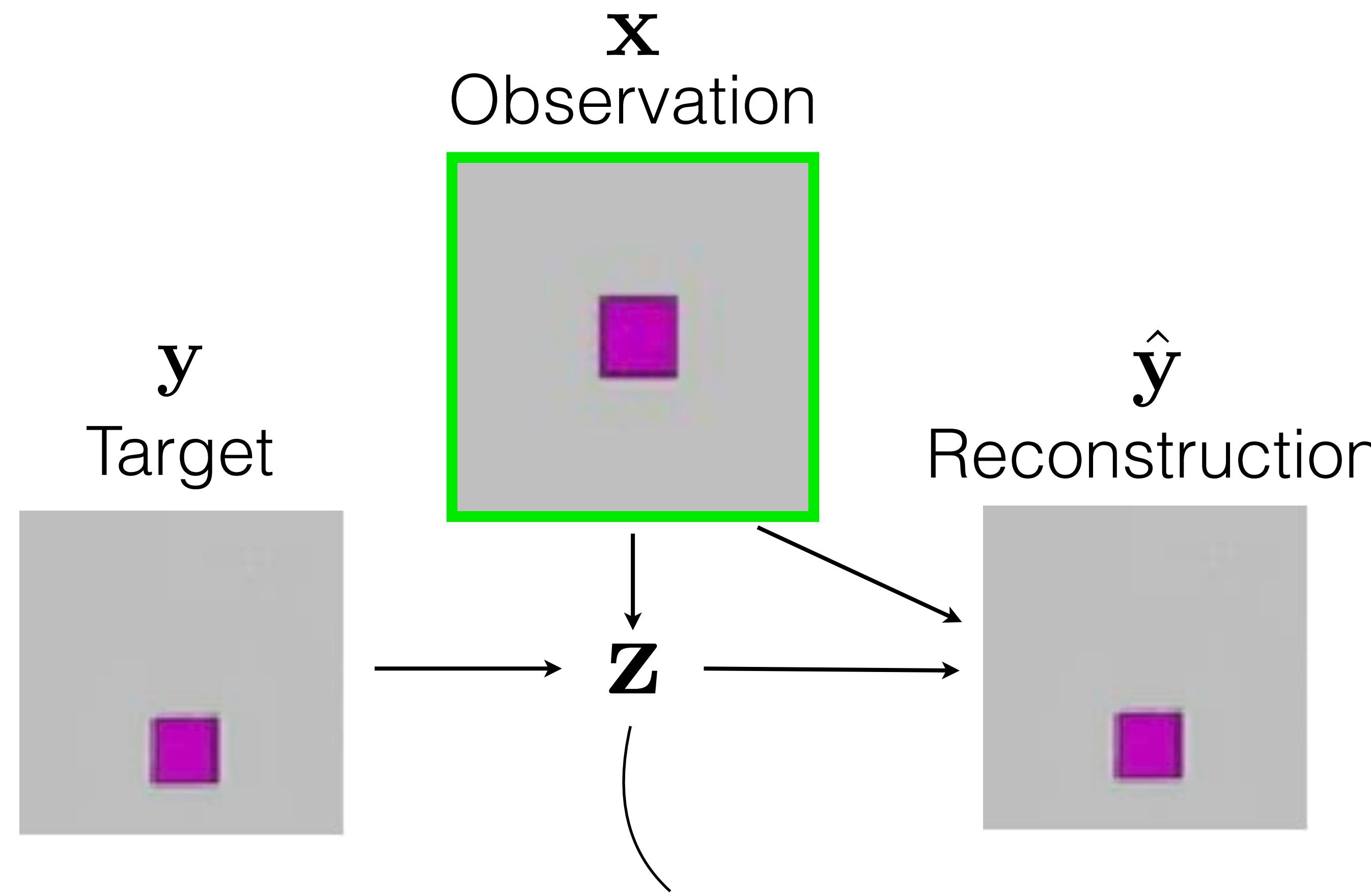


Example from [Babaeizadeh et al., ICLR 2018]

see also [Walker et al., ECCV 2016], [Xue*, Wu*, et al., NIPS 2016]



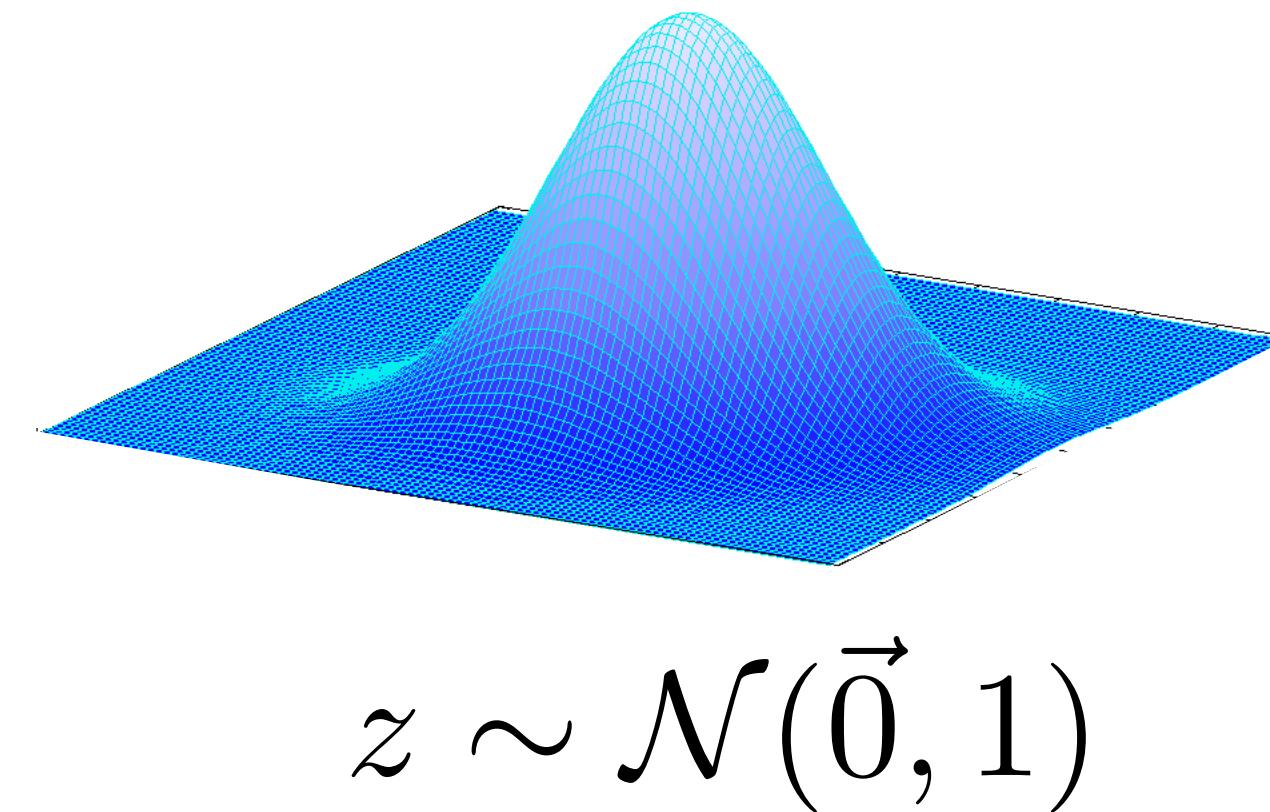
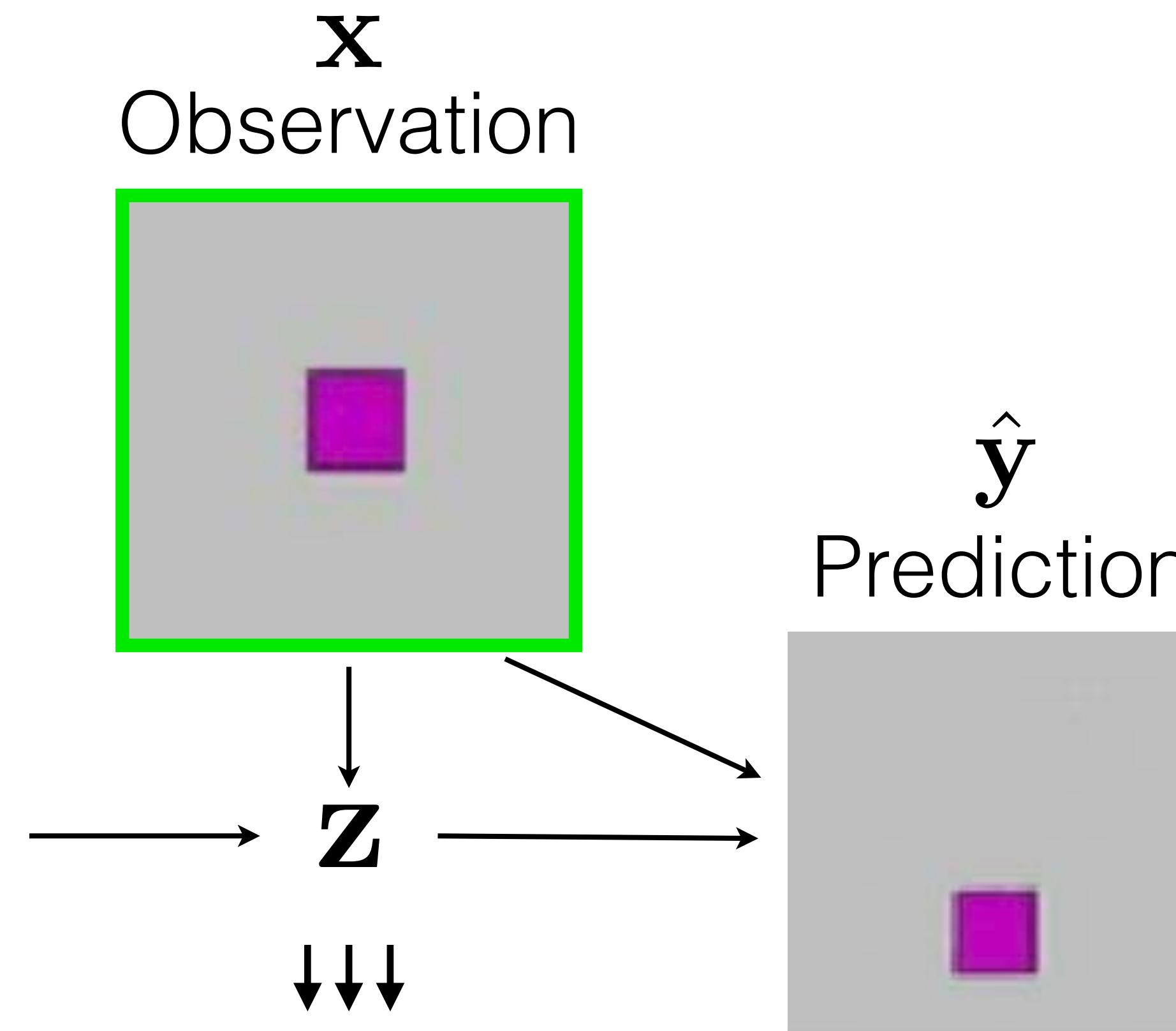
Example from [Babaeizadeh et al., ICLR 2018]
see also [Walker et al., ECCV 2016], [Xue*, Wu*, et al., NIPS 2016]



z learns to encode the missing information necessary
to predict y from x , i.e. the direction in which the
purple box moves

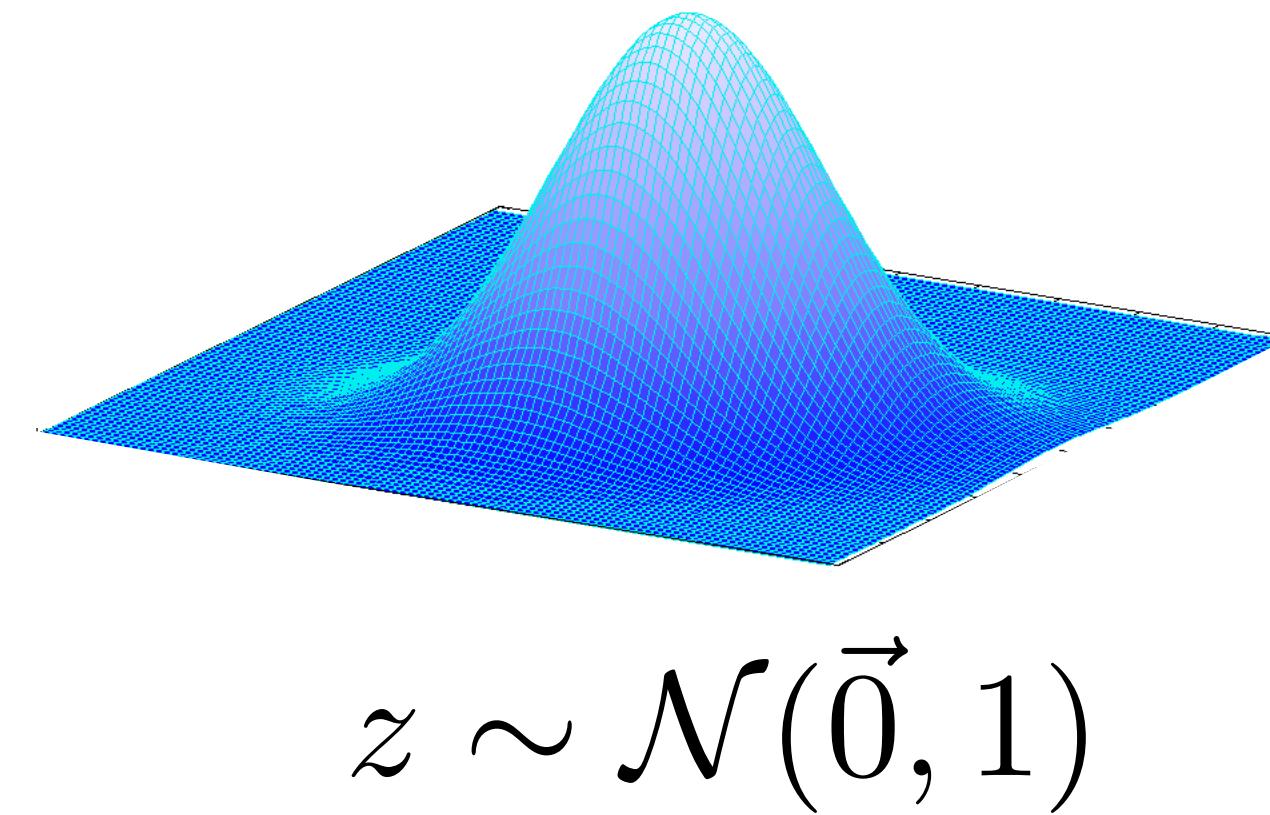
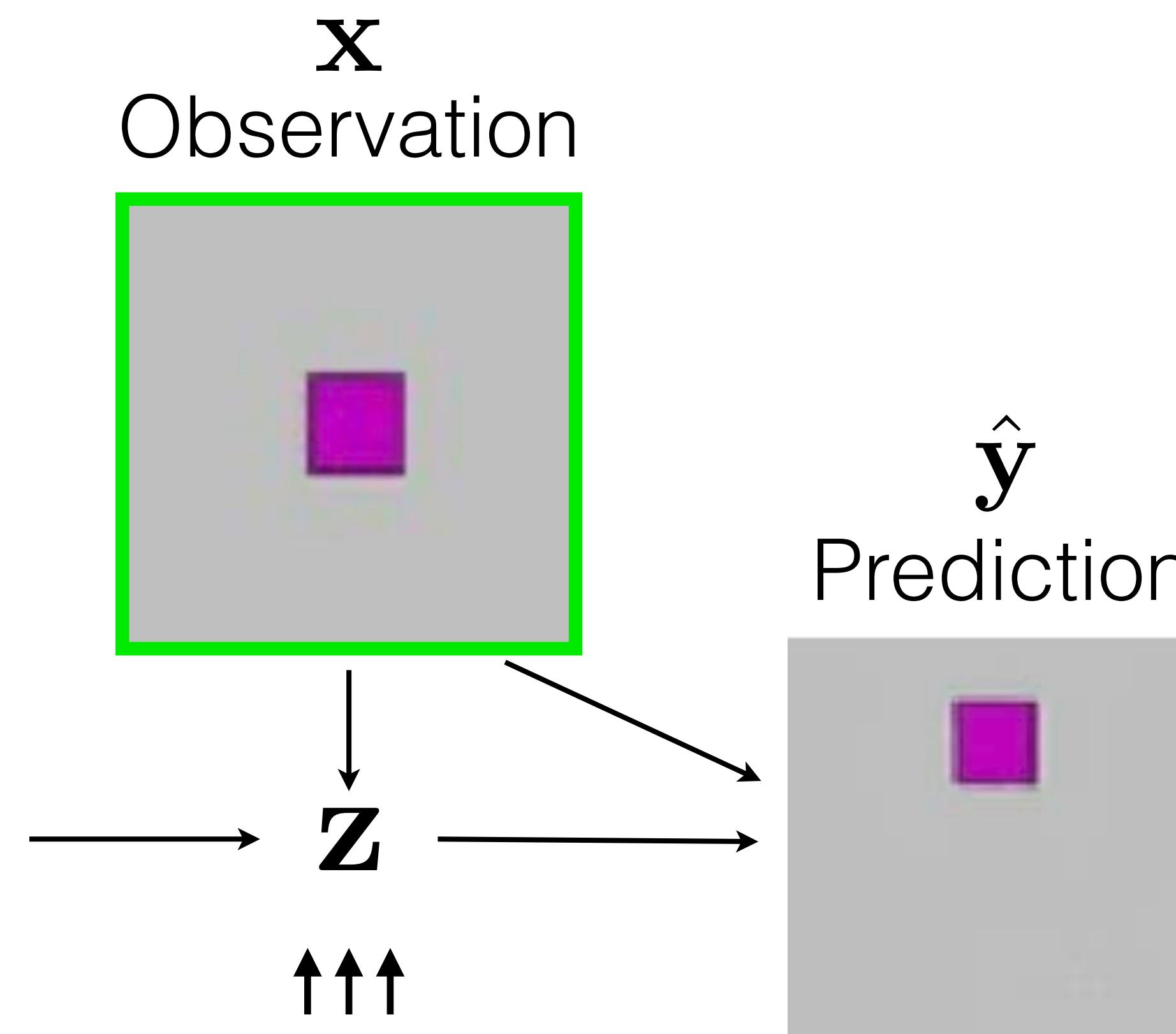
Example from [Babaeizadeh et al., ICLR 2018]

see also [Walker et al., ECCV 2016], [Xue*, Wu*, et al., NIPS 2016]

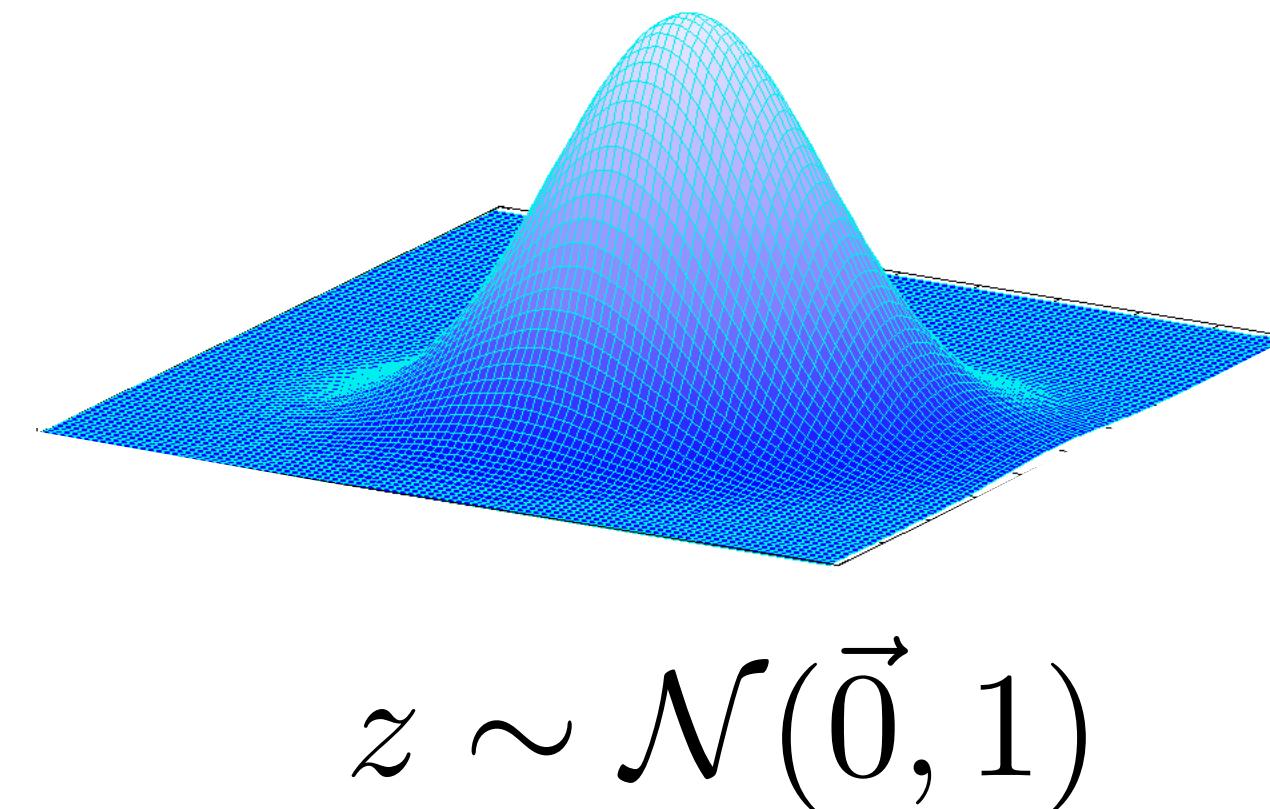
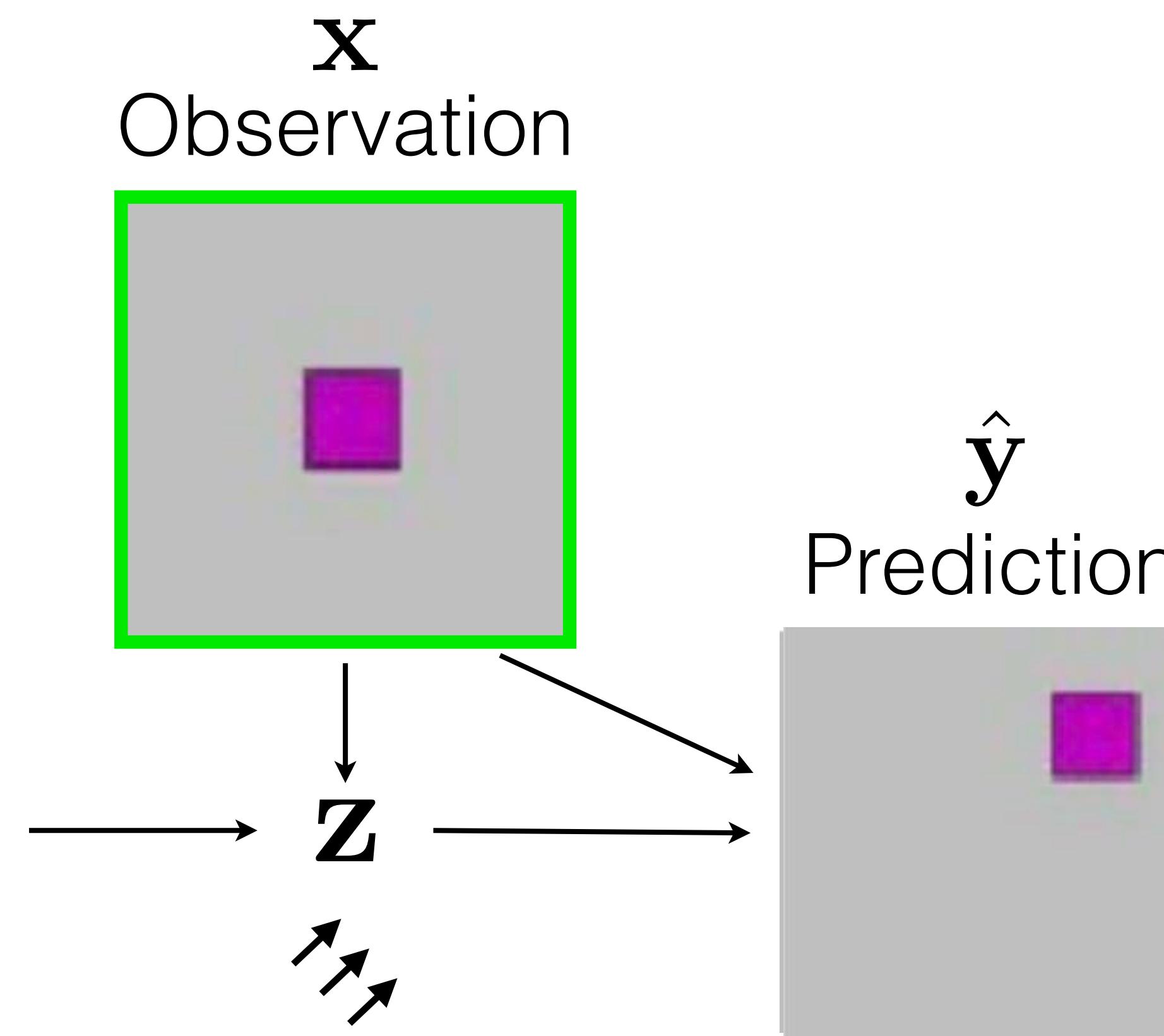


Example from [Babaeizadeh et al., ICLR 2018]

see also [Walker et al., ECCV 2016], [Xue*, Wu*, et al., NIPS 2016]

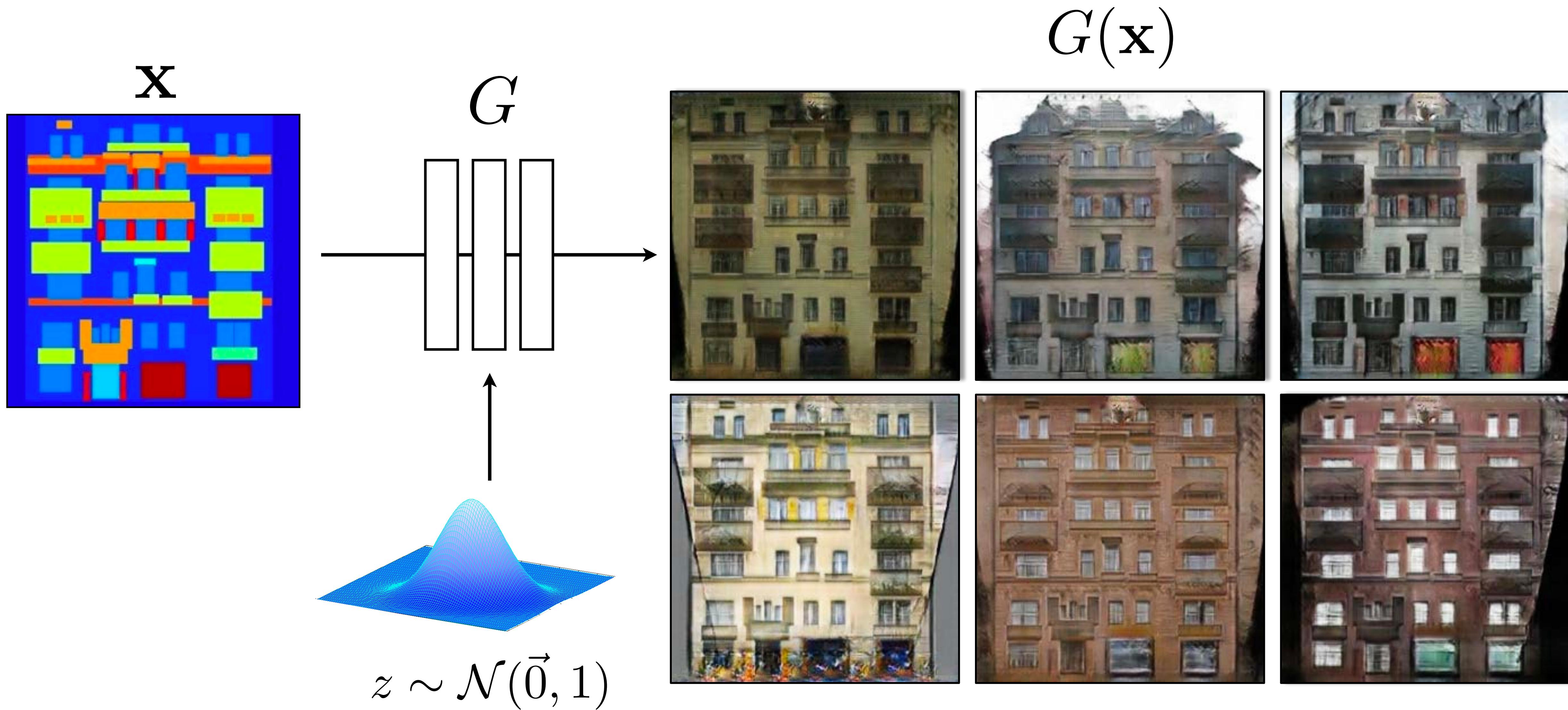


Example from [Babaeizadeh et al., ICLR 2018]
see also [Walker et al., ECCV 2016], [Xue*, Wu*, et al., NIPS 2016]



Example from [Babaeizadeh et al., ICLR 2018]
see also [Walker et al., ECCV 2016], [Xue*, Wu*, et al., NIPS 2016]

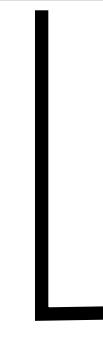
Modeling multiple possible outputs



[BiCycleGAN, Zhu et al., NeurIPS 2017]

**Concept: You can control your data either via
explicit inputs or latent variables**

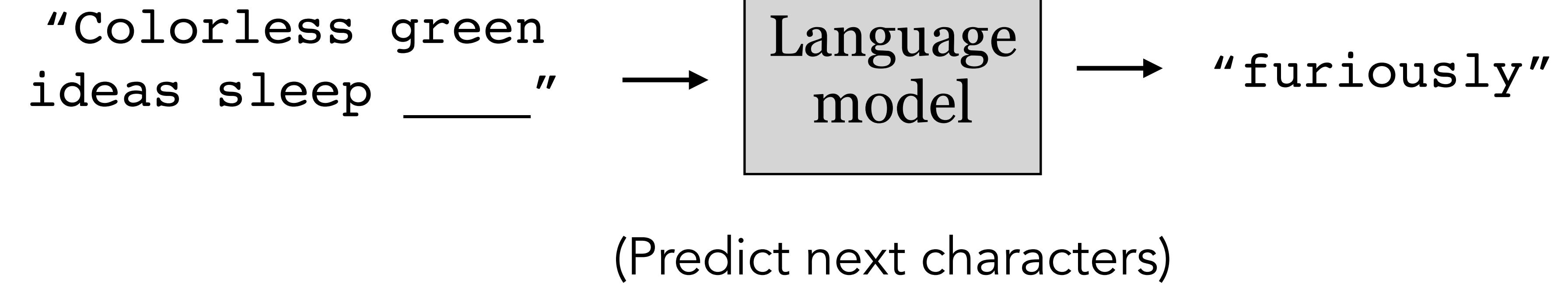
Text-to-text



with autoregressive models

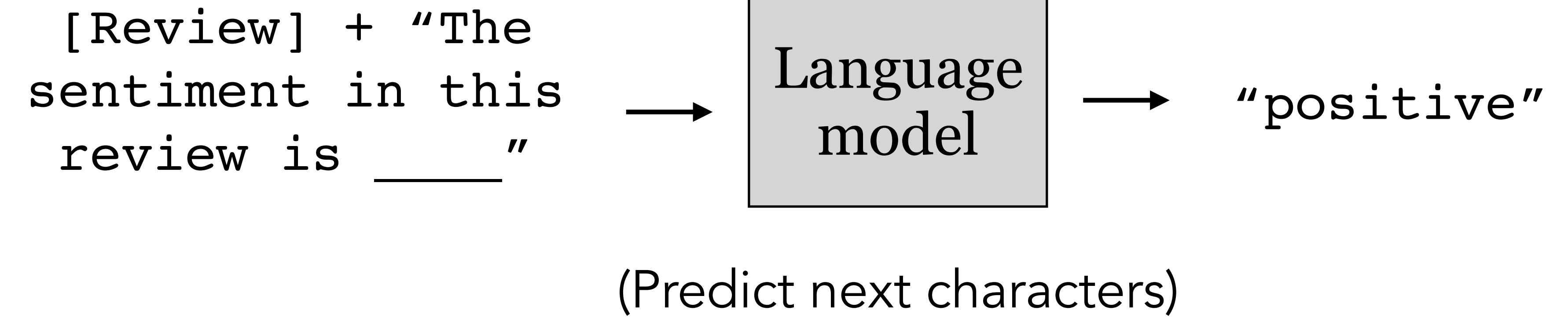
Autoregressive models are conditional generative models

1. Training



Autoregressive models are conditional generative models

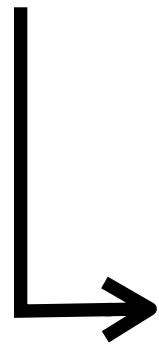
2. Predicting



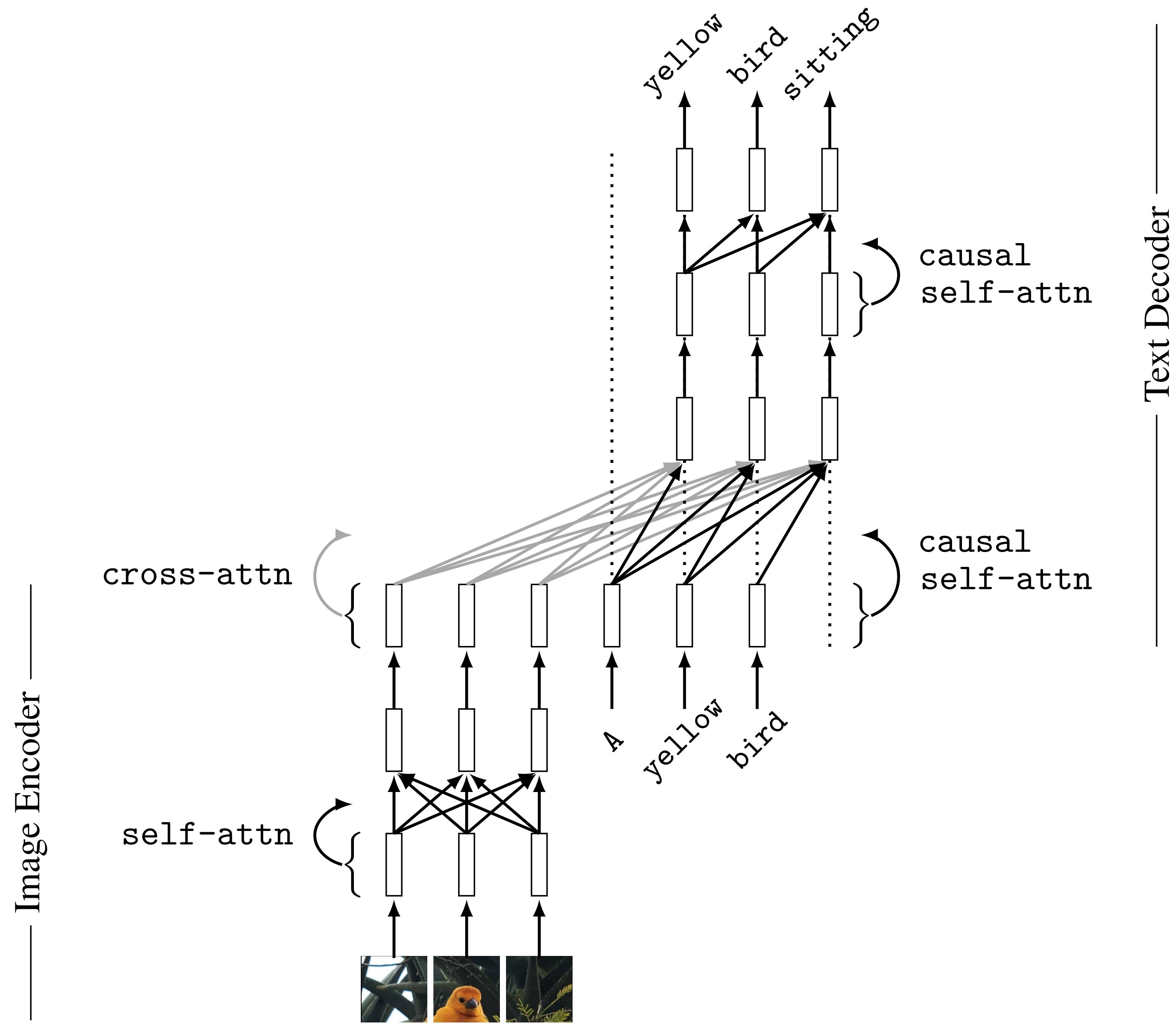
I had a horrible experience with this airline. The flight was delayed five hours. Then, they lost my luggage. I had to wait a whole week to get the luggage back. I didn't have any changes of clothes so I wasted a lot of money to buy a few things to wear. When I finally got my luggage back, it was missing half my things. I will never fly with this airline again.

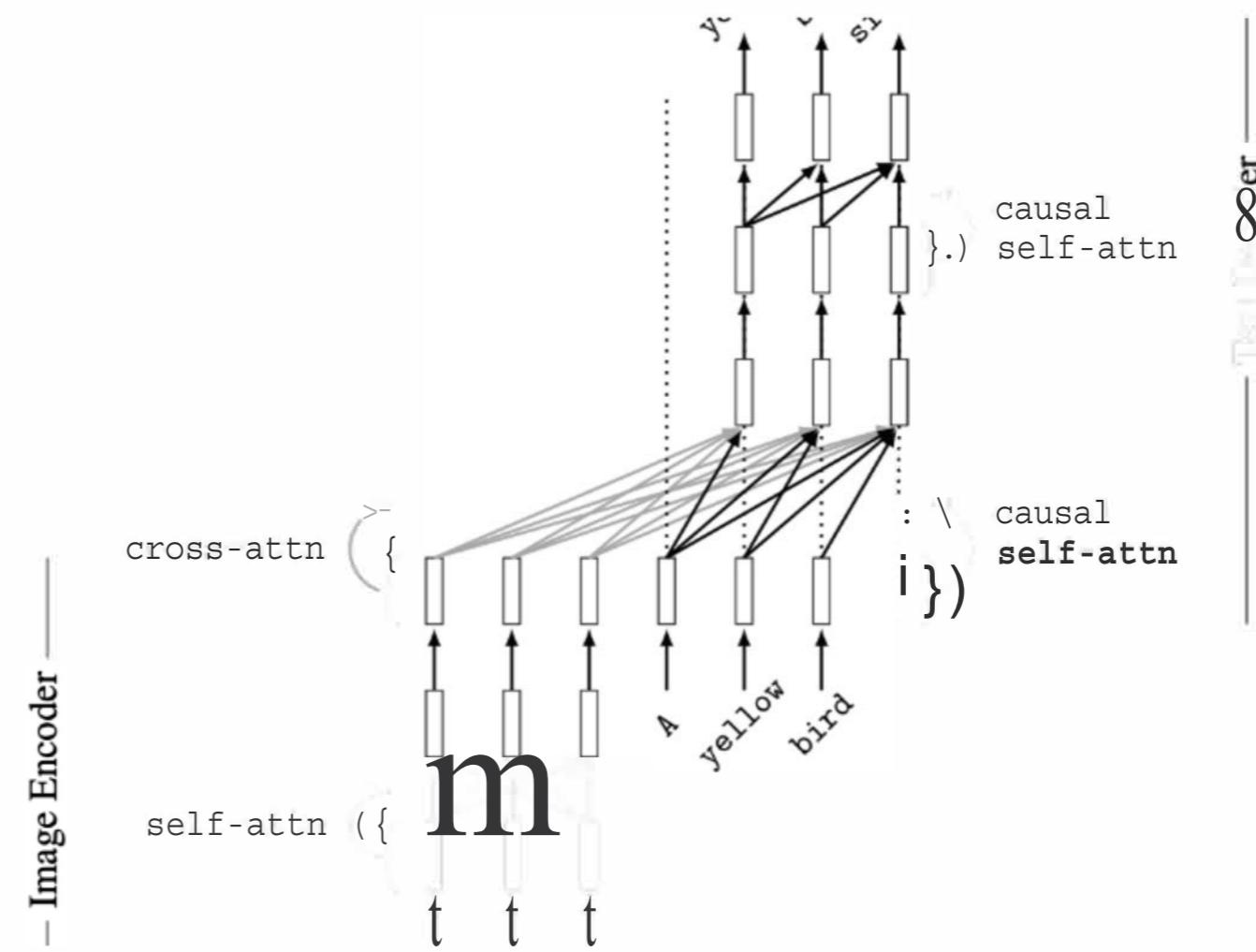
The sentiment in this review is negative.

Image-to-text



with an autoregressive model





What is this slide showing and how does it relate to the way you work, ChatGPT?

This slide shows a model architecture for a vision-language transformer, often used in image-captioning models. The components include:

1. **Image Encoder:** On the left, where image inputs are processed through self-attention layers. This encoder extracts features from the image, representing various parts of the visual input.
2. **Cross-Attention Layer:** The encoder's output interacts with the text decoder through cross-attention, enabling the text to attend to image features and guide the generation of descriptive captions.

Does ChatGPT know how its own brain works?

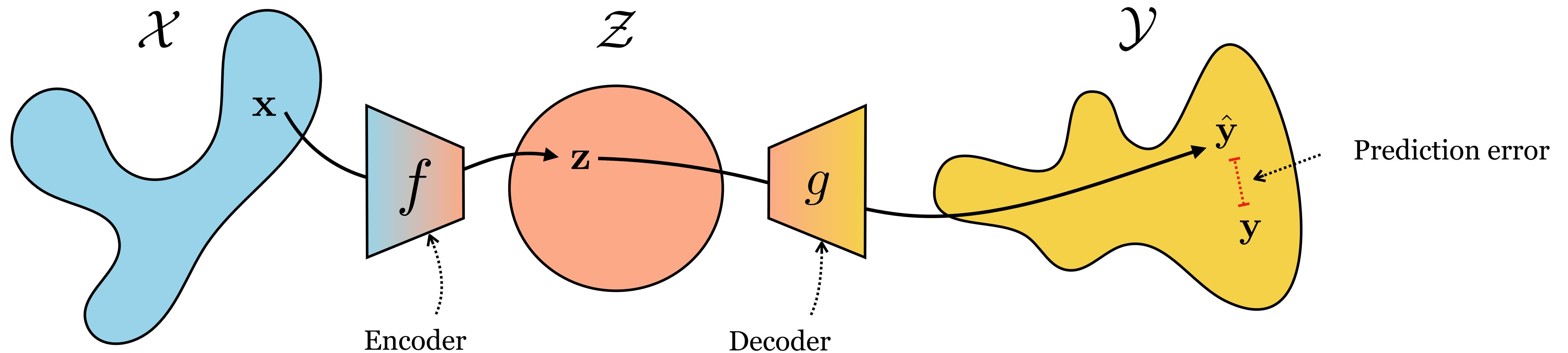
How This Relates to How I Work

Similar to this architecture, my responses often involve "attention" to different parts of your input. Instead of visual data, I focus on your conversational context and keywords, determining the next part of the response based on previous parts of the conversation. In this way, I function similarly to a text decoder with attention mechanisms to retain consistency and relevance in dialogue. However, unlike this model's image encoding, I don't process visual data directly, but rely on text representations and information you share about images.

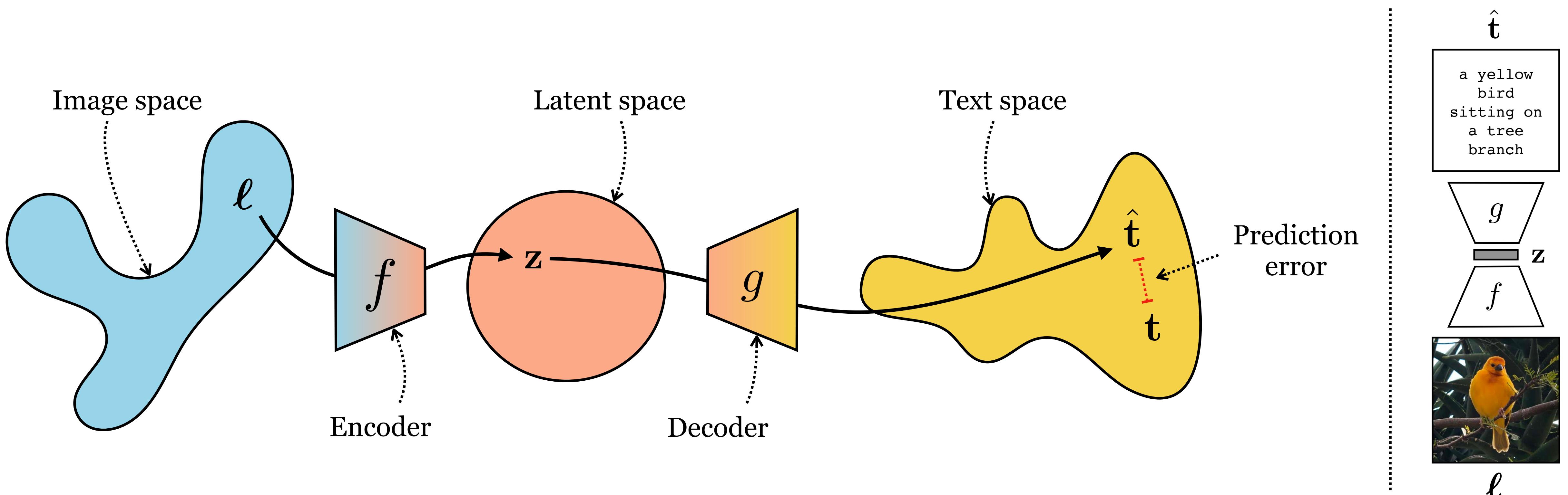
Text-to-image

with all models combined!

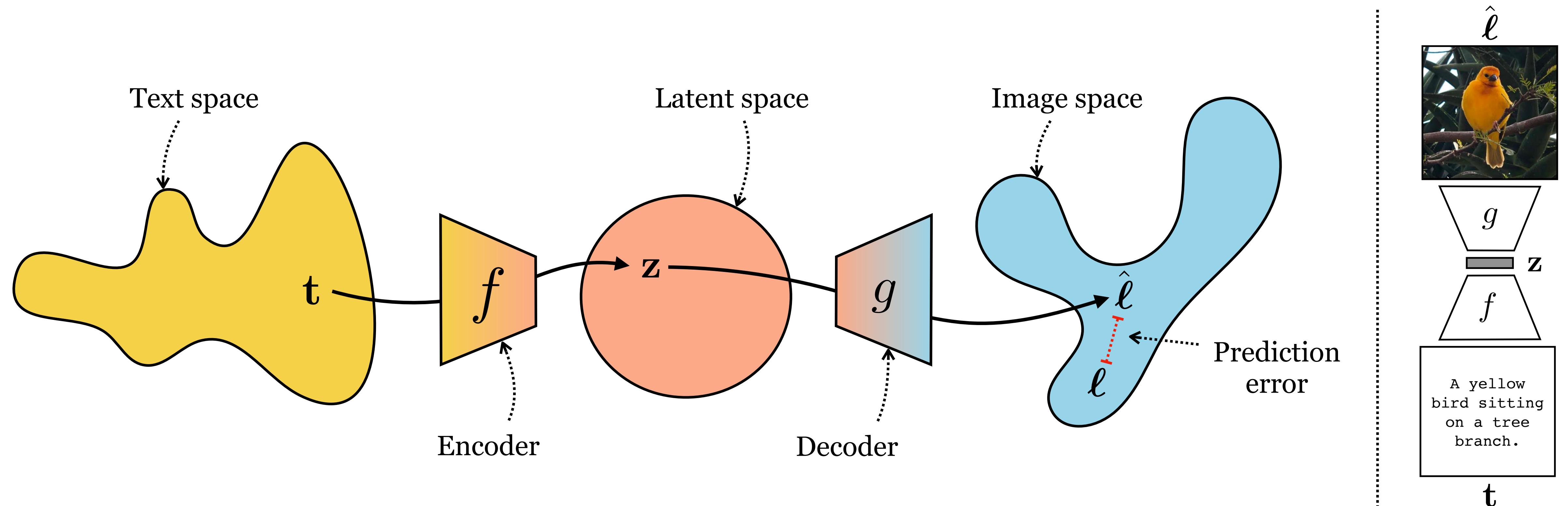
General strategy for domain translation



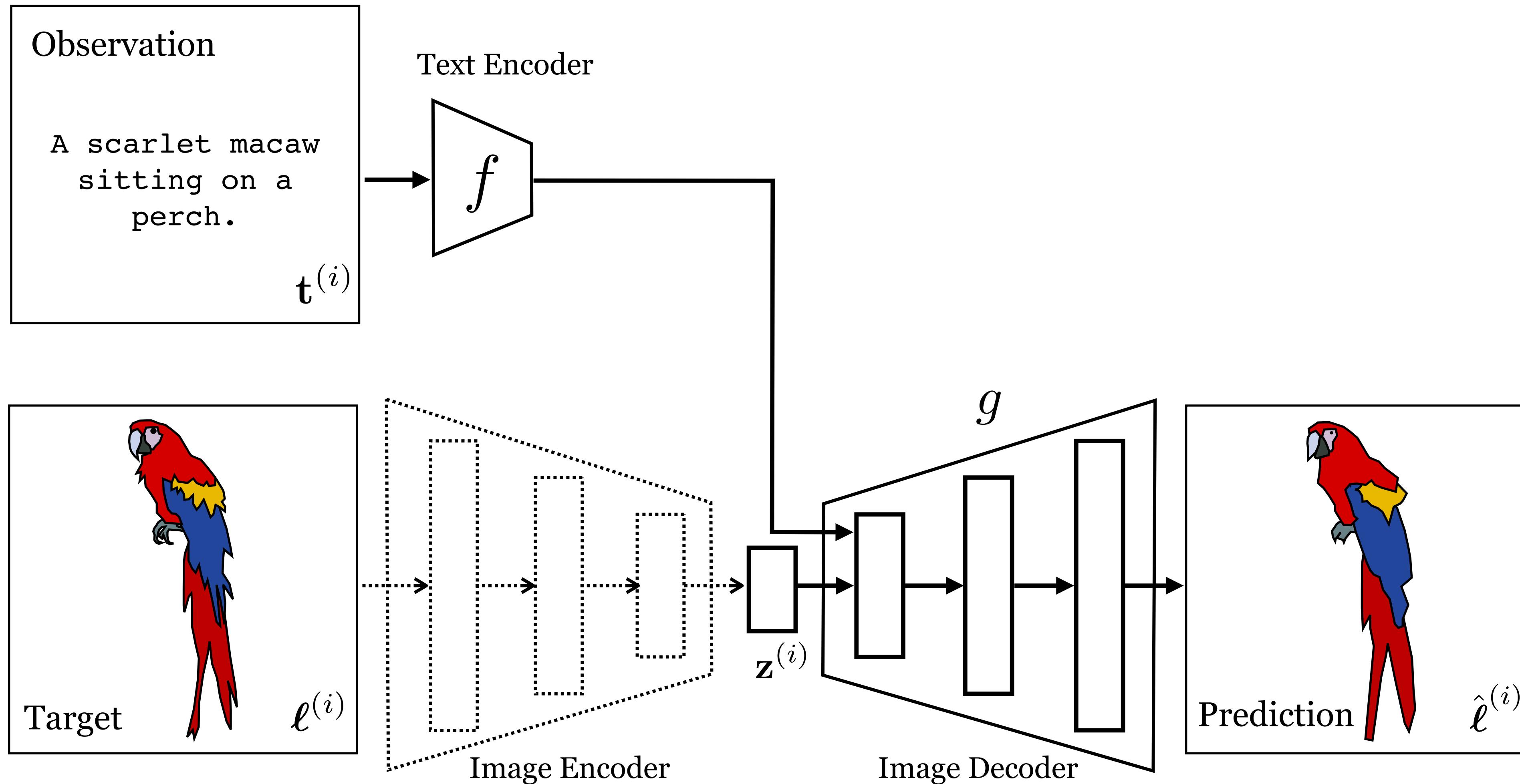
Text-to-image



Text-to-image

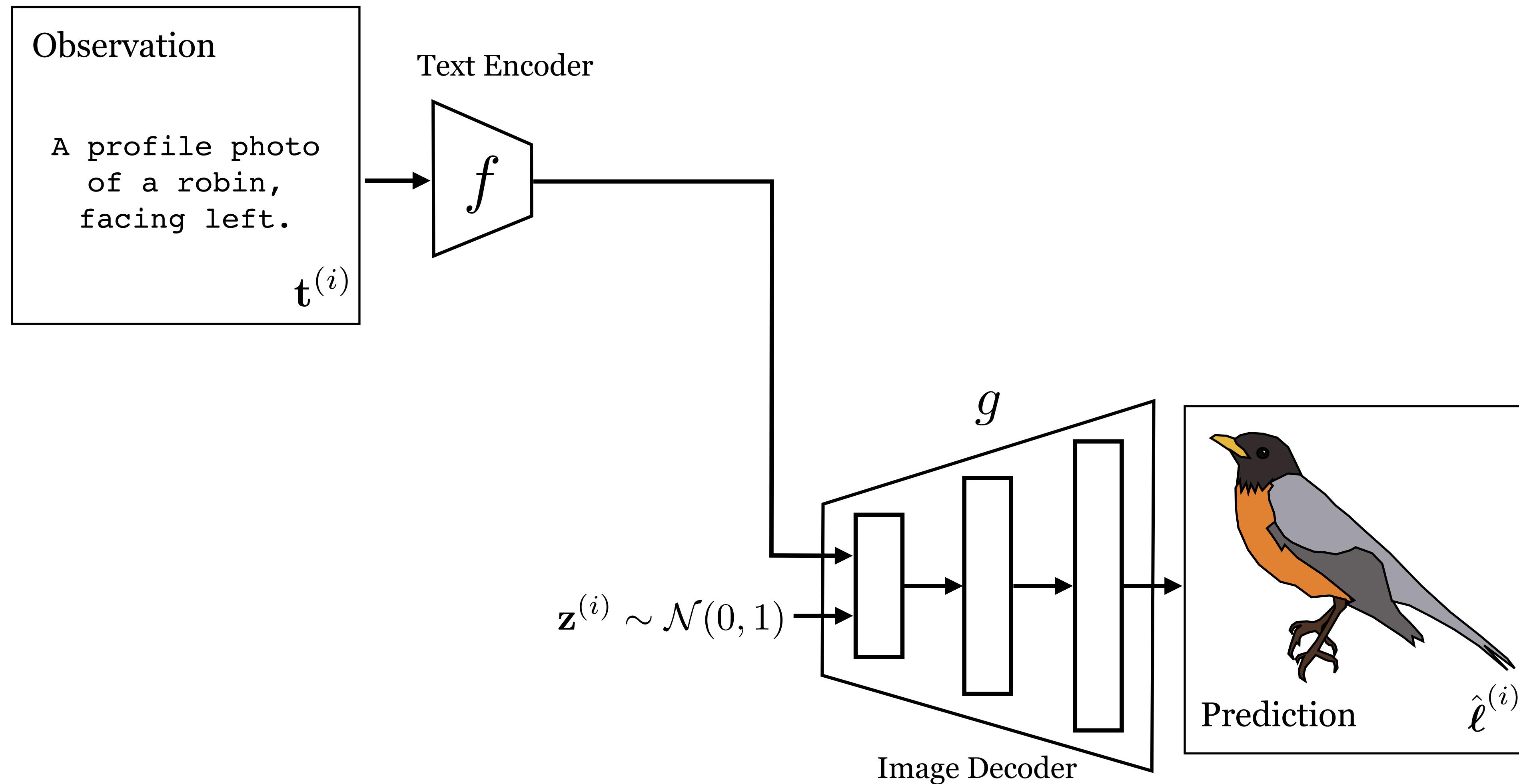


Text-to-image VAE



For example: DALL-E 1 [Ramesh et al. 2021]

Text-to-image VAE



For example: DALL-E 1 [Ramesh et al. 2021]

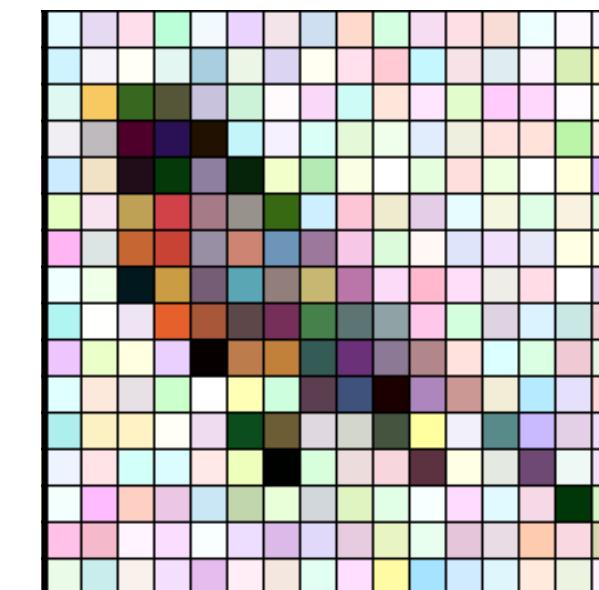
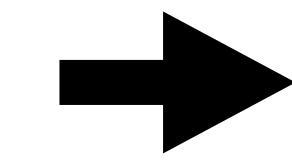
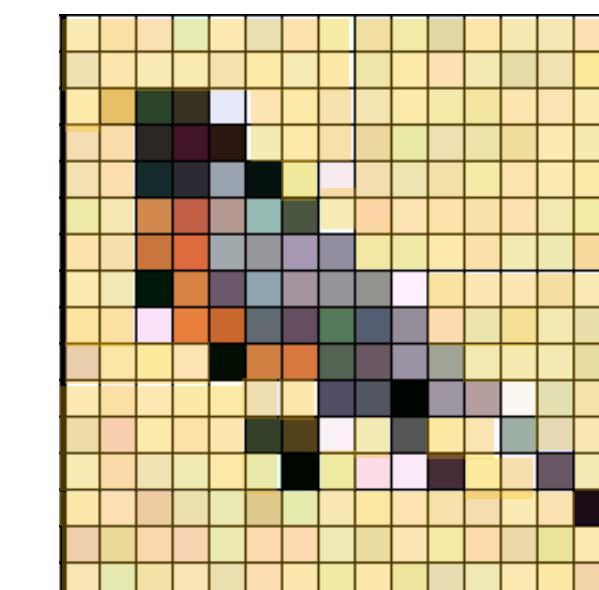
Text-to-image diffusion model



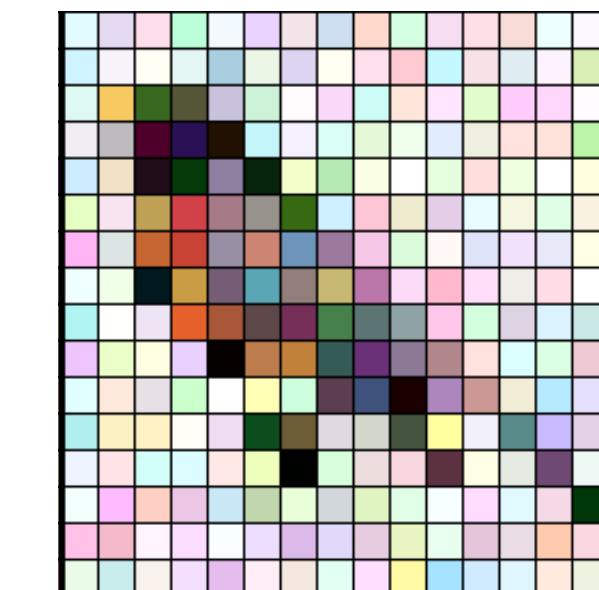
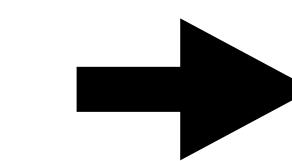
For example: DALL-E 2 [Ramesh et al. 2022], Stable Diffusion [Rombach*, Blattman* et al. 2022]

Text provides information as to what the noiseless image should look like

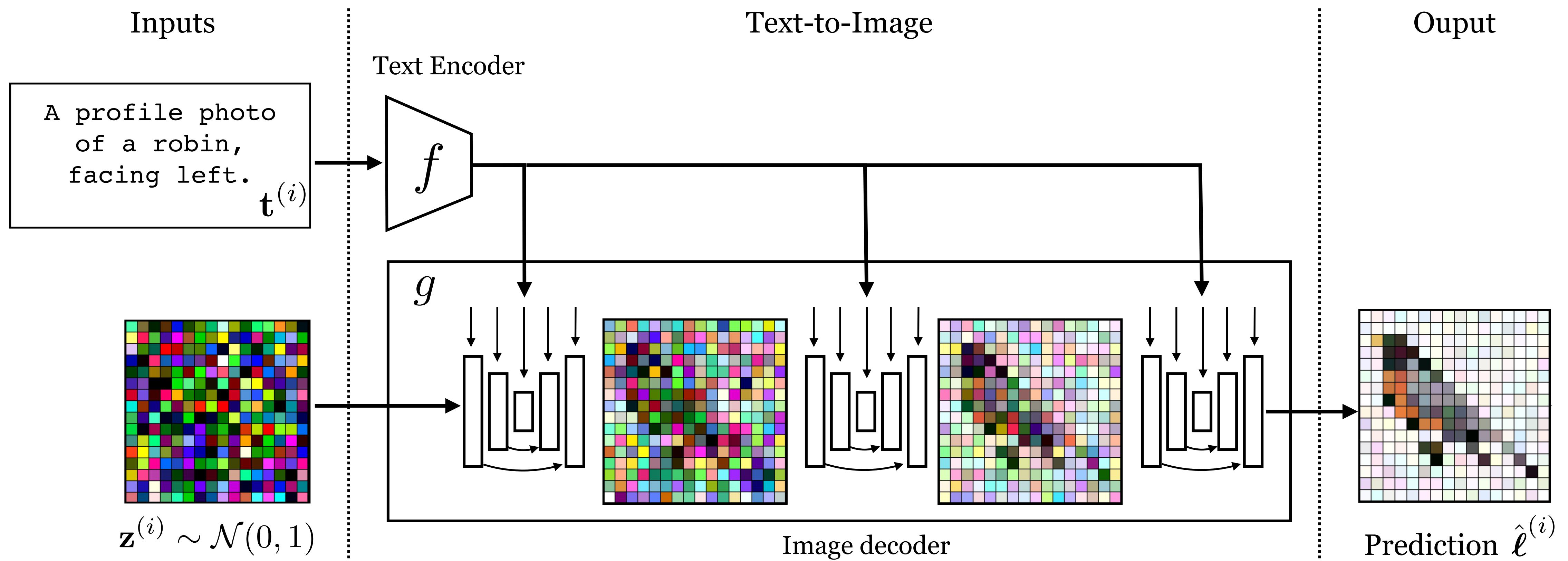
A robin on a
yellow background.



A robin on a
pink background.

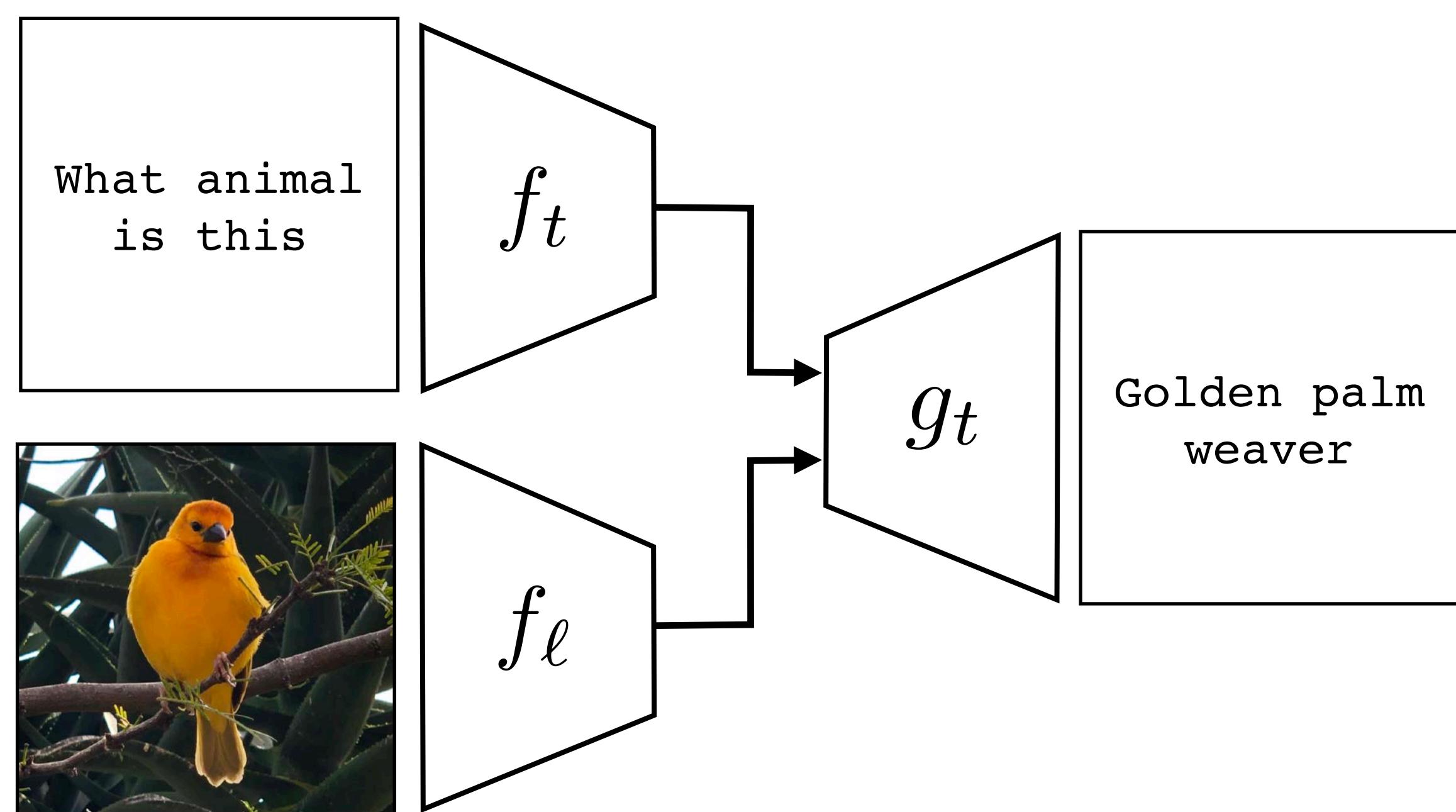
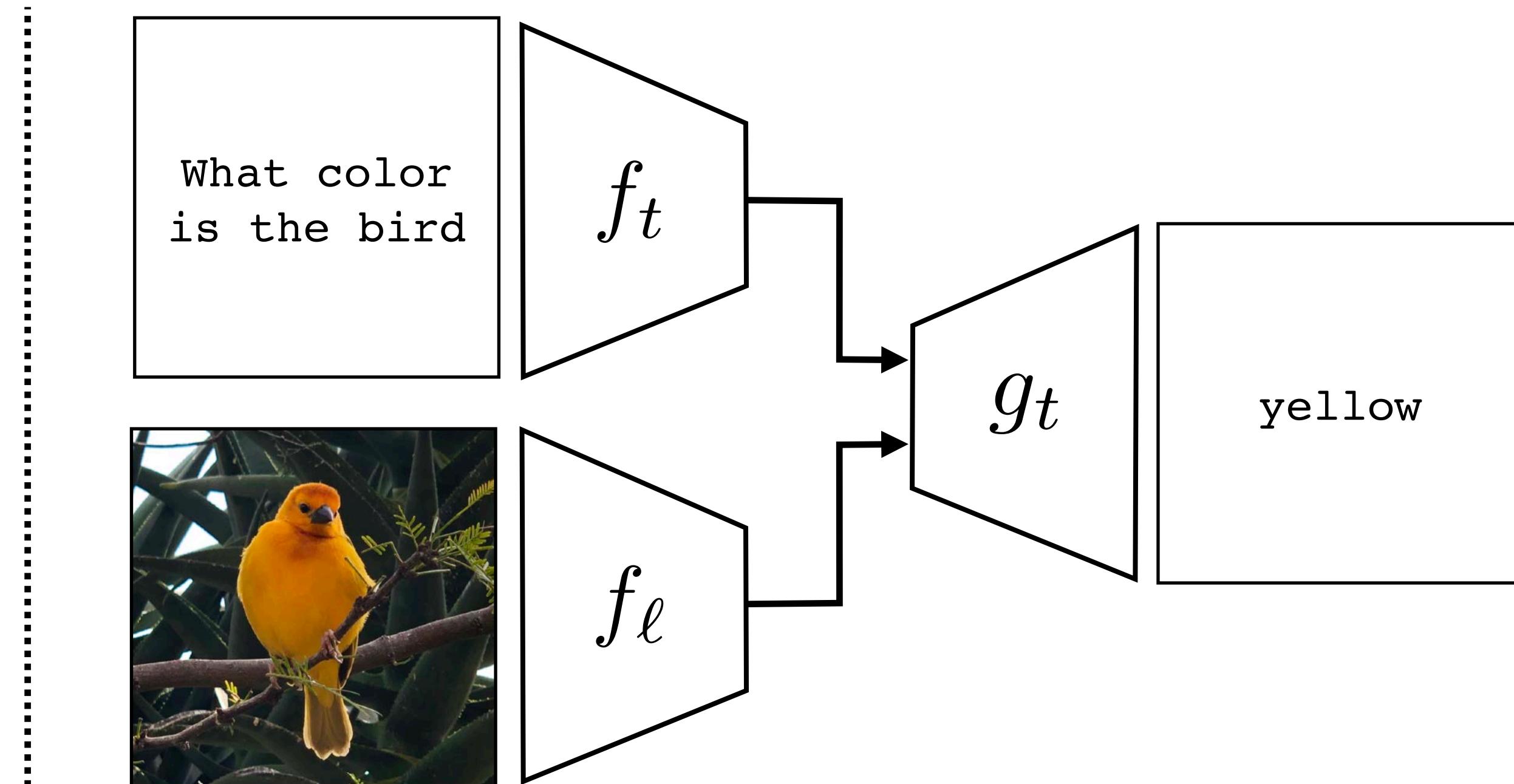


Text-to-image diffusion model



For example: DALL-E 2 [Ramesh et al. 2022], Stable Diffusion [Rombach*, Blattman* et al. 2022]

Visual Question Answering (VQA)



[Antol*, Agrawal* et al., ICCV 2015]

LLaVA

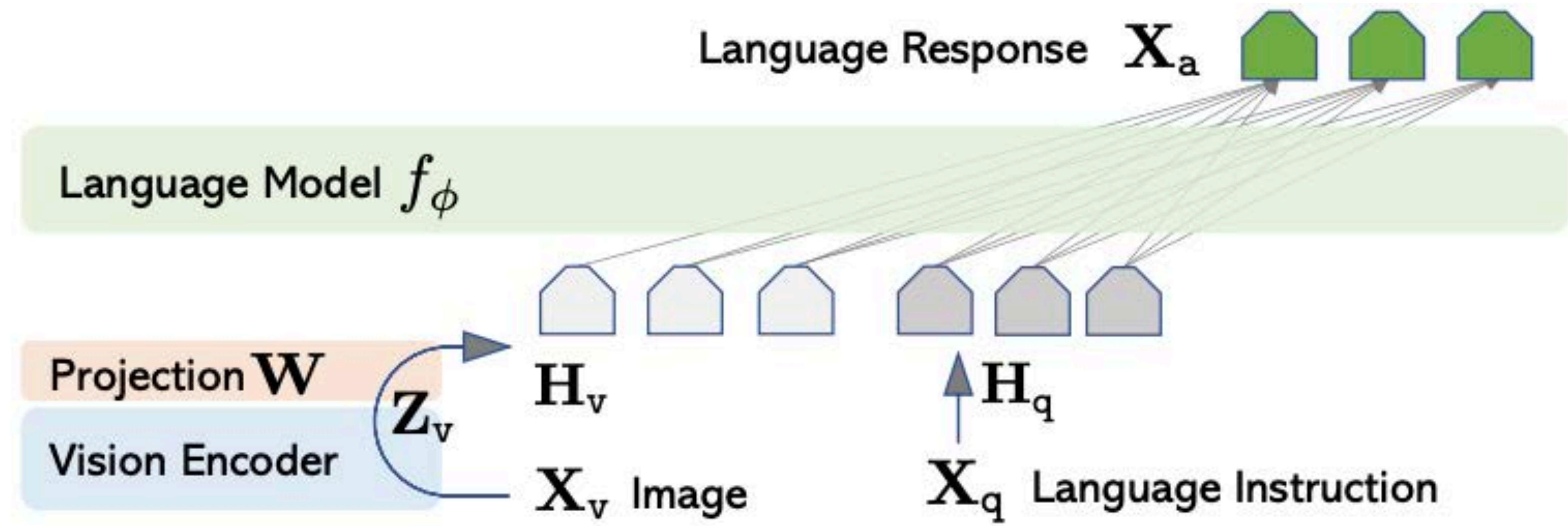
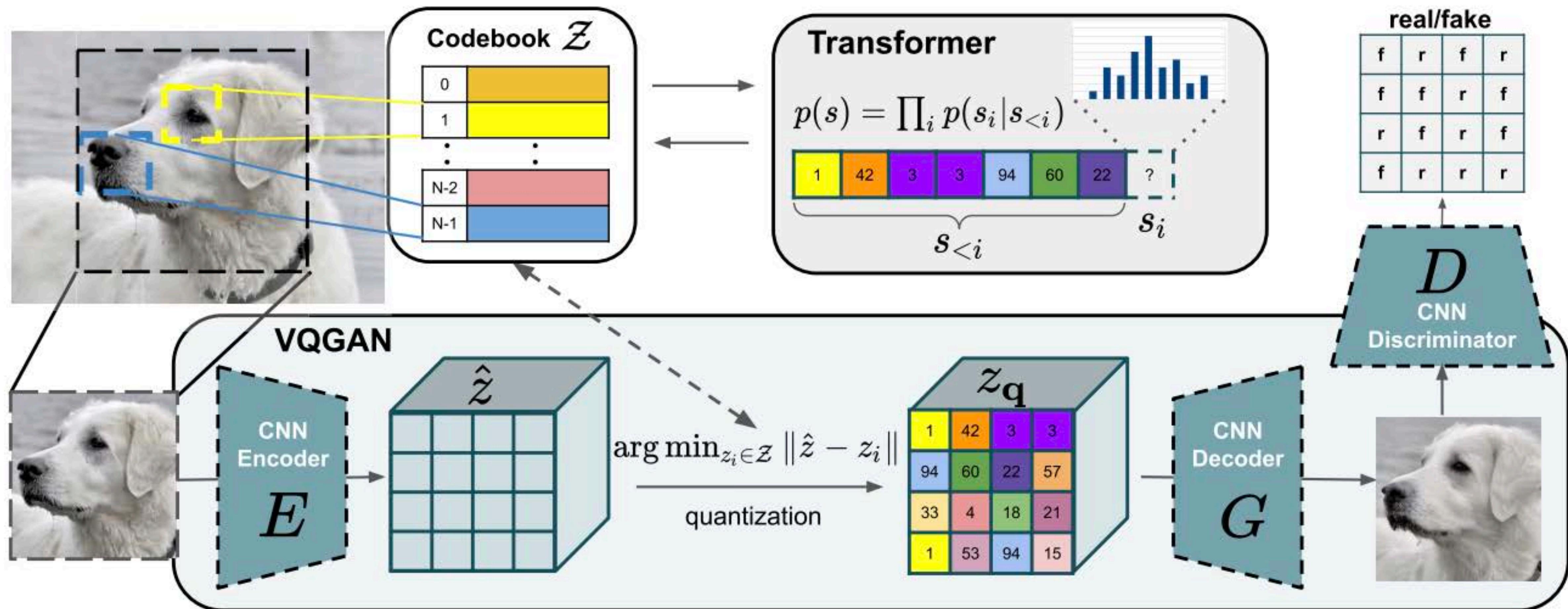


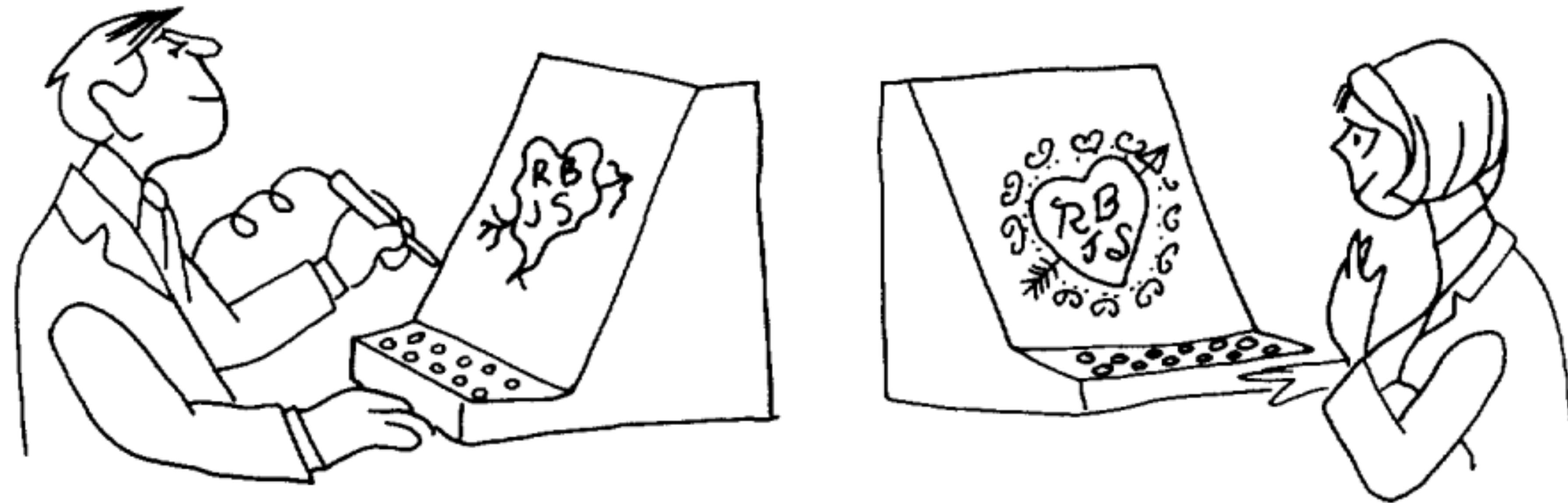
Figure 1: LLaVA network architecture.

[“Visual Instruction Tuning”, Liu*, Li*, et al. 2023]

Mixing ideas from GANs, VAEs, and Autoregressive models



© Esser, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>



Unpaired Translation

Cartoon © Science and Technology. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

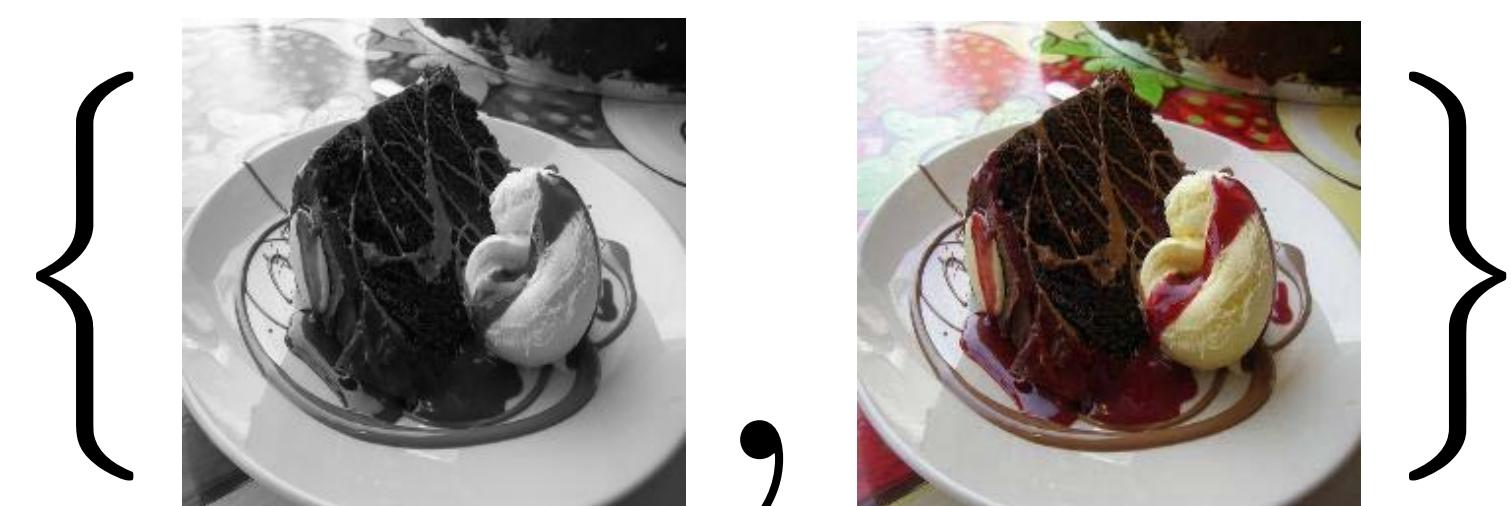
[Includes slides from Jun-Yan Zhu, Taesung Park]

[Cartoon: The Computer as a Communication Device, Licklider & Taylor 1968]

Paired

$\mathbf{x}^{(i)}$

$\mathbf{y}^{(i)}$



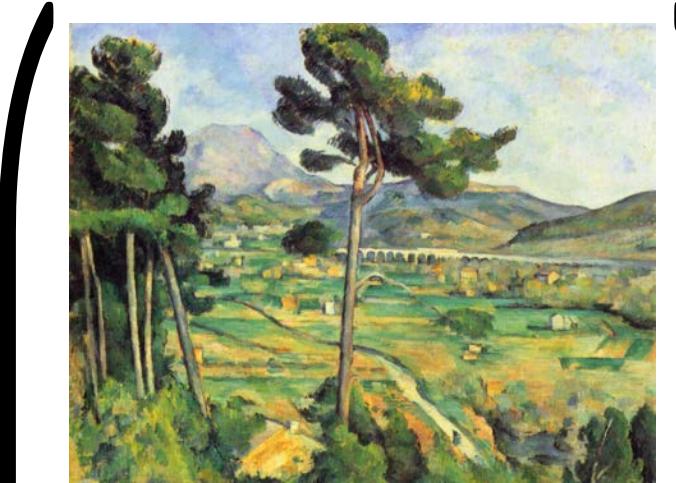
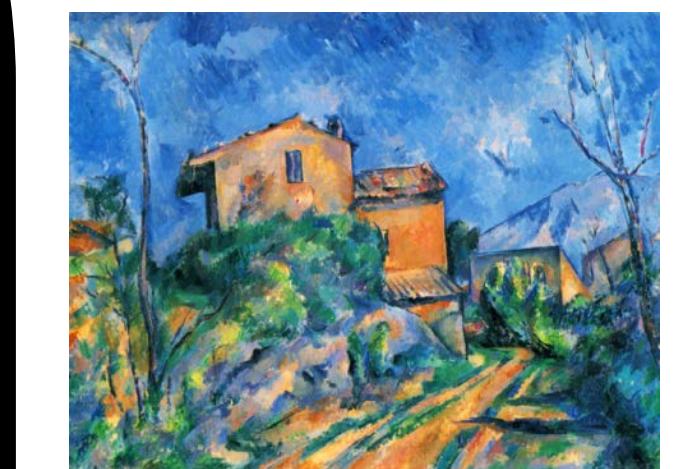
:

Unpaired

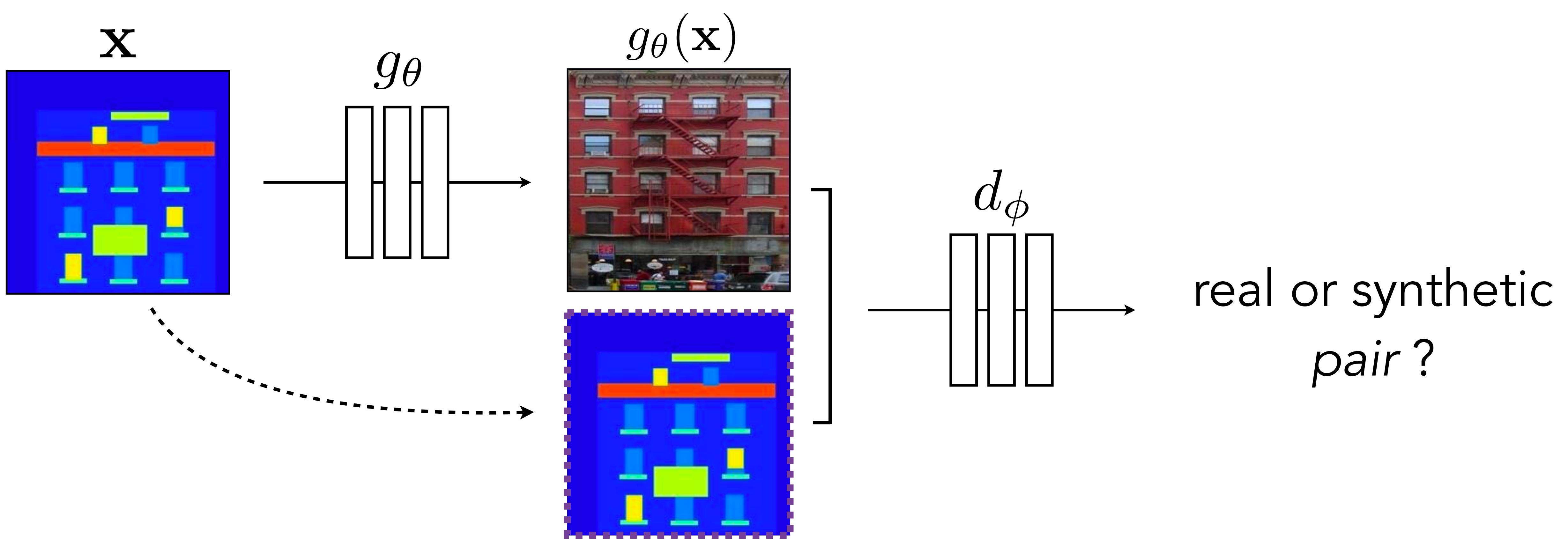
X

:

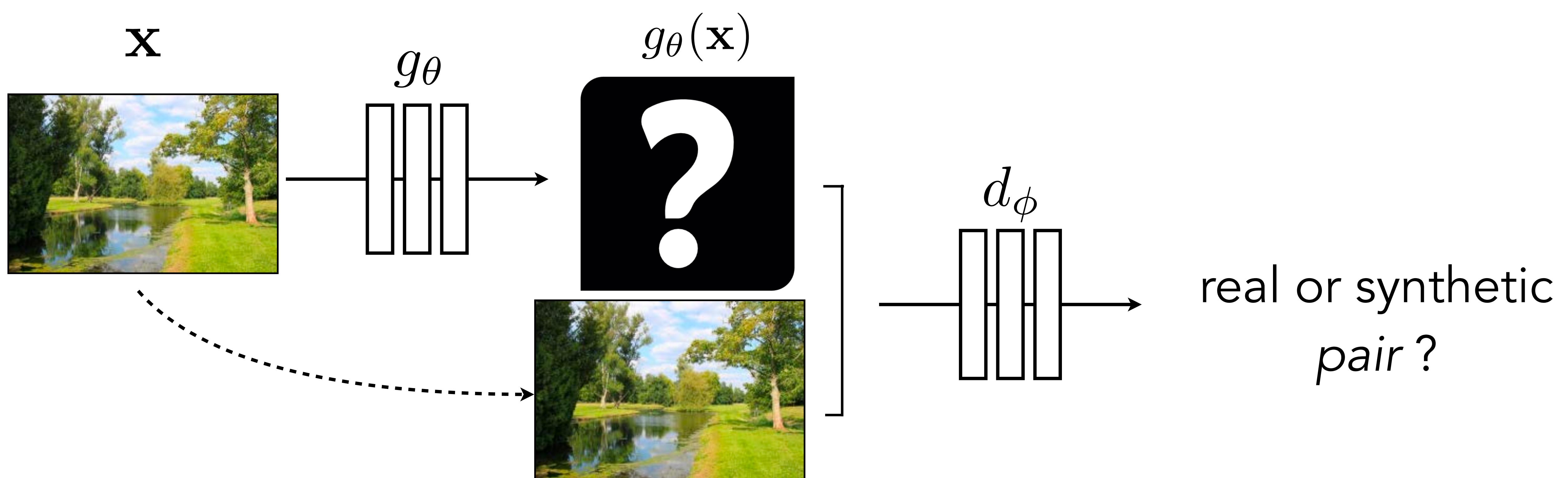
Y



:

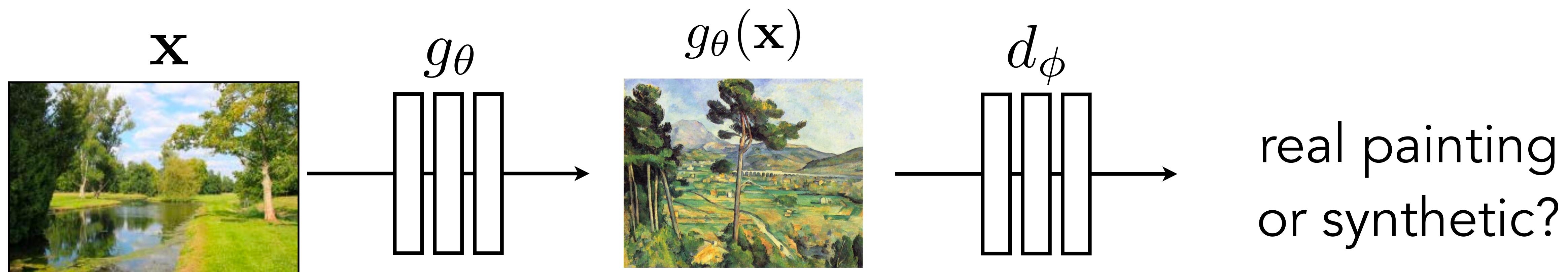


$$\arg \min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\log d_{\phi}(\mathbf{x}, g_{\theta}(\mathbf{x})) + \log(1 - d_{\phi}(\mathbf{x}, \mathbf{y}))]$$



$$\arg \min_G \max_D \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\log D(\mathbf{x}, G(\mathbf{x})) + \log(1 - D(\mathbf{x}, \mathbf{y}))]$$

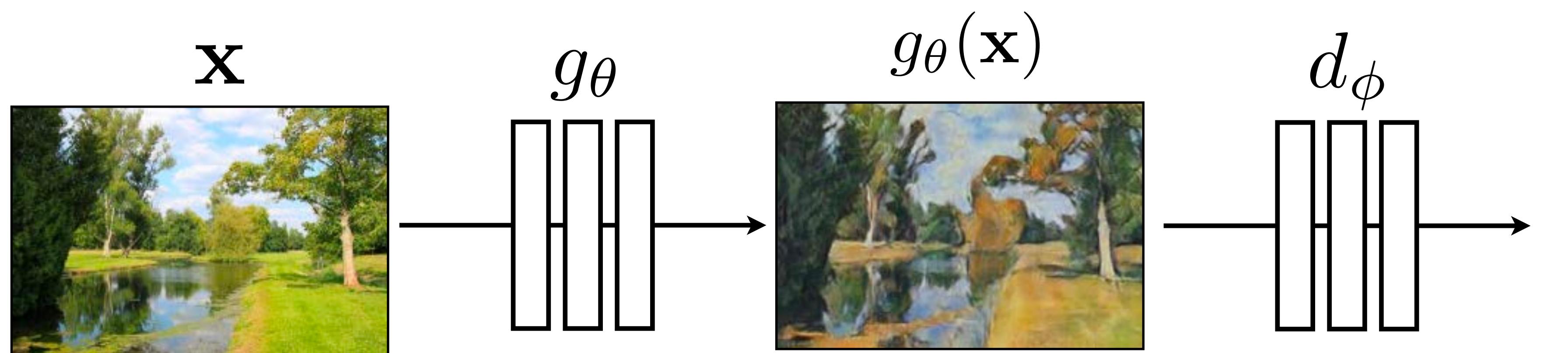
No input-output training pairs!

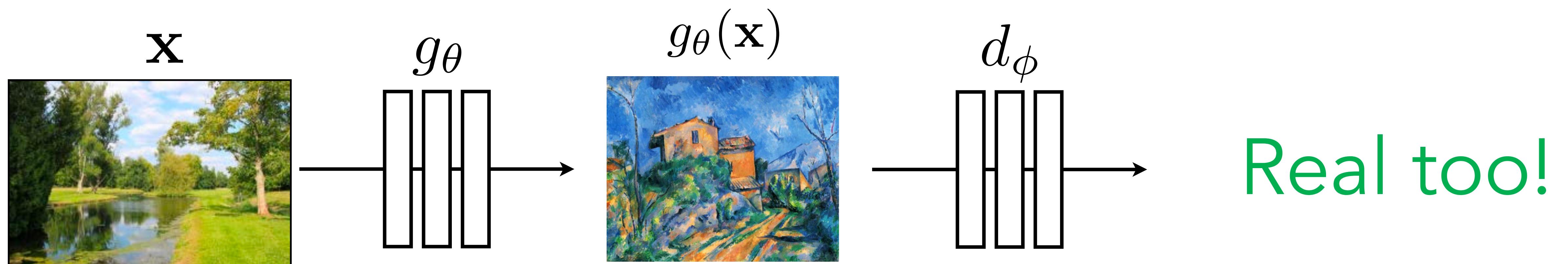


$$\arg \min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x}, \mathbf{y}} [\log d_{\phi}(g_{\theta}(\mathbf{x})) + \log(1 - d_{\phi}(\mathbf{y}))]$$

Usually loss functions check if output matches a target *instance*

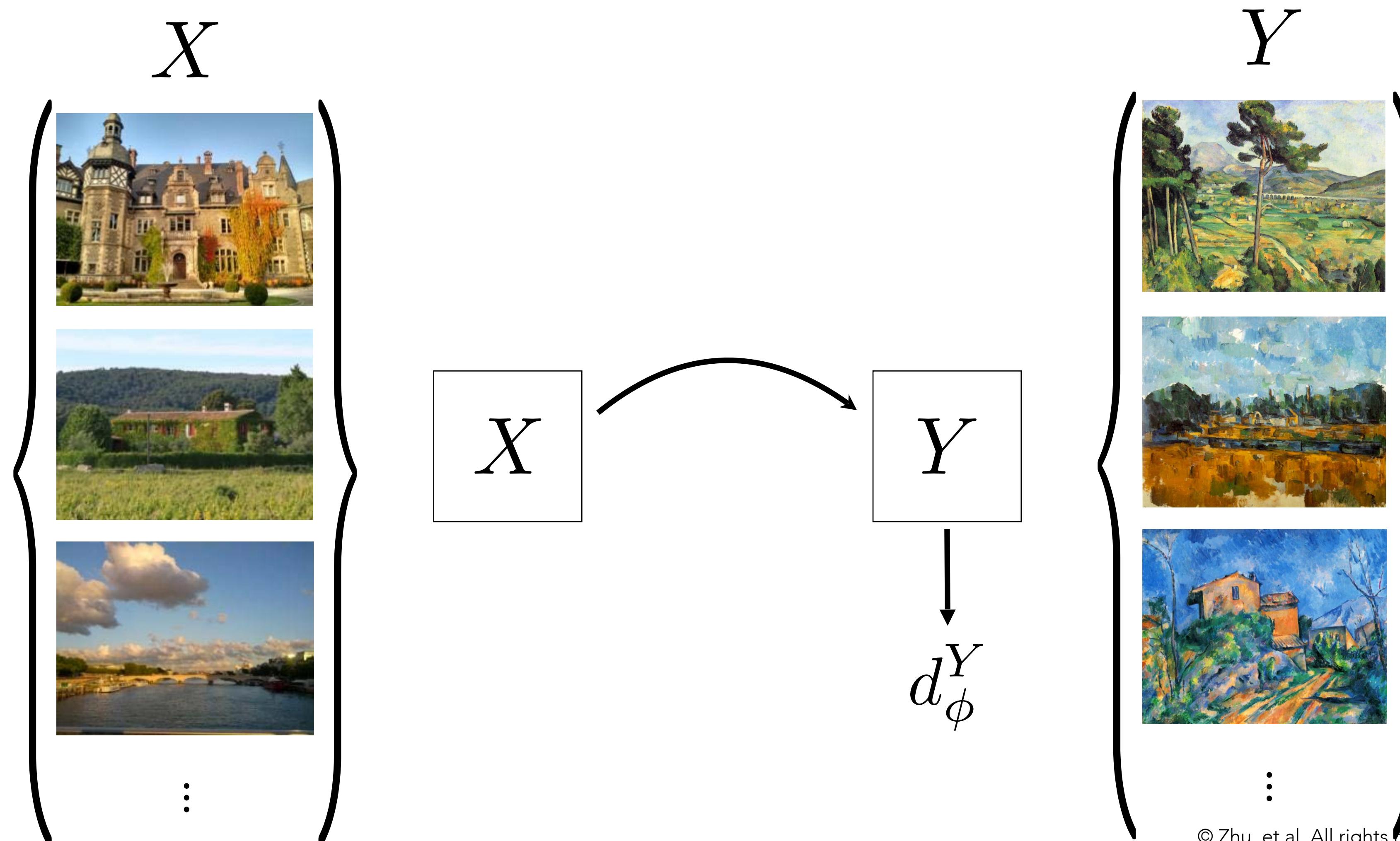
GAN loss checks if output is part of an admissible set





Nothing to force output to correspond to input

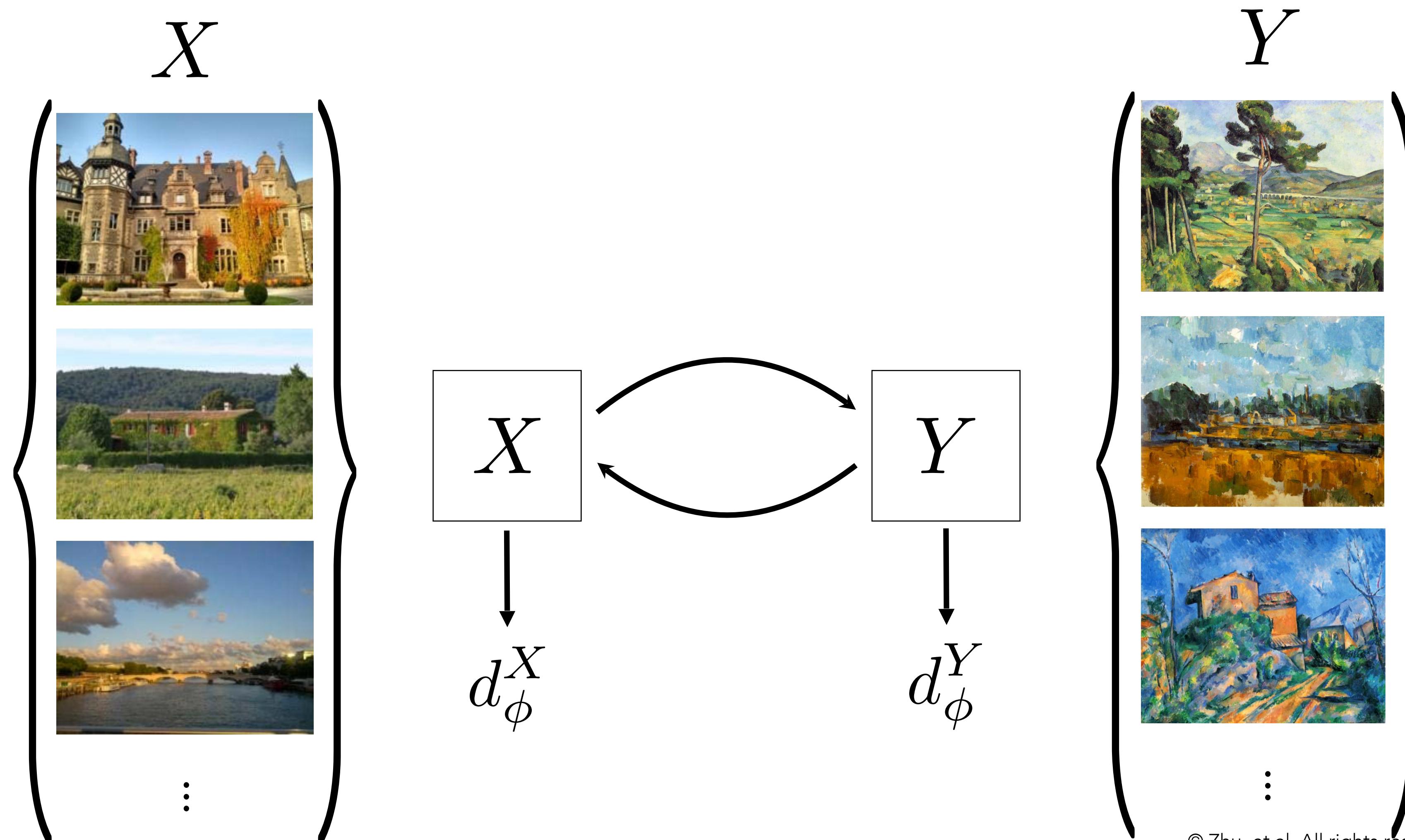
CycleGAN, or there and back aGAN



© Zhu, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

[Zhu*, Park* et al. 2017], [Yi et al. 2017], [Kim et al. 2017]

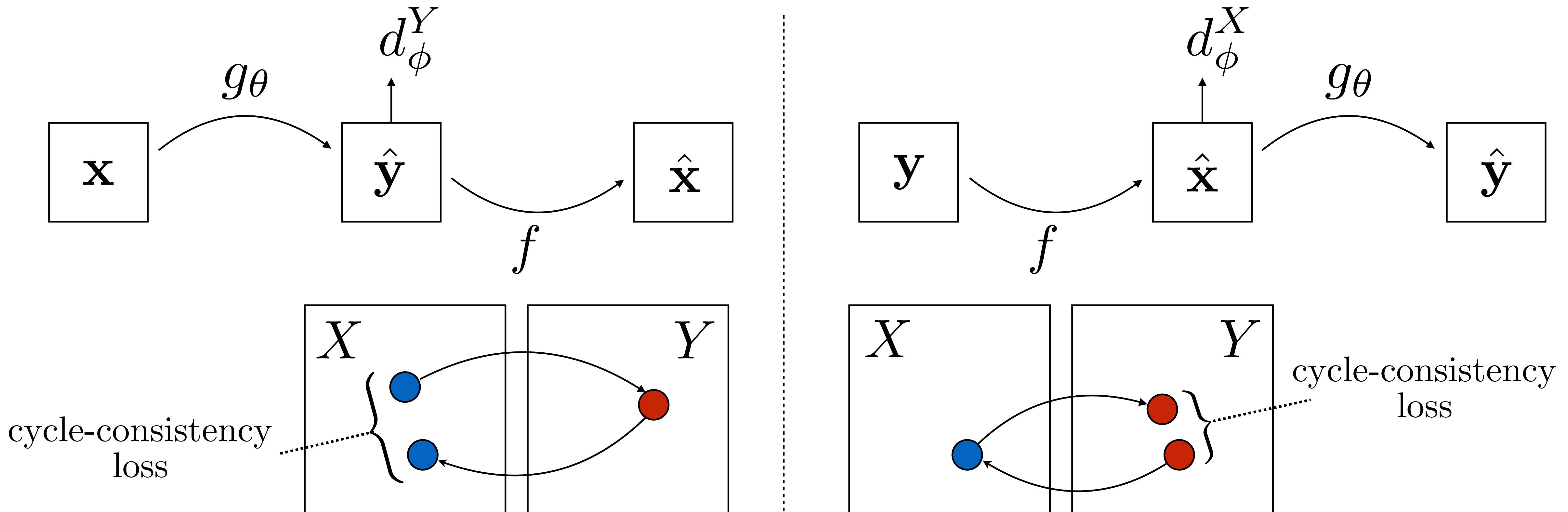
CycleGAN, or there and back aGAN



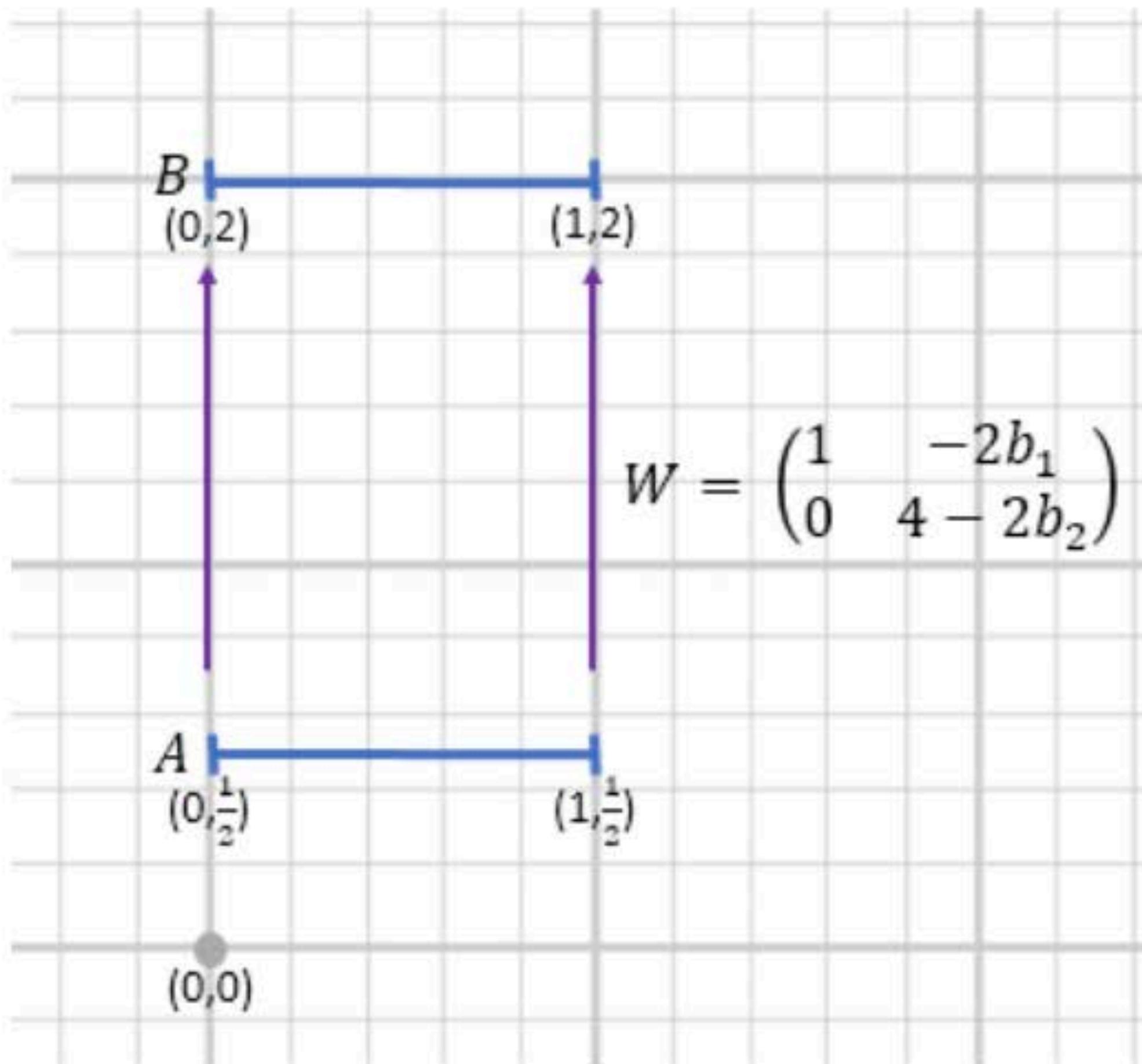
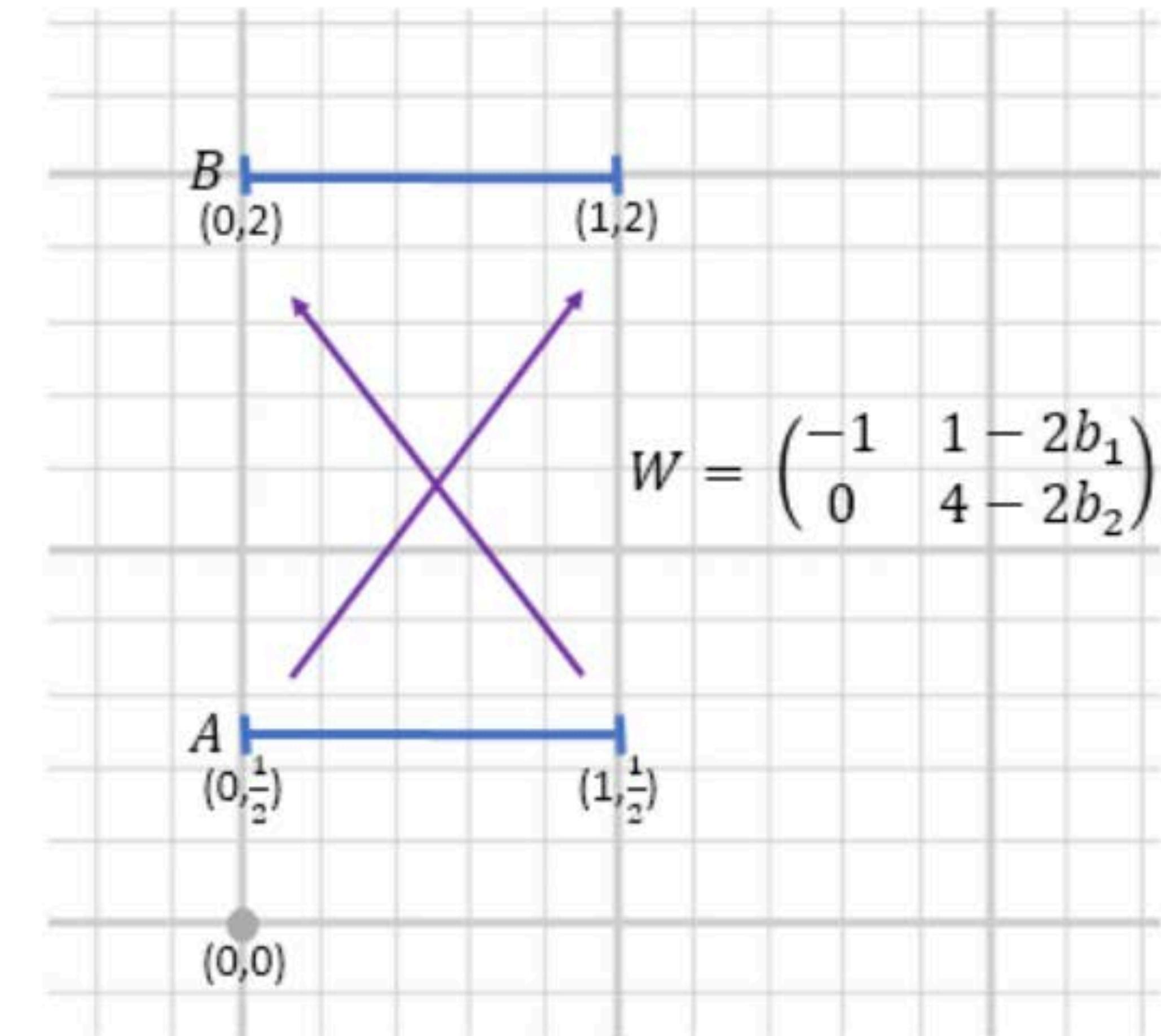
© Zhu, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

[Zhu*, Park* et al. 2017], [Yi et al. 2017], [Kim et al. 2017]

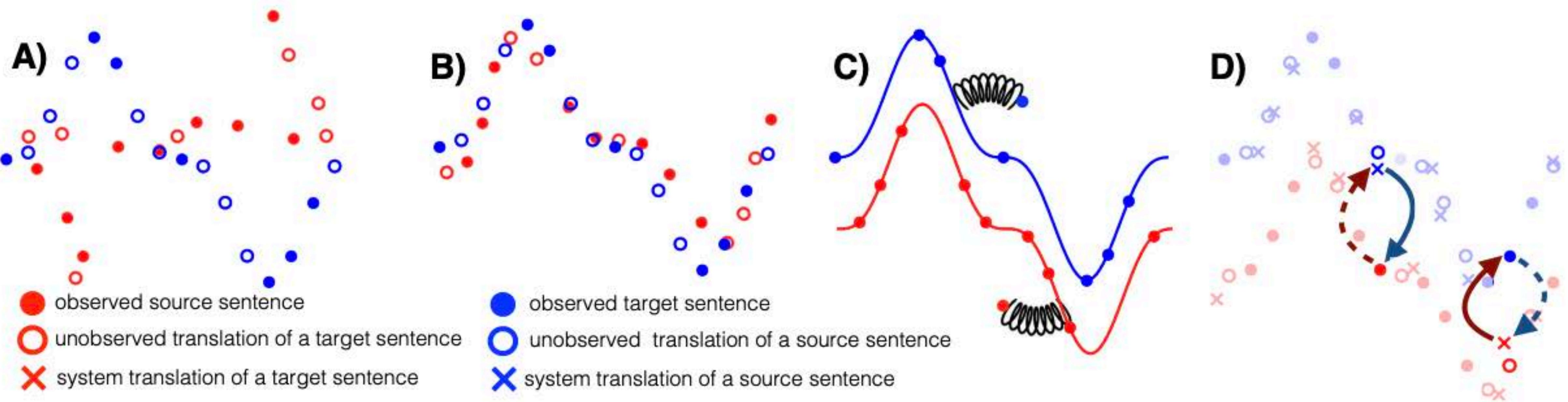
Cycle Consistency Loss



Unique solution?



Unpaired translation in language



© Lample, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Concept: paired data is not always necessary for grounding (finding a unique mapping between two domains)

MIT OpenCourseWare

<https://ocw.mit.edu>

6.7960 Deep Learning

Fall 2024

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>