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Deep generative moaels |l

e (GGenerative modeling as inverse representation learning
e \ariational autoencoders

e Disentanglement



Generative modeling vs Representation learning

Embedding

Representation learning:
mapping data to abstract representations
(analysis)

Generative modeling:
mapping abstract representations to data

Representation learning —>

(synthesis)

Data

<—— Generative modeling



Deep generative models are distribution transformers

Prior distribution Target distribution




Representation learning

Data space Representation space

Encoder

Generative modeling

Representation space Data space

(Generator




Autoencoder

(Generative model
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Mixture of Gaussians

po(x)

Parameters: {wi, i, 27;}?:1




Infinite Mixture ot Gaussians

Parameters: 9




| atent variable models

latent variables
/

Zq ~ Bernoulli(0.5) (River turns)

zy ~ Normal(p1,31) (Grass color) = (zenerator

73 ~ Unif (0, 10) (Number trees) \
~——(—

. |gtent variables
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Infinite GMM / VAE

LLearner
Objective Density
mHaX {:Xdiata [Inge (X)] Py - & — [07 OO)
Data — — Sampler

Hypothesis space

gg : Z2 — X

1
\_ "Reparameterization trick”
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VAEs — learning the model parameters

" =arg max L{x"}Y,.0)

po(x" | z) P2(z)
’_/%/—/A

N
= arg max Z log /J\/(X(i); gg(z), gez (z)N(z;0,]) dz
v, i1 Z

-
po(xV)
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[ )

/pg (X|2)p,(z)dz

Z

pe(X)

S

z~Dy (Z) o (X|2),

1 M
~ MZP@(X\ZU)% zV) ~ p
1=1 )
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Fitting an infinite mixture ot Gaussians via Monte Carlo

po(x” | z")
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Trick #2: Importance sampling

Random sampling z\) ~ Pz

7 samples

Pz

Z \‘ [
@ — / .“ ) .
===
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Trick #2: Importance sampling

Random sampling z\) ~ Pz

7 samples

Do () ~ —— (1) 2
~ M(pe(X\Z ) + po(x|2?) + po(x]z'?)) + ..)
po(X) ~ 1 0 (2)



Trick #2: Importance sampling

Po (X) = 43erpz

.4‘€

po(x|

"Pz(Z)

L q(2)

po(x| Z):

Set @z = po(Z|x)

2)| = / Pa(2)po(x | 2)dz = / 4:(2)
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Pz(Z)

qz(Z)

po(x|z)dz



Trick #2: Importance sampling

Importance sampling z\) ~ pg(Z ‘X)

1 sample

U 4
S am=

4444

Po(x) = Egepe [po(x12)] ——>  p0(x) = Eympizie) |25 paxla




Trick #2: Importance sampling

Random sampling Importance sampling

-
o= -

7 samples 1 sample e,

[ 4
~.-‘

pQ(X) — tvapg(Z\x)
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Trick #3: Predict the optimal sampling distribution for each given datapoint
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Trick #3: Predict the optimal sampling distribution for each given datapoint

- W
e~ V&

-
e~ RIES

P 5
Y 4 ‘
¥ 4 ‘
,
[ |
[ |
|
| |
| }
‘.
S
S
&
N

v
~~~~~~

§~ ‘¢
o -
.. -
"hr ="

Encoder

4
-----

21



Trick #3: Predict the optimal sampling distribution for each given datapoint

- W
e~ V&

-
e~ RIES

v
~~~~~~

~§
L
~§
N

~. -
~ -
" am mmm=”

Encoder

4
-----

22



Trick #3: Predict the optimal sampling distribution for each given datapoint

We are fitting this--...., . to model this

J,(x, 1) =—KL(qu(Z | %) | po(Z | %))

d,
Z~qq (L | x)

[—log g (z|x) +1og po(x|2z) +1og p,(z)] —log pe(x)

Our learning problem for g:

N
1 .
)™ = arg max N Z J,(x", 1)
¥ i=1

N

| . .
= argfax N Z ﬂzww | x [—1log g (z | %) +1og pe(x'” | 2) +10g p,(2)]
- N
J
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Putting everything together

Our learning problem for q: Do

N
] .
¥ = arg max N E Jq(X(’), W)
¥ i=1

N
1 . i i

— argfax N E g (2] X(l.))[— log g, (z] %) +1og pe(x'” | 2) +10g p,(2)]

i=1

J

Our learning problem for p:

- -
NS il

5 4 (z) j ’ - " ,':
J,(x,0)=log 2 po(x|z) :; m\(

@10 L gy (a1 %)

N _______
1 .
* . (1)
W —arg;naxN E._l J(x, 0)

24



Putting everything together

Improving our learning problem for p:

i " P2(2Z) ' / b
J,(x.6) =log & %) x12) T

0w @190 | g, (2] %)

-----

Pz(z)
gy (Z | X)

po(x| z))} < Jensen’s inequality

V
&L
N
!
N
<
N
o)
1
(—
o
oQ
N

d,
Z~q.(Z | x)

—log g (2] %) +log py(x|2) +log p,(2)|

=J < VAE objective

—KL(qw(Z\X) sz) <4— J = Evidence Lower-Bound
- (ELBO)

Now, p and g share the same exact objectivel!

N

| .

0, " =arg max — E J(x\", 0, o)
0.0 IV i=1
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Trick #3: Predict the optimal sampling distribution for each given datapoint

- W
e~ V&

4
-----

~§
L
~§
N

Encoder

4
-----

o " Pz(2)
pH(X) — Mz~ (Z]%) _




Trick #3: Predict the optimal sampling distribution for each given datapoint

AN,
O
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| ooks like an autoencoder!

{,
Z~qqy (L ‘ X)

logpo(x|2)| ~KL(gu(Z] %) | p)

I
9o
o2 = () =gt er) g0
reconstruction error
e m—
1 (T — pg)? 1
] a (2 2 2\
Og o, /27_‘_ 20.% 2 (:uz _|_ O-z lOg(Oz) 1)

(egns for 1D x and z) data likelihood under 1 importance sample squash encodings toward origin
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Autoencoder

e Fncodes and decodes the data
e | ow-dimensional bottleneck
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Variational Autoencoder

I g
— —

® EFncodes and decodes the data
e | ow-dimensional bottleneck
e (Gaussian bottleneck (can sample; disentangled)
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VAE — three tricks

* Trick #1: approximate an infinite mixture with samples
* Trick #2: sample efficiently via importance sampling

* Trick #3: predict the optimal sampling distribution for each datapoint
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Training a VAE — Step by step

Sample one or more x ~ {x(¥1N
Encode the data with a forward pass through fy

For each datapoint, create one or more noisy latent codes using the distribution pa-
rameterized by the encoder

Decode the data by passing the noisy latent codes through the gy

Compute the losses and backprop to update 6 and ¥
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z1 ~ Bernoulli(0.5) (River turns)

7o ~ Normal(,ul, 21) (Grass color) — Generat()r

z3 ~ Unif (0, 10) (Number trees) \
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Learner | — Jv, go

Iraining

Sampling
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L atent variables
(controls)

<-0-0-90-0-0->U

A
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Synthesized Images

“River curvature”




Synthesized Images

L atent variables
(controls)

a;_‘i

N S
o0 o000 8
XX X X so il
<-0-09-0-0->1U >§E
o0 600 g:
TEEX oo |
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“River curvature”
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BIgGAN [Brock et al. 2018]

L atent variables
(controls)

v
A
TN
TEEX,

<-0-09-0-0->U
XXX
XXXE
v
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“Background color”
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Synthesized Images

“Bird orientation”



alZ|X=x)
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Comparing popular model types

Method Latents? Density/Energy? | Generator?
Energy-based models X v (energy only) X
Gaussian X v X
Autoregressive models X v v (slow)
Diffusion models v (high-dimensional) X v (slow)
GANSs v X v
VAEs v X v

* rough categorization of vanilla versions of each model

41




MIT OpenCourseWare
https://ocw.mit.edu

6.7960 Deep Learning
Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

42


https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover-slides.pdf
	cover_h.pdf
	Blank Page





