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What is a generative model?

1. An algorithm that generates data

2. A statistical model of the joint distribution of some data, p(x,y, ...)
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Math background

e So far we have mostly thought of neural nets as mappings f,: & — ¥,
where % is some space of possible outputs.

e e.g., image classifier into d classes: f, : RVM*C - 11,....d}

e Now, we will instead consider neural nets as mappings f,: & = LP(¥),
where P(Y) is the space of probability distributions over %

NXMxC N Ad_l

* e.g., softmax regression to model P(class | X = X): f, :

e Main perspective: the outputs of our neural nets are, implicitly or
explicitly, distributions



Random variable: X, p(X) € LP(X) is the probability density/mass function

Realization: x ~ p(X), p(x) € X is the probability mass/density of x

Probability mass function: p: X - £, 0<pkx) <, Zp(x) =1

Probability density function: p: & — X, pkx) >0, J p(x)dx =1
XEA



Probabilities

We will typically not distinguish between random variables and realizations of those vari-
ables; which we mean should be clear from context. When it is important to make a dis-
tinction, we will use non-bold capital letters to refer to random variables and lowercase to
refer to realizations.

Suppose X, Y are discrete random variables and x, y are realizations of those variables. X
and Y may take on values in the sets X and ) respectively.

* a =p(X =x|...)is the probability of the realization X = x, possibly conditioned on
some observations (a is a scalar).

e f = p(X]...)is the probability distribution over X, possibly conditioned on some
observations (f is a function: f : X — R). If X is discrete, f is the probability mass
function. If X is continuous, f is the probability density function.

* p(x|...)is shorthand for p(X = x]|...).
* and so forth, following these patterns.

e Suppose we have defined a named distribution, e.g., py; then referring to py on its
own is shorthand for py(X)

https://phillipi.github.io/6.7960/materials/notation.pdf




\

Classifier

/



/

(zenerator

\

11




/

(zenerator




which color?

&

what angle?

$ /2

&

what size?




which color? ﬁ —

/

(zenerator

\

14




z ~ Bernoulli(0.5)
for:=1,...,N do

extend line 1 unit in current heading direction
if z; 1 then
L rotate heading 10° to the right

else
rotate heading 10° to the left

/

z ~ Bernoulli(0.5) —— | (Qenerator | —

T
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“noise” “latent variables”
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z1 ~ Bernoulli(0.5) (River turns)

25 ~ Normal(ui, £1) (Grasscolor) — | (Jenerator

z3 ~ Unif (0, 10) (Number trees) \

Concept #1: noise is latent variables
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Learning data generators

Two approaches: ... cONfusingly, sometimes called an "“implicit generative model”

“
*
*
“
Lk

1. Direct approach: learn a function that generates (G :Z — X
data directly

2. Indirect approach: learn a function that scores A —
data; generate data by finding points that score
highly under this function
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Data Direct Approach

%= 5 | Learner | — 6

Iraining

Sampling
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Iraining

Indirect approach

Data

{X(i)}é\;
<—o-o0-0—000—> —> Learner

- e.g., likelihood, energy,

g “score function”

Scoring function

Sampling

Sampling algorithm C
(e.g., MCMC)
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What's the goal of generative modeling?

Make synthetic data that “looks like” real data.
How to measure “looks like”?

The main answer in deep generative models is: “has high
probability under a density model fit to real data.”

20



Density models
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Density models

po(T)1 po ()1

>

Pp = arg minKL(Pgata, Do)

Po
- o { Po(X) }
=argmin Ky, | —log

Po pdata(X)

max likelihood

=argmax Exp,... [ log pg(X)} — Exmpgaca [ log pdata(x)]
Pe

=argmax Ex~,,... [log Do (x)] < dropped second term since no dependence on pg
Po

N
1 .
~ arg max N E log po(xV)

Poé .
i=1 24



s the filing cabinet a good generative model?

Every time we see a new training point (x), we
put it in the cabinet.

def train(X):
for x 1n X:
cabinet.append(x)

def generate():
return cabinet[np.random.randint(len(cabinet))]

Sample by picking a drawer at random.
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What is the pdf the filing cabinet is sampling from?

true data generating process

i:Training data @
po(x)

delta function
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What's the goal of generative modeling?

The goal is not to replicate the training data but to make new
data that is realistic (captures the essential properties of real data)

One way to quantify this is: likelihood of the test data under the

model. (A model that memorizes the training data is overtit in exactly the same sense
as a classitier can be overfit.)

(%)

(1) N
{xtest 1—19 Liest ™ Pdata

generalization error = Z log pg(x,ﬁ”’;)st)
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Energy-based models

by
.....lll

i.e. unnormalized

probability models
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<— Relative
probabilities are often
all you need (e.qg., for
sampling)



Energy-based models

At convergence, green (data) and red (model) samples ...
are identical and model update (green-red) cancels out

Eo(z)]

>

Contrastive divergence
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Energy-based models — learning model parameters

N ] e—EQ (X)
VH <L'X’\deata [log pPo (X)] — ve <L'X’\dead:at [lOg Z(e) ]

<1:'Xf\“pdata [VHEH (X)] - ve ]‘Og Z<6)

R/_/

How to measure this?
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Energy-based models — learning model parameters
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4 Vglog f(z) = ﬁvxf(x)

<

definition of Z

exchange sum and grad

definition of py

definition of expectation



Energy-based models — learning model parameters

—EQ (X)

Z (60
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Energy-based models

At convergence, green (data) and red (model) samples ...
are identical and model update (green-red) cancels out

E@ (QIZ‘) “

>

Contrastive divergence
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Data

{z(D}N ~—> |  Generative modeling | —

Density function Energy function

pg:X%[0,00) Eg: X —

(zenerator

G@IZ%X

Concept #2: you can represent the data generating

process directly
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Once upon

Once

Autoregressive models

a time —»

Predictor

Predictor
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a0 Once upon a , time

-

E There and back , again .

= — | Learner | — Predictor

CS The slow brown fox P

— To be or not to, be

a0

S X1, .o X1 X,
]

g‘ Colorless green 1deas sleep % Predictor % furiously
4w

P
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Autoregressive probability model

p(X) = p(Xn|X1, -+ s Xn-1)P(Xn-1|X1,---,Xpn—2) ... p(X2|x1)p(x1)

n

p(X) = Hp(xi\xl, o X))

1=1

p(time|Once, upon, a)

/_/H

p(alOnce, upon)

—
p(Once upon a time)

H,_/

p(Once)

R/_/

p(upon|Once)
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Modeling a sequence of words
How to model p(time|Once,upon,a) ?

Just treat it as a next word classifier!

vear ||

time

day
Once upon a J ) elephant

38




Autoregressive model of pixels
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Prediction Ground truth label Elementwise scores
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Output

Hidden
Layer

Hidden
Layer

Hidden
Layer

Input

O00000000000O0O0O0

O0O000000000O0O0O0O0

O00000000000O0O0O0

[Wavenet, https://deepmind.com/blog/wavenet-generative-model-raw-audio/]



Diffusion models

Noise
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Diffusion models
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Diffusion models
% - | Diffusion
| =

Diffusion: Just add noise——™83
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Diffusion models

z ~ N(0,1)

Use supervised
learning to reverse
the process of
adding noise

Denoising————MMmM8M ™ ———————>
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z ~ N (0, 1)

Diffusion models

Training data

—Denoising

argmin » L(f(x¢),X¢—1)
gin Z

Converts generative modeling into a bunch
of supervised prediction problems
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Diffusion models

Different noise samples (dice rolls) result in different images
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Gaussian diffusion models

e earn this

f@(Xtat)

Xt = \/(1 — ﬁt)X‘t—l =+ \/EEt

" which inverts this

Forward process:

€r N(07 I) Xt = \/(1 — B)X¢—1 + \/EEt

The variances, beta and sigma,
are modeling choices. See Ho,

| | f ils.
Reverse proceSS: Jain, and Abbeel for details

1= fo(x¢,1) x¢—1 ~ N(p,0%)

[Fig adapted from Ho, Jain, Abbeel, 2020]
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Gaussian diffusion models

“learn this

" which inverts this

Forward proceSS'

(Xt\Xt 1 \/1 — BeXe_1, 5t)

The variances, beta and sigma,
are modeling choices. See Ho,

| | f ils.
Reverse proceSS: Jain, and Abbeel for details

po(x¢—1|x¢) = N (fo(x¢,t),0°)

[Fig adapted from Ho, Jain, Abbeel, 2020]
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Stripped down training algorithm

Algorithm 1.2: Training a diffusion model.

1 Input: training data {x®}¥

2 Output: trained model fg

3 Generate training sequences via diffusion:
4 fori=1,...,Ndo

S
6

7

8

9 Train denoiser fy to reverse these sequences:

forr=1,...,7T do
GINN(OaI)

- x; < V=B)x + VB

* | o : .
10 0* =argming > o, S L(Fa(x”, 1), x\"))
11 Return: fg-
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Colab:

https://colab.research.google.com/drive/
TYUFwGs0z0lEaBUpSdJIEZtCATe44TUjw?
usp=sharing



Autoregressive models vs diffusion models

Forward diffusion process

Reverse autoregressive sequence
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Diffusionmode]——————

Autoregressive mode] ————m@8M

Concept #3: A common strategy is to turn
generative modeling into a sequence of
supervised learning problems
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real or fake?

(Generator Discriminator

Generative Adversarial Networks (GANS)

g tries to synthesize fake images that fool d

g tries to identity the fakes

© source unknown. All rights reserved. This
content is excluded from our Creative Commons
license. For more information, see https://

ocw.mit.edu/help/fag-fair-use/ [GOOdfe”OW et al-: 201 4]
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take (0.1)

real (0.9)

dj = arg max

© source unknown. All rights reserv?This
content is excluded from our Creative Commons

license. For more information, see https://

Lz~p, 1108(1 —dy(80(2)))]

[Goodftellow et al., 2014]
ocw.mit.edu/help/fag-fair-use/
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real or fake?

g tries to synthesize take images that fool d:

arg Hmin Carop, [108(1 —d 5 (g0(2)))]

© source unknown. All rights reserved. This
content is excluded from our Creative Commons

license. For more information, see https://
ocw.mit.edu/help/fag-fair-use/

[Goodftellow et al., 2014]
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real or fake?

g tries to synthesize fake images that fool the best d:

arg Cimopan 108 dp(X)] + By, [log(1 —dy(go(2)))]

© source unknown. All rights reserved. This
content is excluded from our Creative Commons

license. For more information, see https://
ocw.mit.edu/help/fag-fair-use/

[Goodftellow et al., 2014]
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GANs — Training

real or fake?

g tries to synthesize fake images that fool d
d tries to identify the fakes

* Training: iterate between training d and g with backprop.

» Global optimum when g reproduces data distribution.

© source unknown. All rights reserved. This
content is excluded from our Creative Commons
license. For more information, see https://

ocw.mit.edu/help/fag-fair-use/ [GOOCH:GHOW et al-: 201 4]
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© source unknown. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see
https://ocw.mit.edu/help/faqg-fair-use/ 59
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