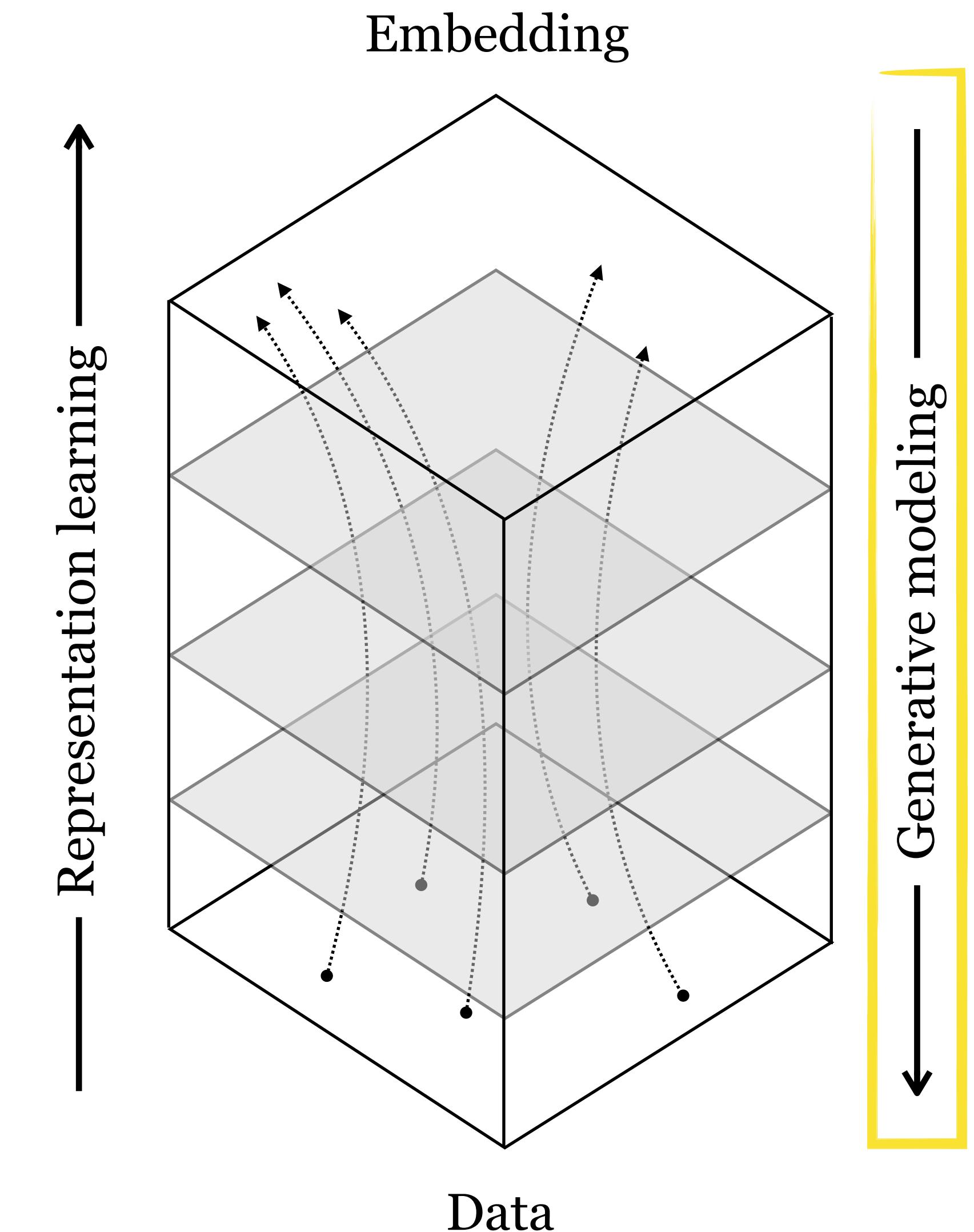


Lecture 14: Deep Generative Models I

Speaker: Phillip Isola

Deep generative models

- Lecture 14: fundamentals, a tour of popular models
- Lecture 15: generative modeling meets representation learning
- Lecture 16: conditional models, data prediction



Deep generative models I

- Math background
- Fundamentals of generative modeling
- Density functions, energy functions, and samplers
- Autoregressive models
- Diffusion models
- Generative adversarial networks

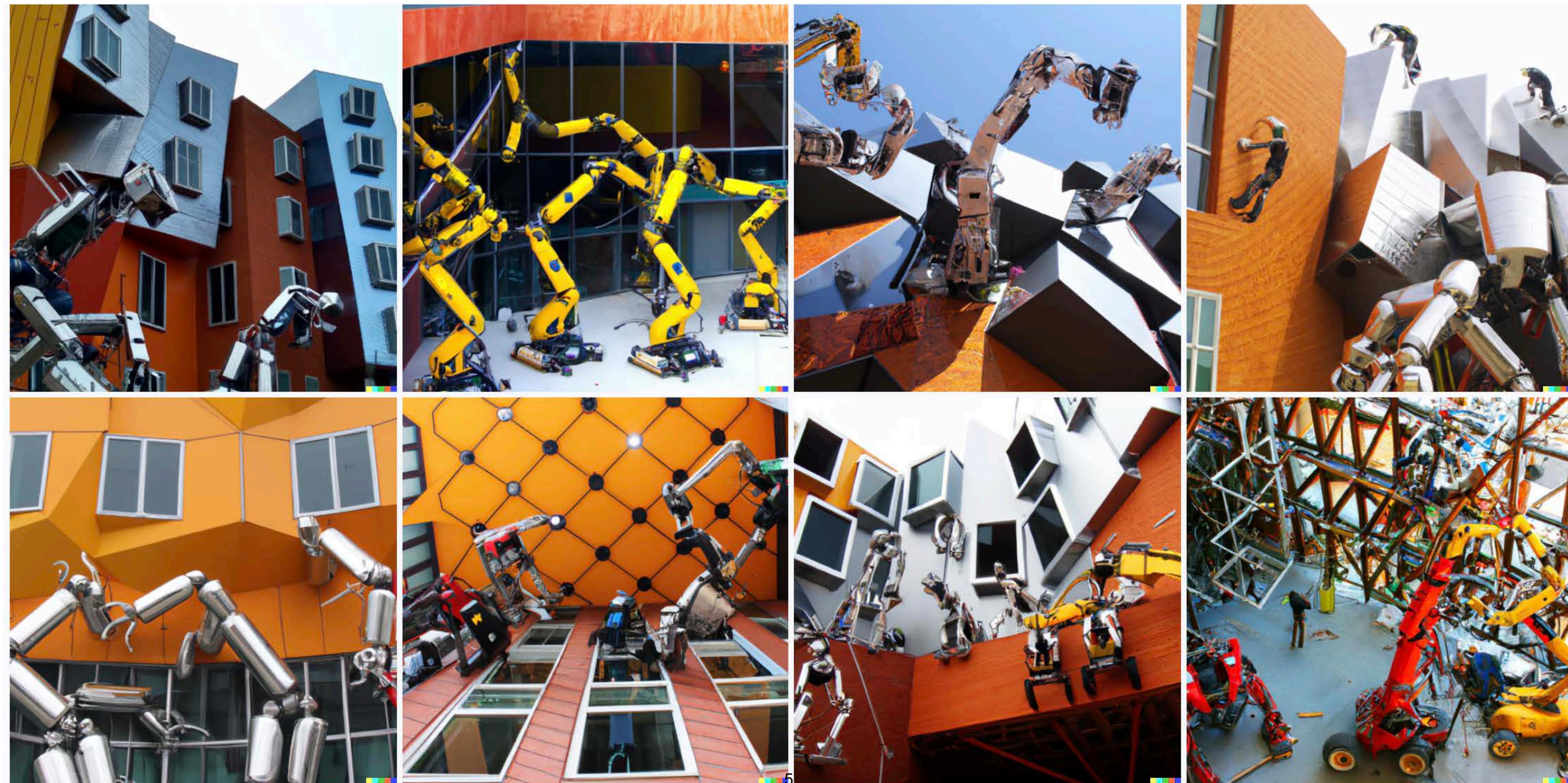
What is a generative model?

1. An algorithm that generates data
2. A statistical model of the joint distribution of some data, $p(x, y, \dots)$

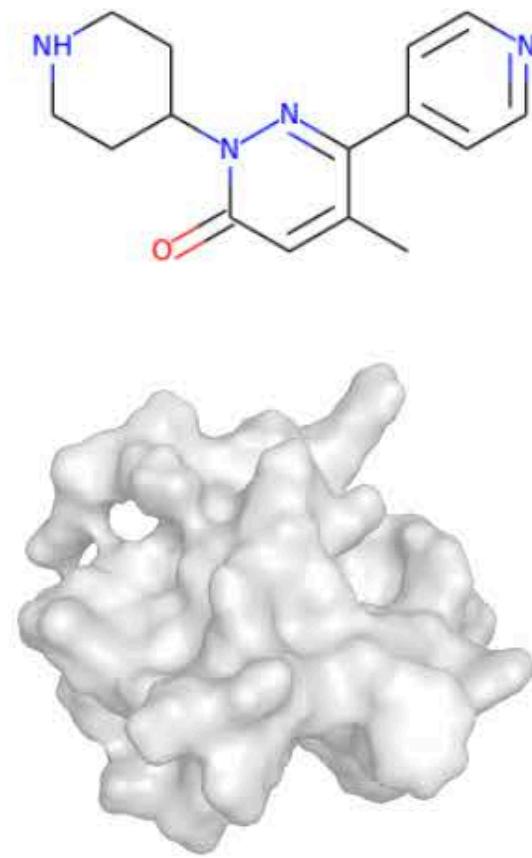
A photo of a group of robots building the Stata Center

<https://openai.com/dall-e-2/>

Created with DallE.



ligand &
protein

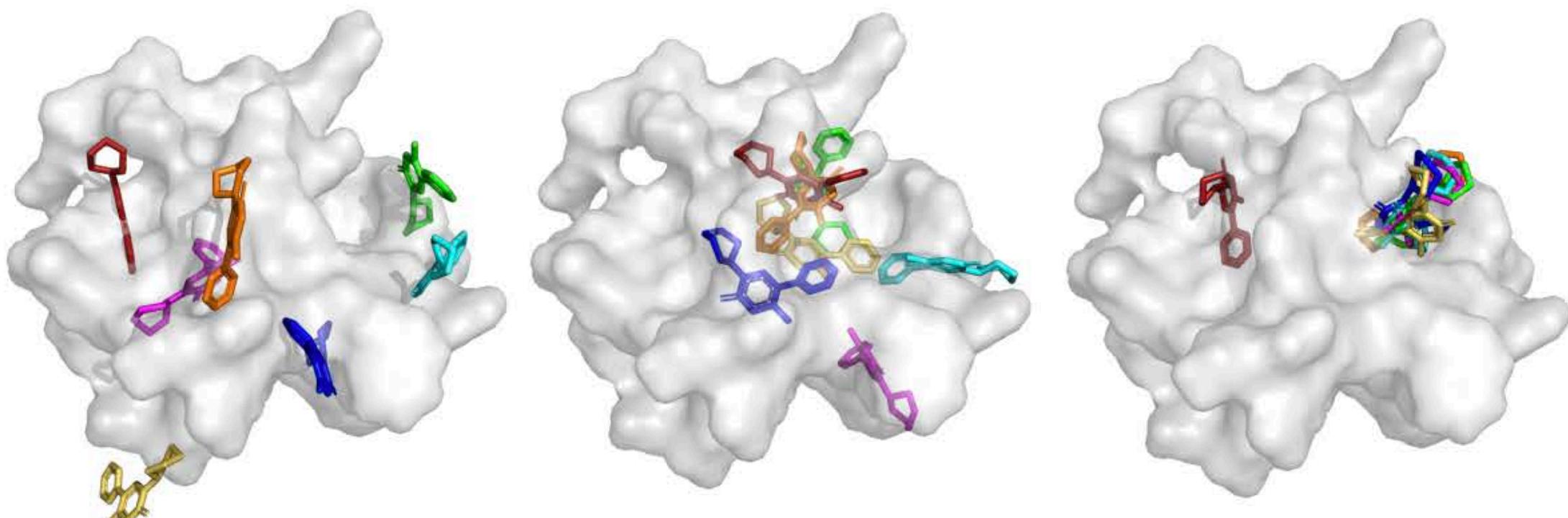


DIFFDock

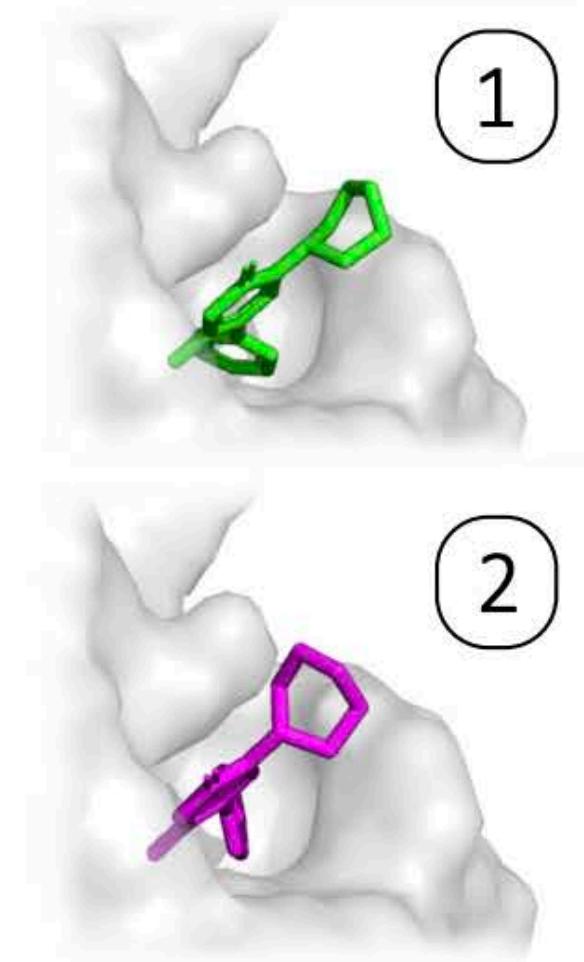
reverse diffusion over
translations, rotations and torsions

$t=T$

$t=0$

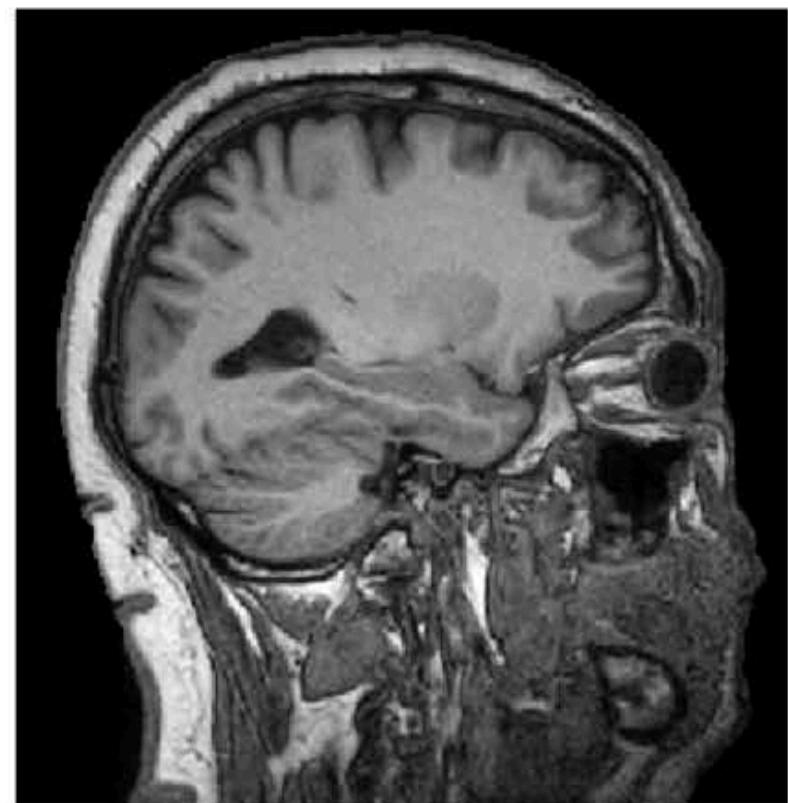


ranked poses &
confidence score

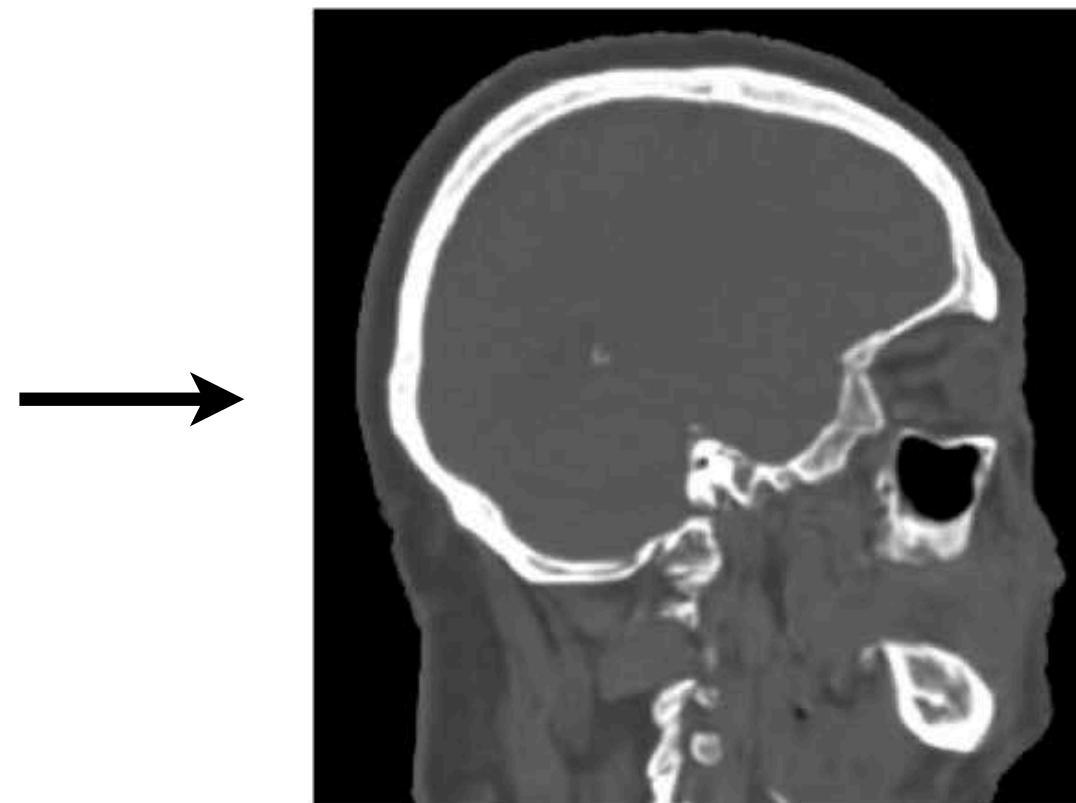


[Corso*, Stark*, Jing*, Barzilay, Jaakkola, 2022]

MRI



CT



Above © Corse, et al. Below © Wolterink, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

[Wolterink, Dinkla, Savenije et al., 2017]

Math background

- So far we have mostly thought of neural nets as mappings $f_\theta : \mathcal{X} \rightarrow \mathcal{Y}$, where \mathcal{Y} is some space of possible outputs.
 - e.g., image classifier into d classes: $f_\theta : \mathbb{R}^{N \times M \times C} \rightarrow \{1, \dots, d\}$
- Now, we will instead consider neural nets as mappings $f_\theta : \mathcal{X} \rightarrow \mathcal{P}(\mathcal{Y})$, where $\mathcal{P}(\mathcal{Y})$ is the space of probability distributions over \mathcal{Y} .
 - e.g., softmax regression to model $P(\text{class} \mid X = \mathbf{x})$: $f_\theta : \mathbb{R}^{N \times M \times C} \rightarrow \Delta^{d-1}$
 - *Main perspective: the outputs of our neural nets are, implicitly or explicitly, distributions*

Random variable: X , $p(X) \in \mathcal{P}(\mathcal{X})$ is the probability density/mass function

Realization: $x \sim p(X)$, $p(x) \in \mathcal{X}$ is the probability mass/density of x

Probability mass function: $p : \mathcal{X} \rightarrow \mathcal{R}$, $0 \leq p(x) \leq 1$, $\sum_{x \in \mathcal{X}} p(x) = 1$

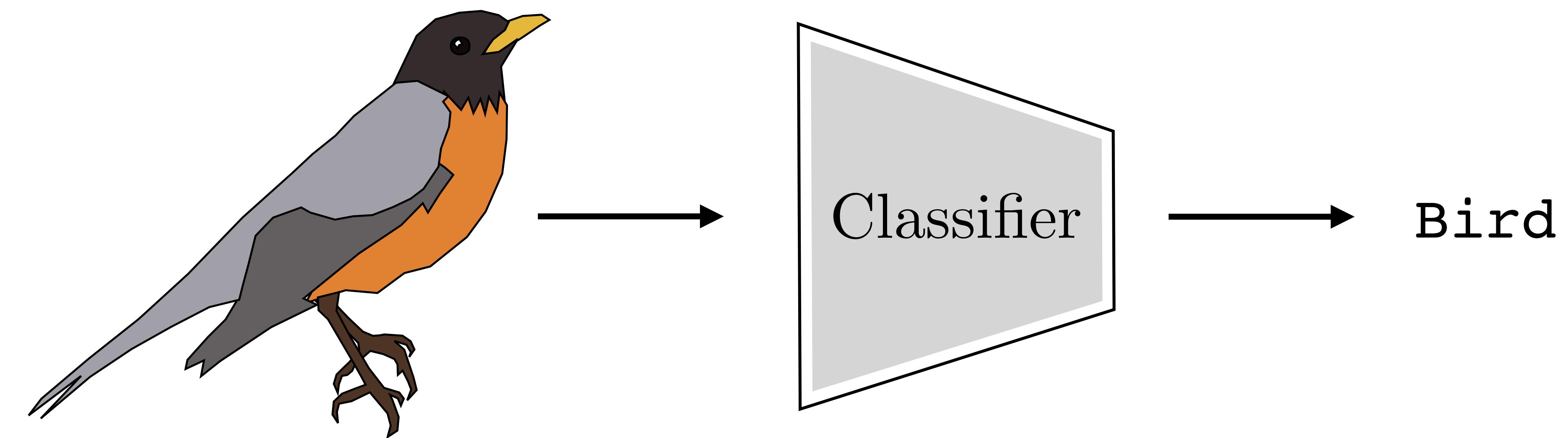
Probability density function: $p : \mathcal{X} \rightarrow \mathcal{R}$, $p(x) \geq 0$, $\int_{x \in \mathcal{X}} p(x)dx = 1$

Probabilities

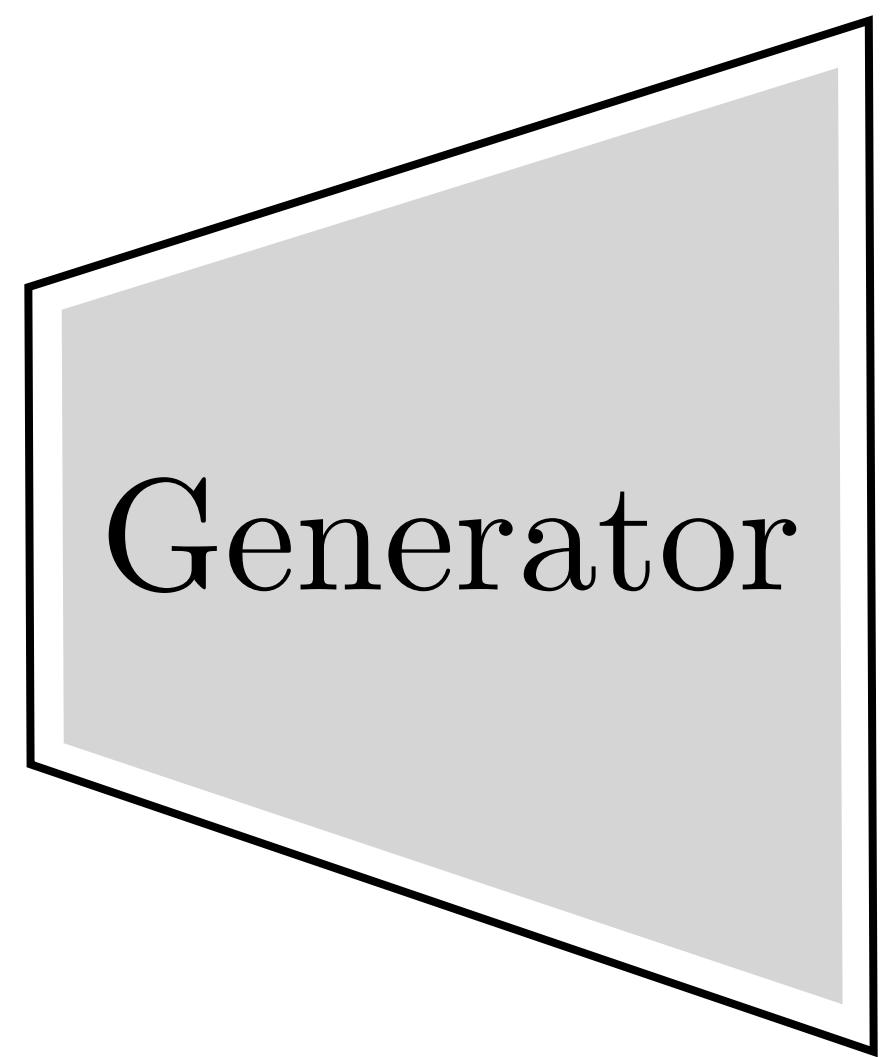
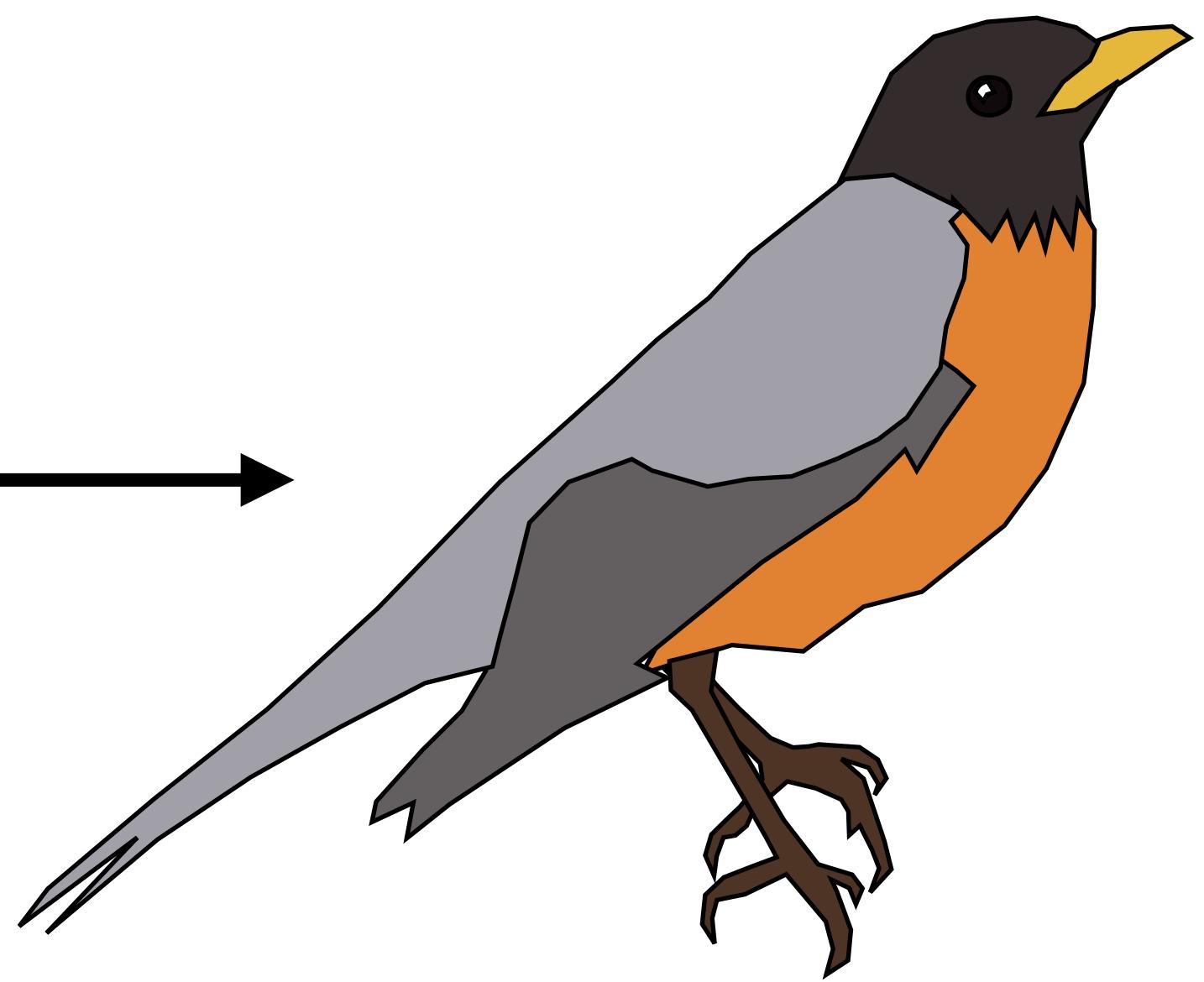
We will typically not distinguish between random variables and realizations of those variables; which we mean should be clear from context. When it is important to make a distinction, we will use non-bold capital letters to refer to random variables and lowercase to refer to realizations.

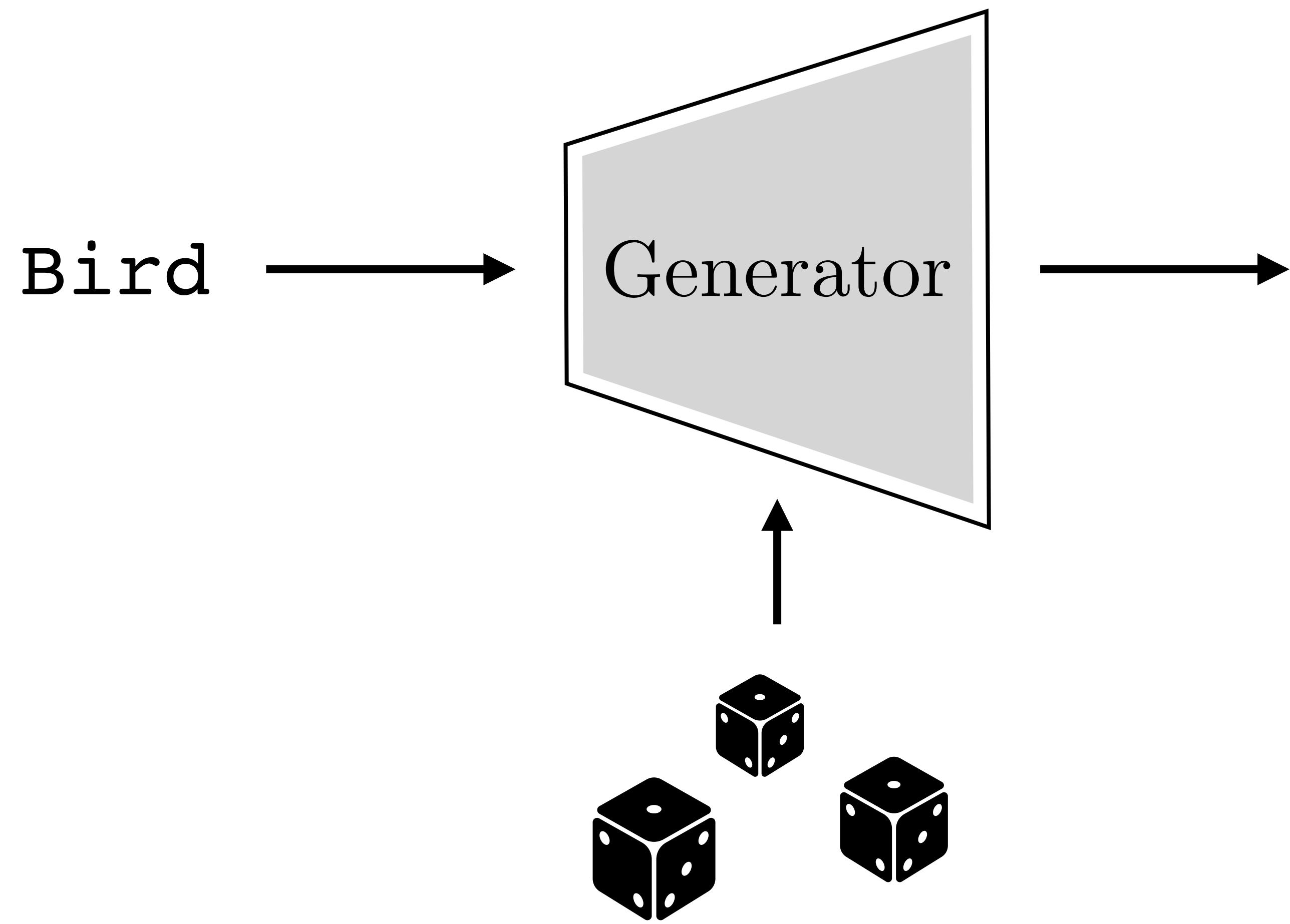
Suppose X, Y are discrete random variables and \mathbf{x}, \mathbf{y} are realizations of those variables. X and Y may take on values in the sets \mathcal{X} and \mathcal{Y} respectively.

- $a = p(X = \mathbf{x} | \dots)$ is the probability of the realization $X = \mathbf{x}$, possibly conditioned on some observations (a is a scalar).
- $f = p(X | \dots)$ is the probability distribution over X , possibly conditioned on some observations (f is a function: $f : \mathcal{X} \rightarrow \mathbb{R}$). If \mathcal{X} is discrete, f is the *probability mass function*. If \mathcal{X} is continuous, f is the *probability density function*.
- $p(\mathbf{x} | \dots)$ is shorthand for $p(X = \mathbf{x} | \dots)$.
- and so forth, following these patterns.
- Suppose we have defined a named distribution, e.g., p_θ ; then referring to p_θ on its own is shorthand for $p_\theta(X)$

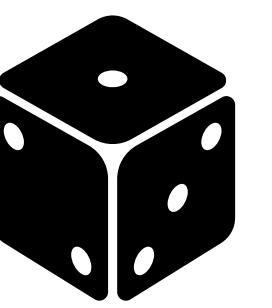


Bird





which color?



what angle?

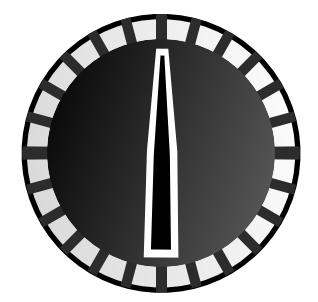
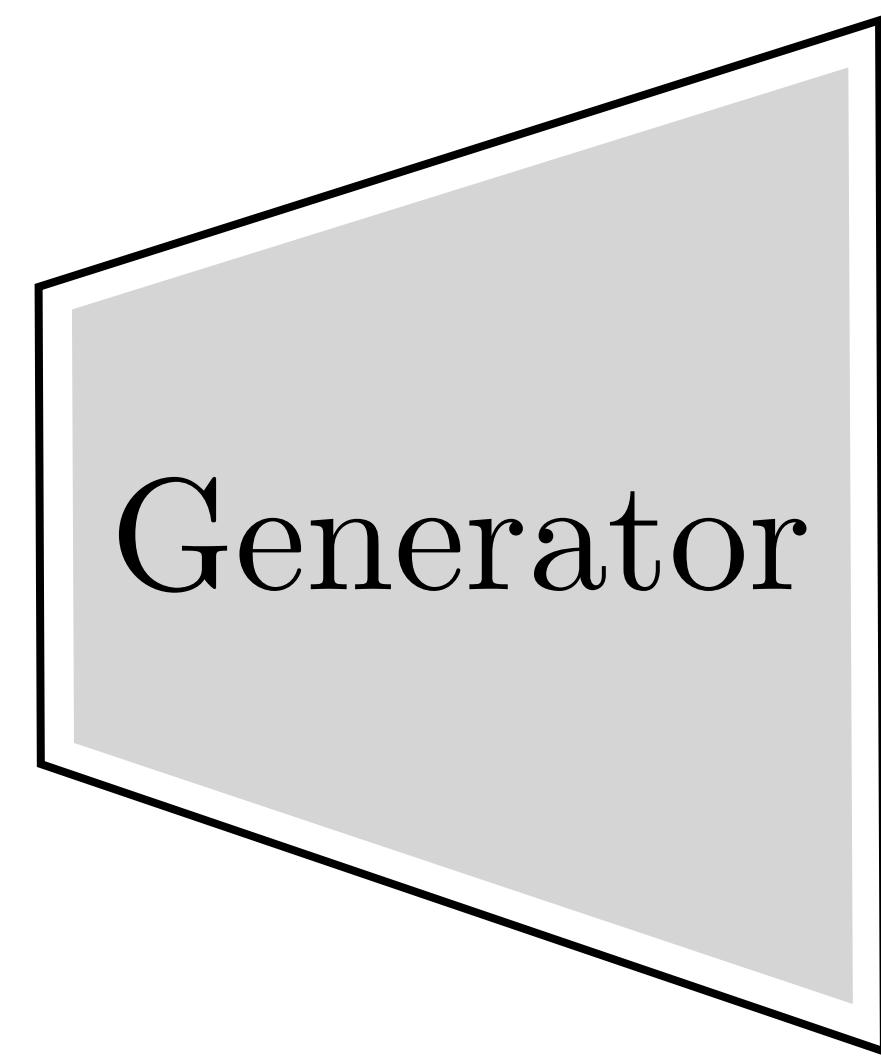
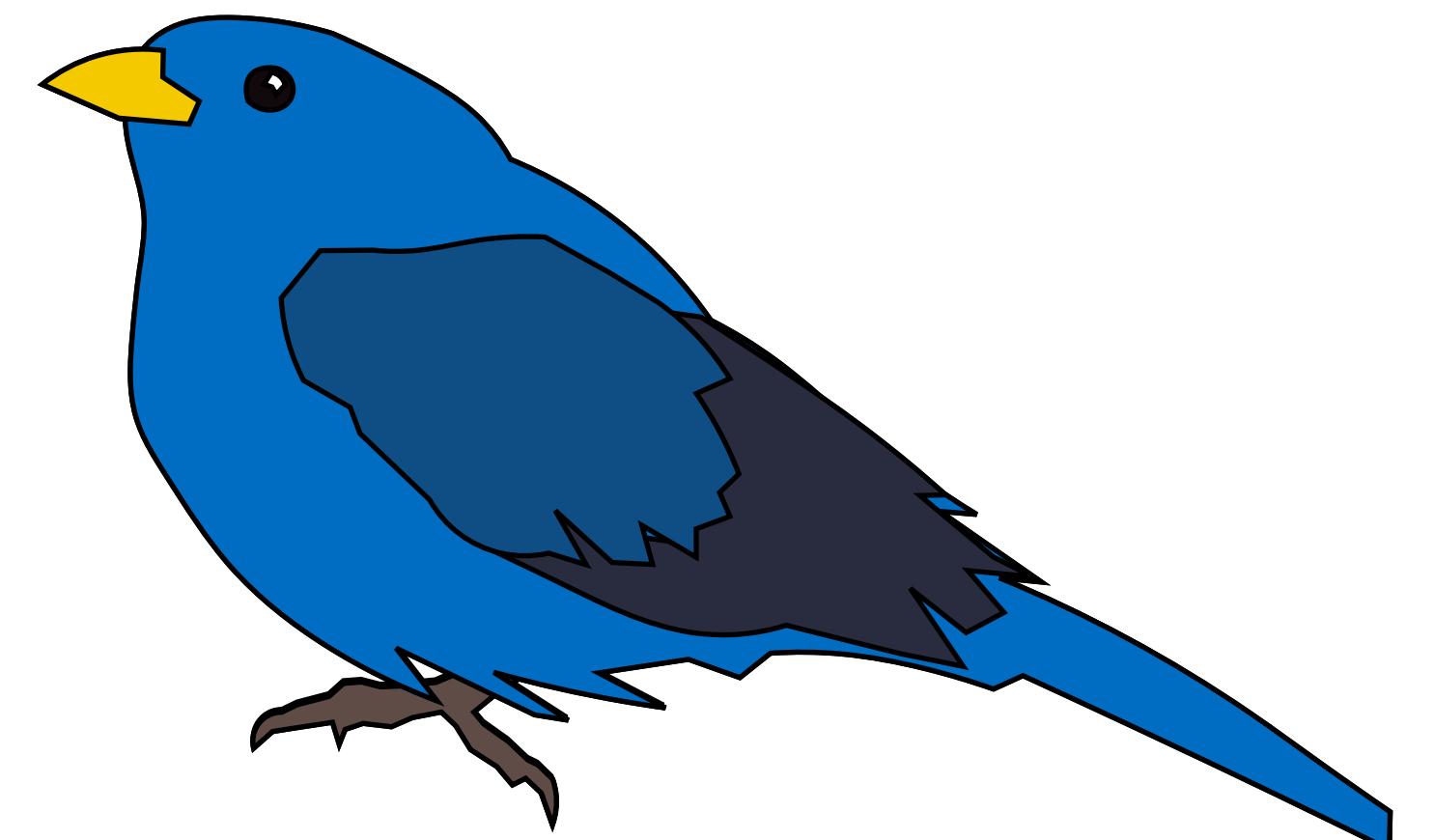
what size?

⋮

⋮

⋮

which color?



$z \sim \text{Bernoulli}(0.5)$

for $i = 1, \dots, N$ **do**

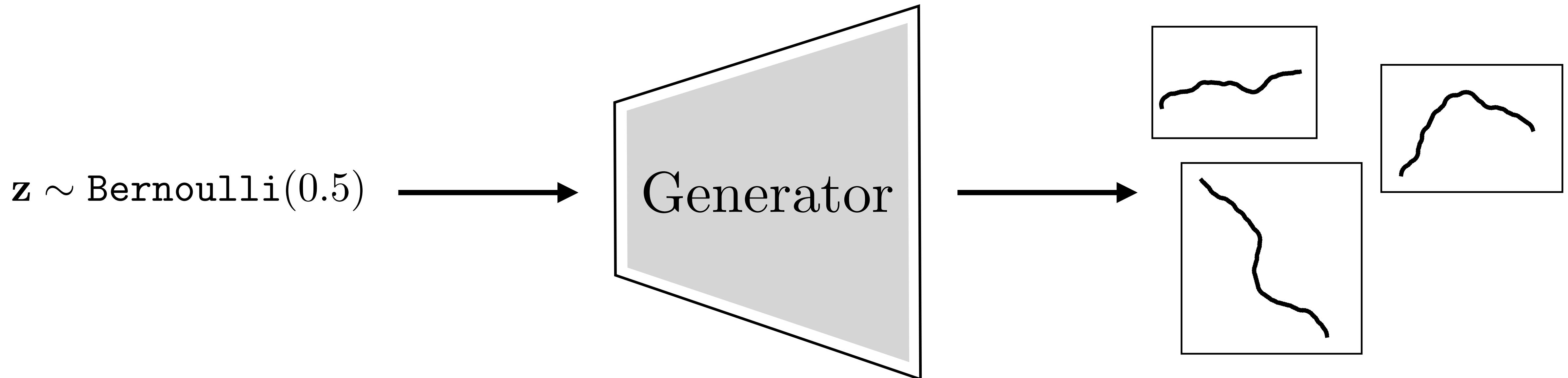
 | extend line 1 unit in current heading direction

 | **if** $z_i == 1$ **then**

 | | rotate heading 10° to the right

 | **else**

 | | rotate heading 10° to the left



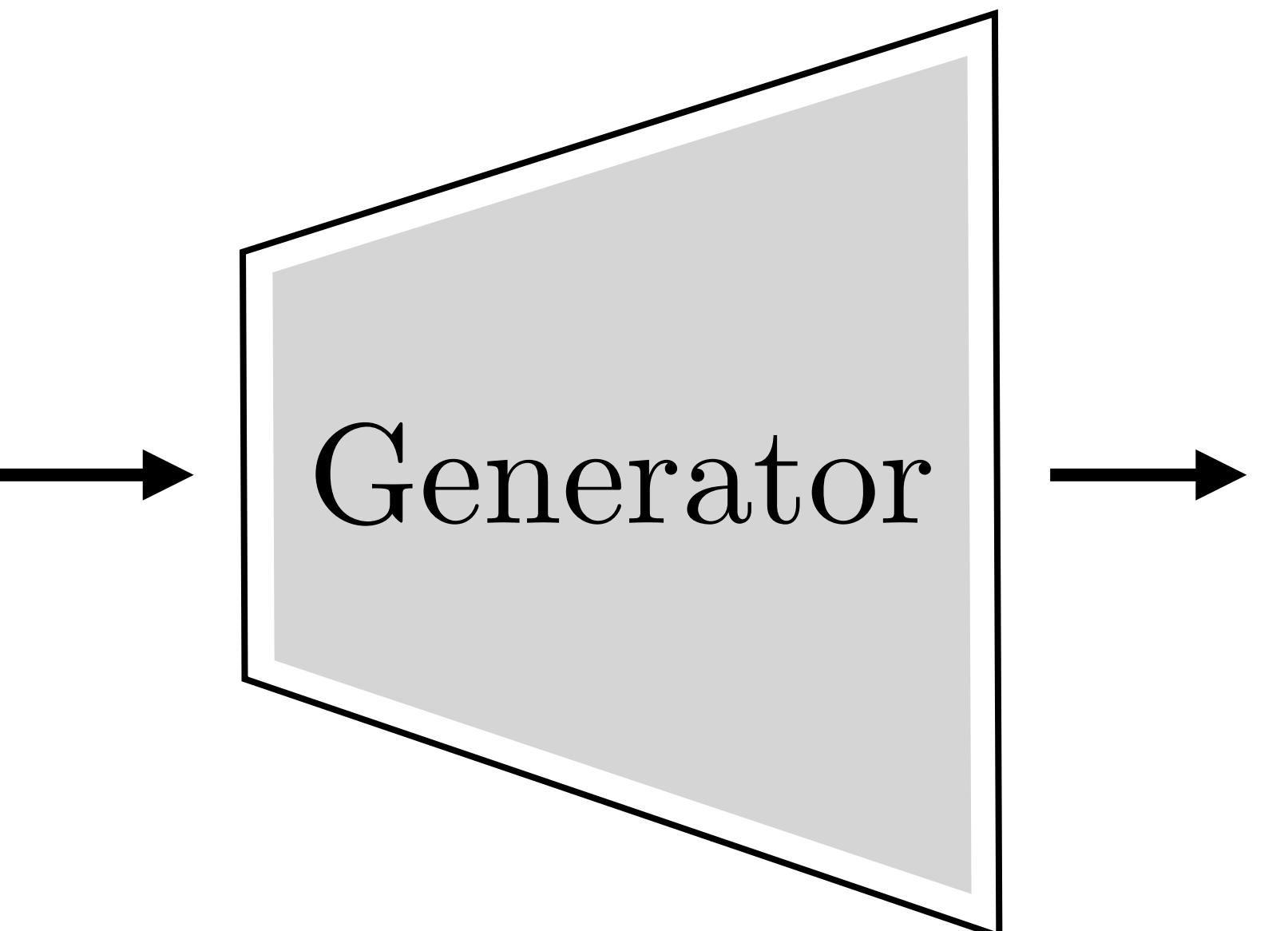
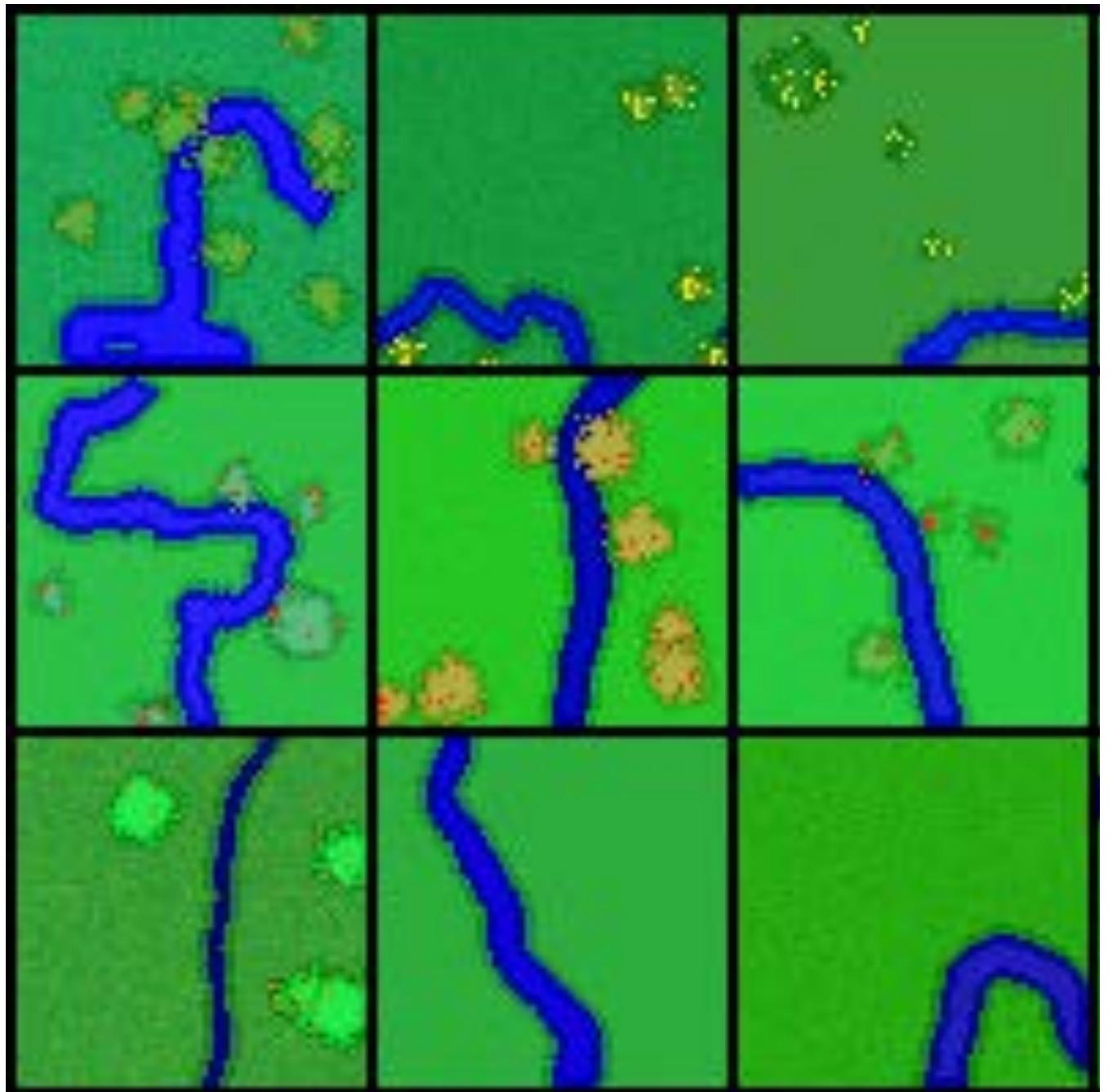
“noise” “latent variables”

$z_1 \sim \text{Bernoulli}(0.5)$ (River turns)

$z_2 \sim \text{Normal}(\mu_1, \Sigma_1)$ (Grass color)

$z_3 \sim \text{Unif}(0, 10)$ (Number trees)

⋮



Concept #1: **noise is latent variables**

Learning data generators

Two approaches:

confusingly, sometimes called an “implicit generative model”

1. **Direct approach:** learn a function that generates data directly

$$G : \mathcal{Z} \rightarrow \mathcal{X}$$

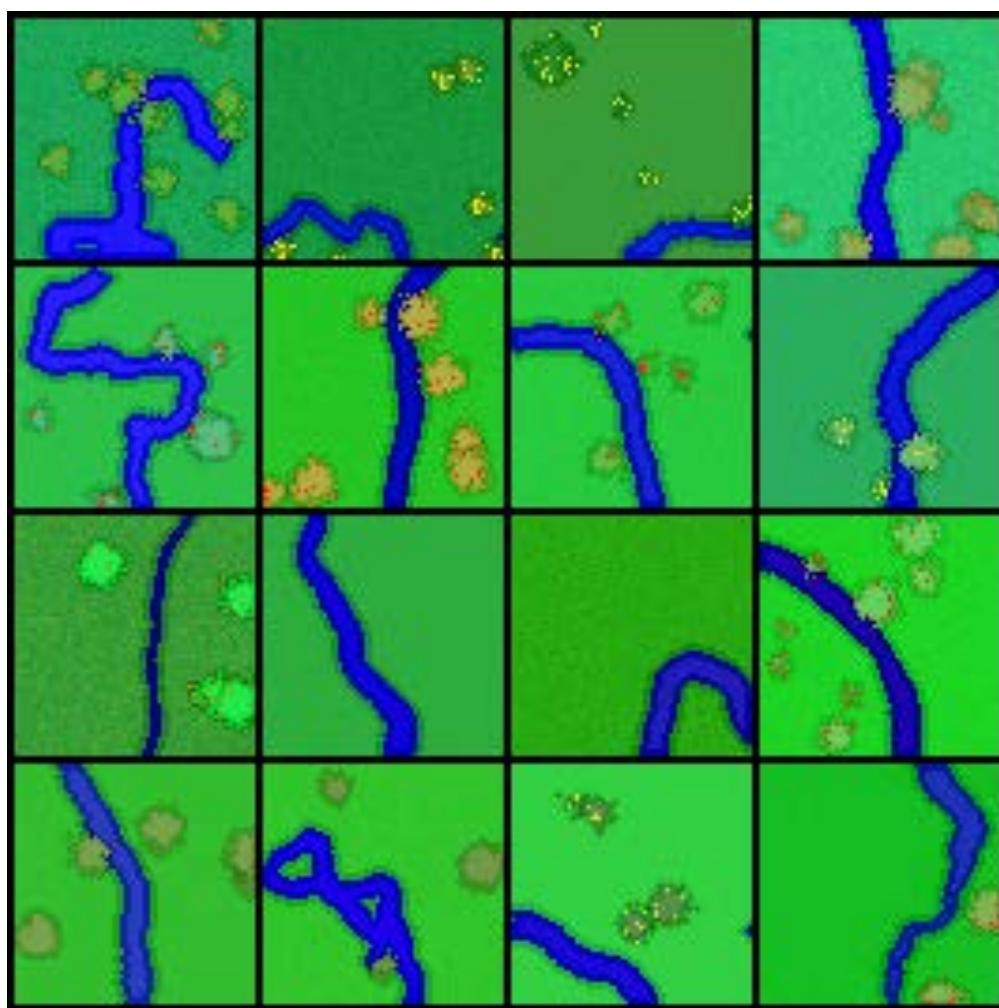
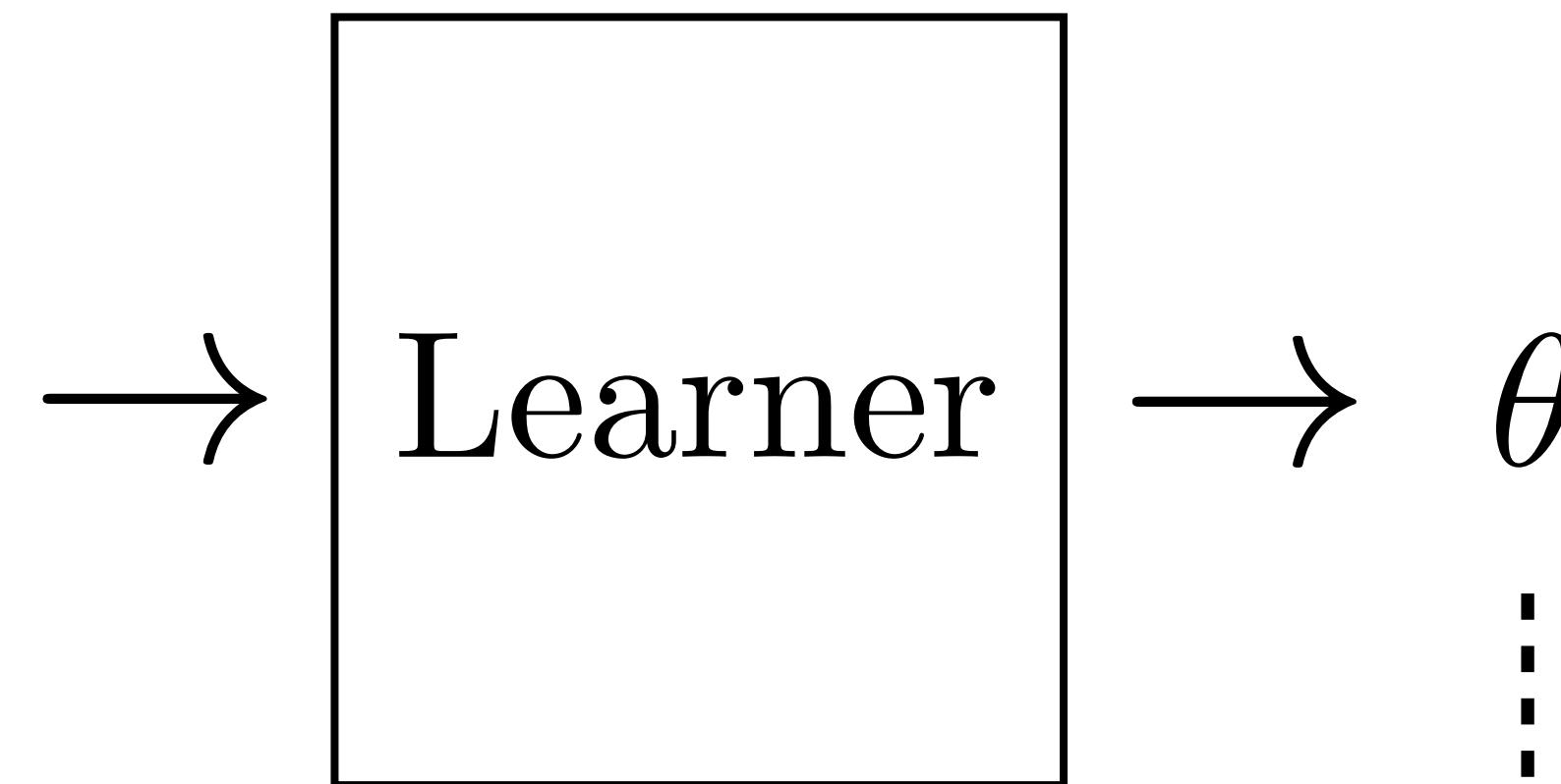
2. **Indirect approach:** learn a function that scores data; generate data by finding points that score highly under this function

$$E : \mathcal{X} \rightarrow \mathbb{R}$$

Training

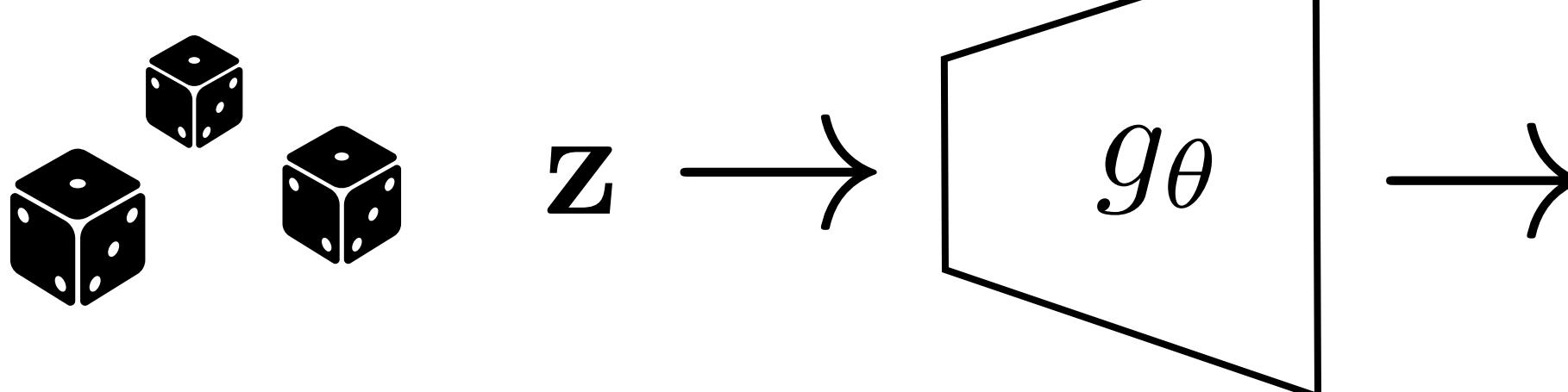
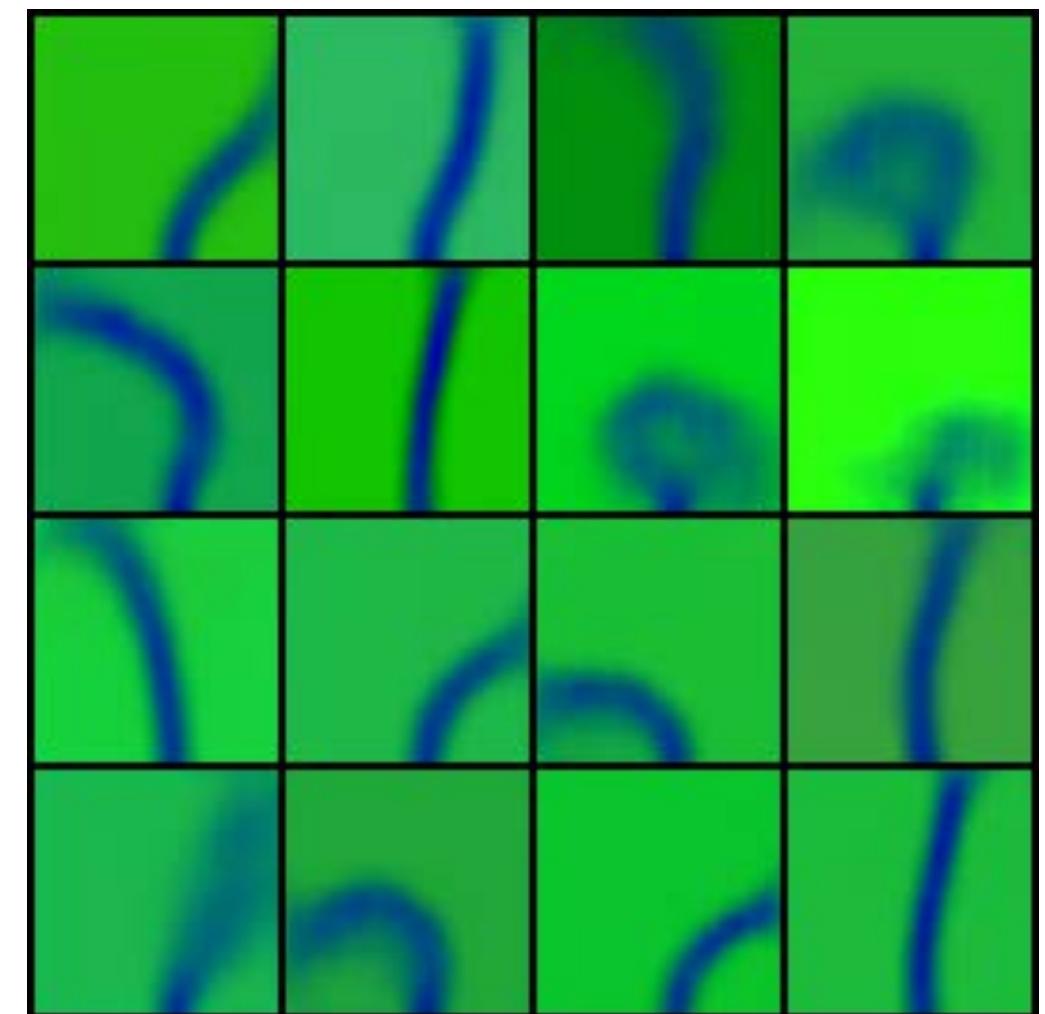
Data

Direct Approach



Sampling

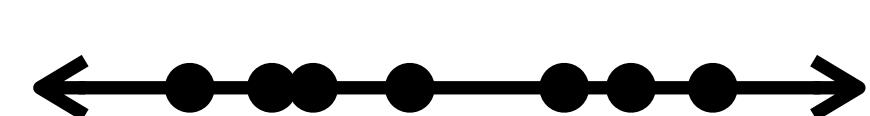
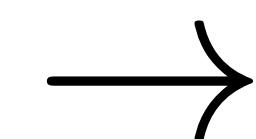
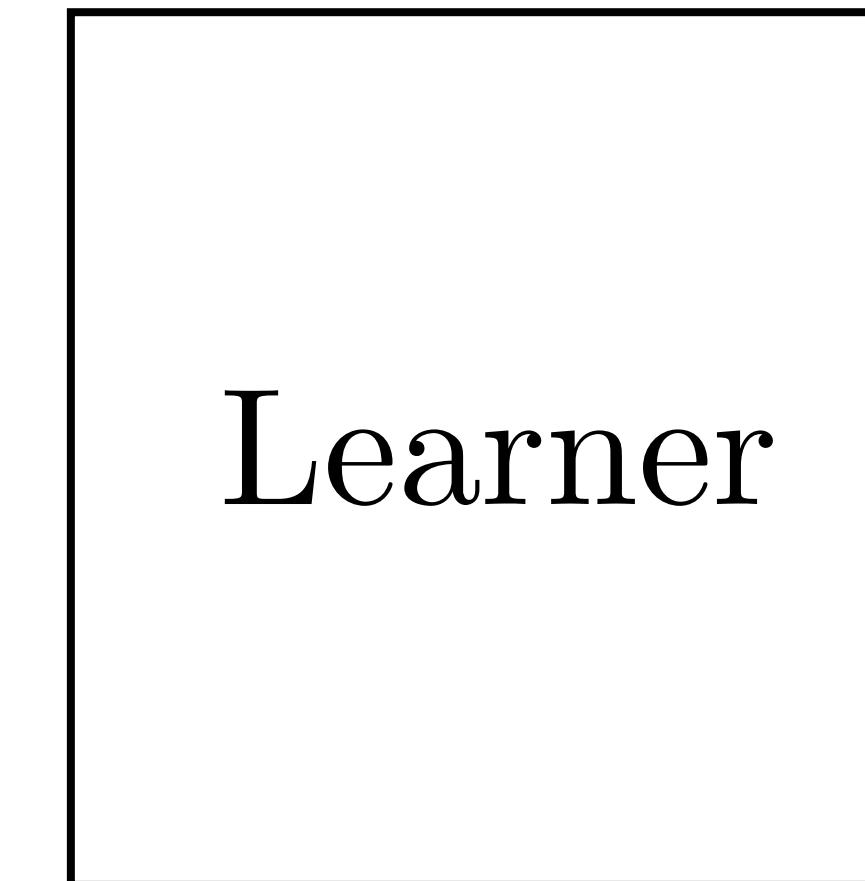
Samples



Training

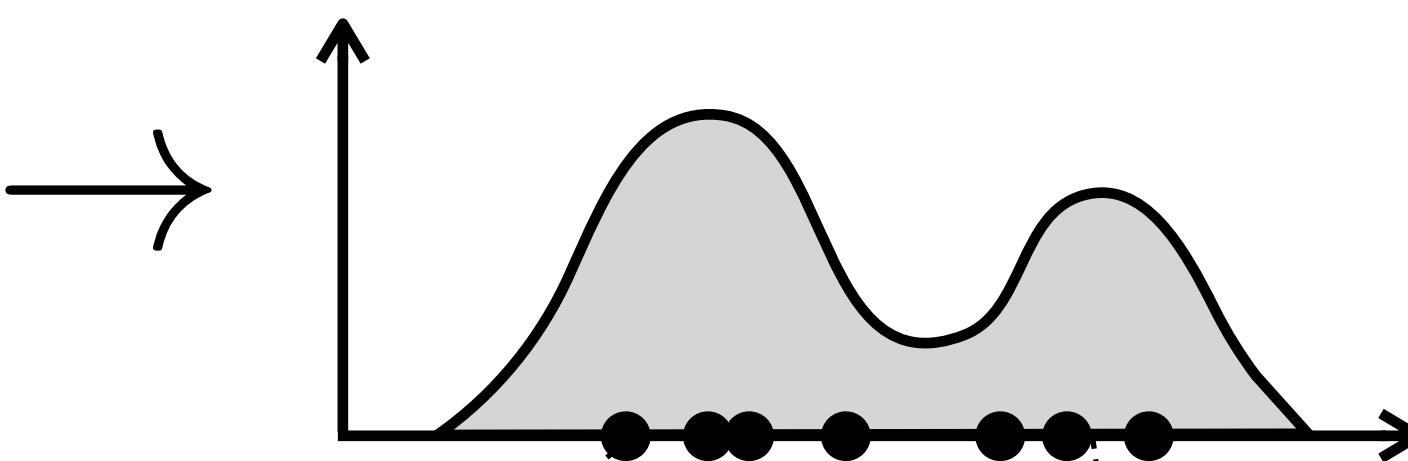
Data

$$\{\mathbf{x}^{(i)}\}_{i=1}^N$$



Learner

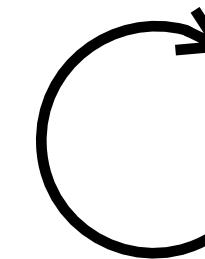
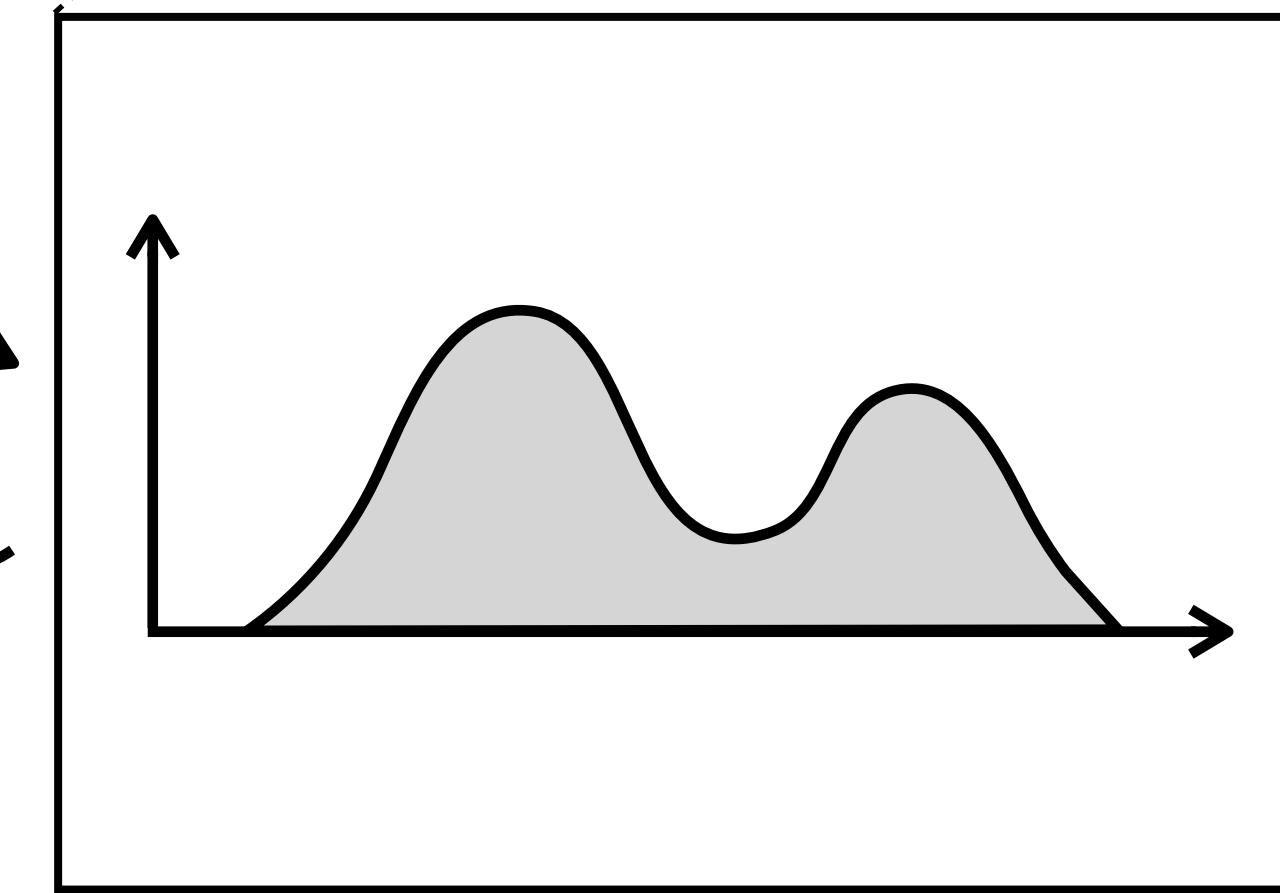
Scoring function



e.g., likelihood, energy,
"score function"

Sampling

Sampling algorithm
(e.g., MCMC)



Samples

$$\{\hat{\mathbf{x}}^{(i)}\}_{i=1}^N$$

What's the goal of generative modeling?

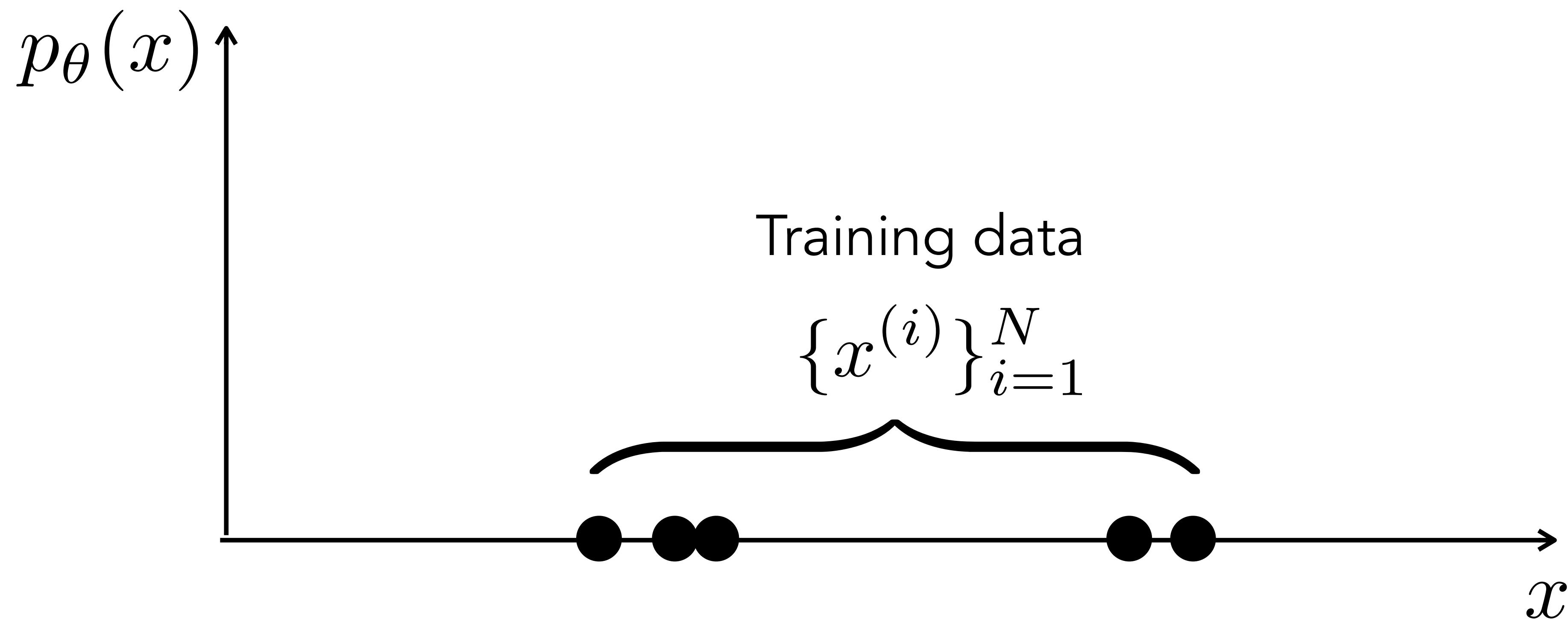
Make synthetic data that “looks like” real data.

How to measure “looks like”?

The main answer in deep generative models is: “has high probability under a density model fit to real data.”

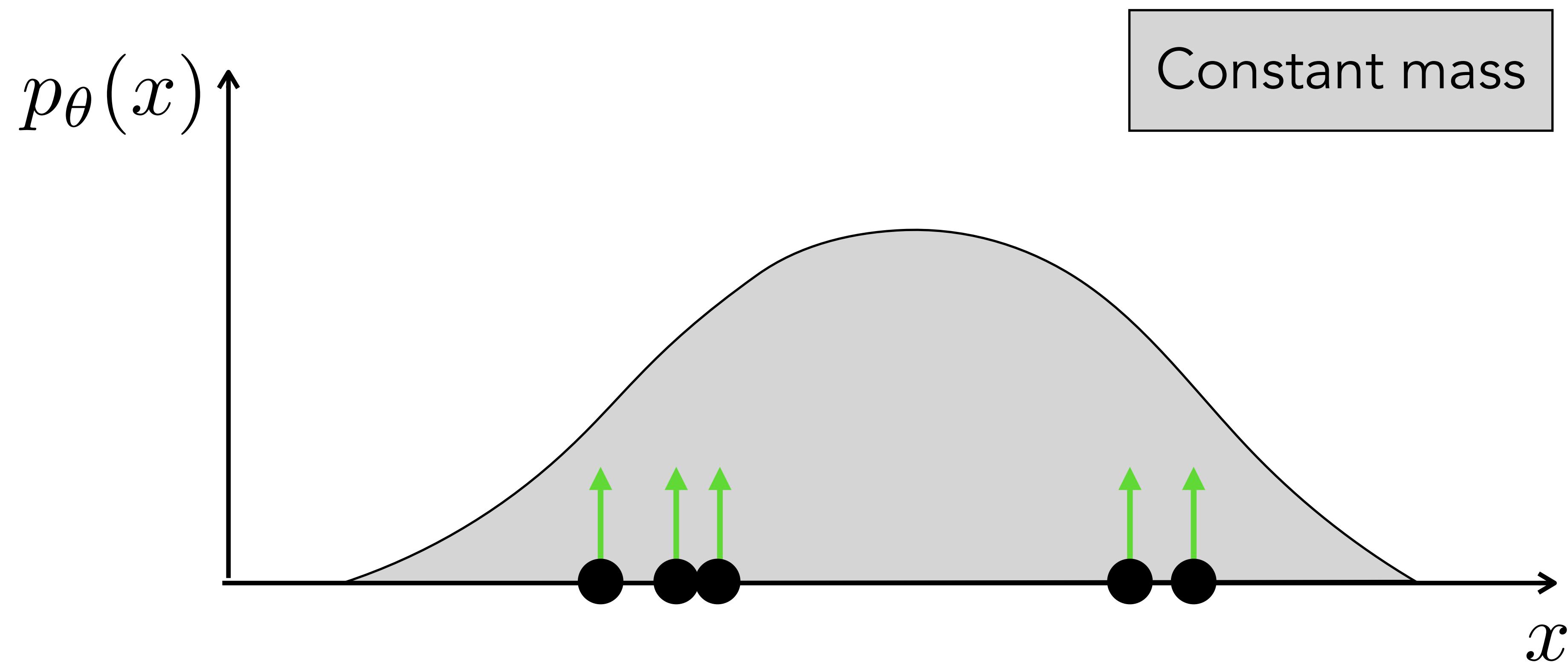
Density models

$$p_\theta : \mathcal{X} \rightarrow [0, \infty)$$



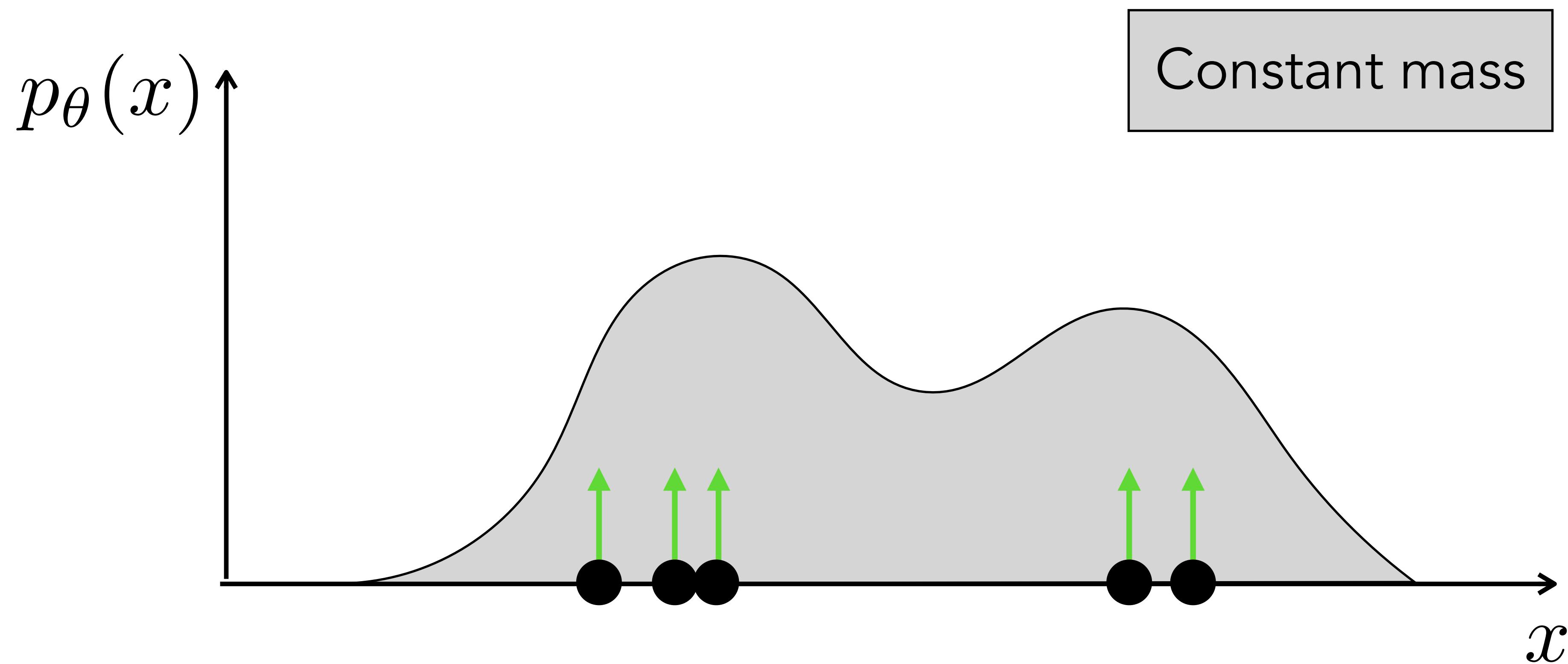
Density models

$$p_\theta : \mathcal{X} \rightarrow [0, \infty)$$

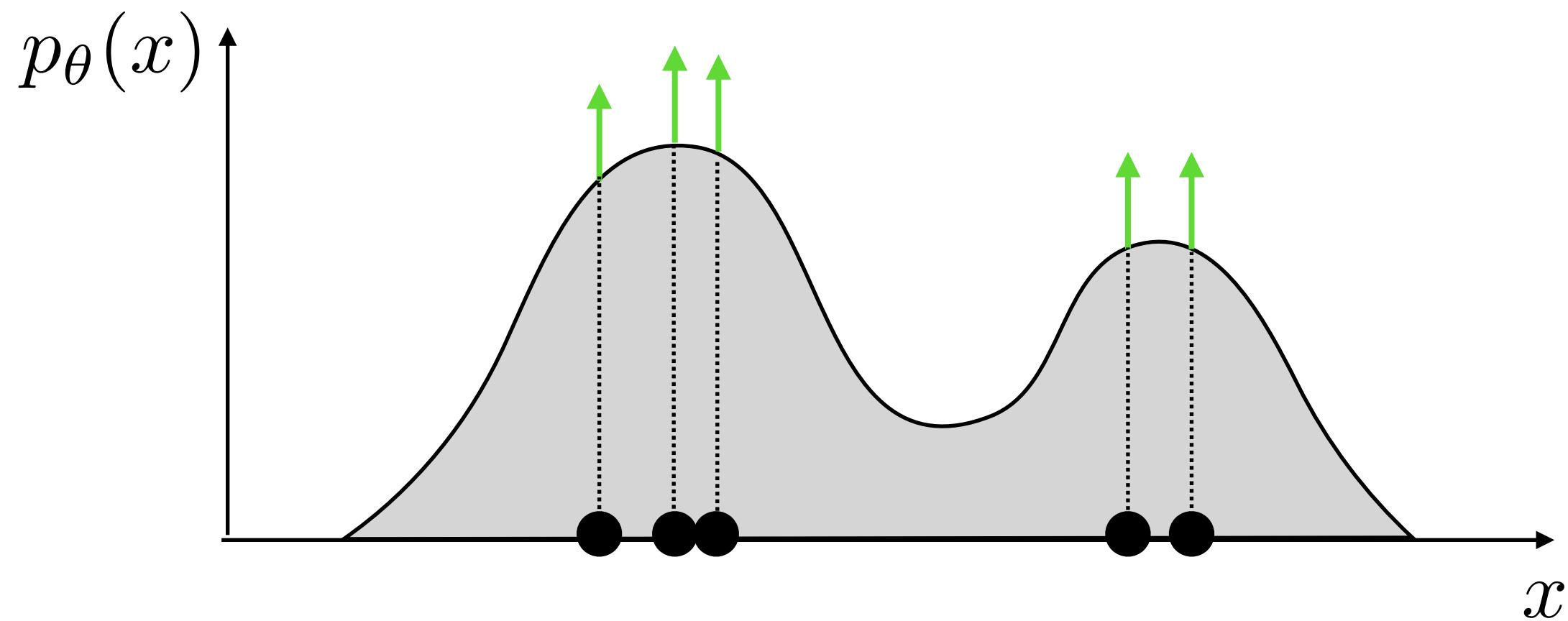
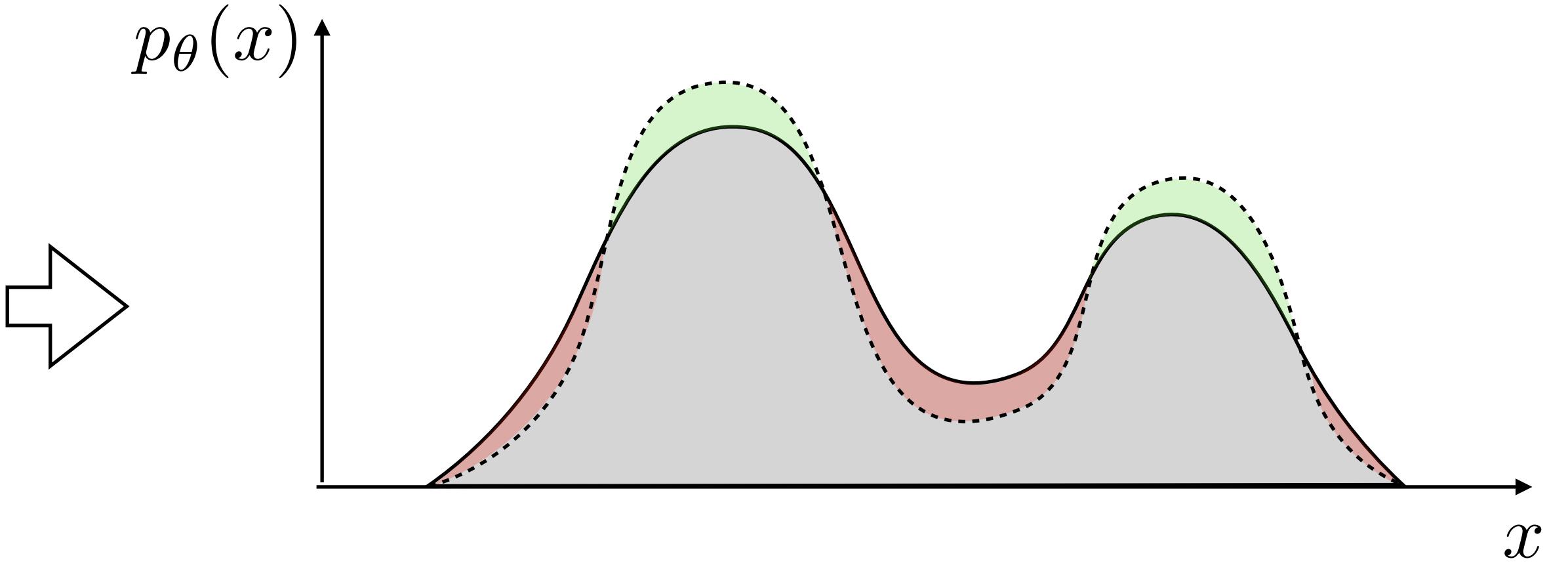


Density models

$$p_\theta : \mathcal{X} \rightarrow [0, \infty)$$



Density models



$$p_{\theta}^* = \arg \min_{p_{\theta}} \text{KL}(p_{\text{data}}, p_{\theta})$$

$$= \arg \min_{p_{\theta}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[-\log \frac{p_{\theta}(\mathbf{x})}{p_{\text{data}}(\mathbf{x})} \right]$$

$$= \arg \max_{p_{\theta}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[\log p_{\theta}(\mathbf{x}) \right] - \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[\log p_{\text{data}}(\mathbf{x}) \right]$$

$$= \arg \max_{p_{\theta}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[\log p_{\theta}(\mathbf{x}) \right] \quad \triangleleft \quad \text{dropped second term since no dependence on } p_{\theta}$$

$$\approx \arg \max_{p_{\theta}} \frac{1}{N} \sum_{i=1}^N \log p_{\theta}(\mathbf{x}^{(i)})$$

max likelihood

Is the filing cabinet a good generative model?

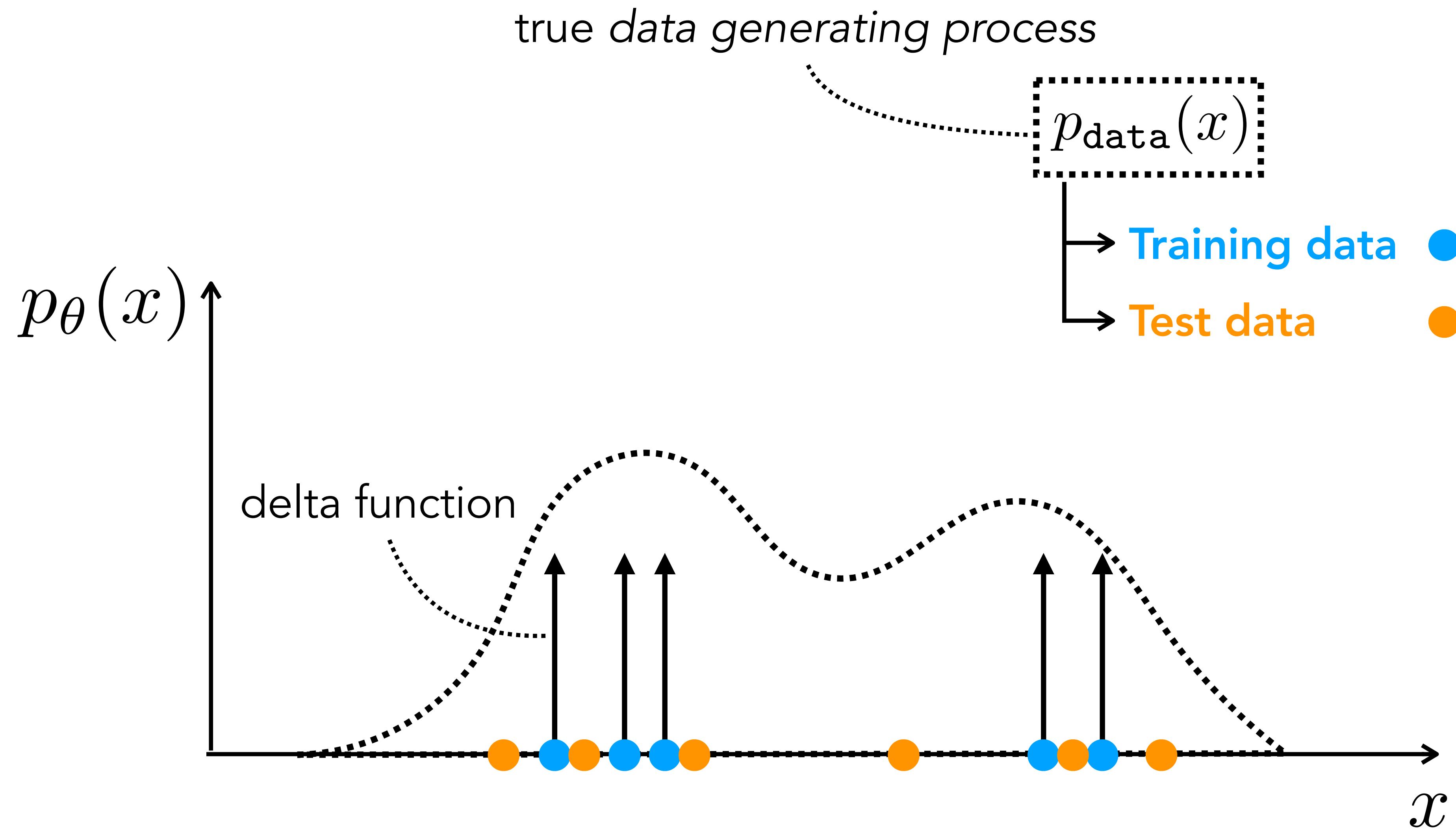
Every time we see a new training point (x), we put it in the cabinet.

```
def train(X):
    for x in X:
        cabinet.append(x)

def generate():
    return cabinet[np.random.randint(len(cabinet))]
```

Sample by picking a drawer at random.

What is the pdf the filing cabinet is sampling from?



What's the goal of generative modeling?

The goal is not to replicate the training data but to make **new** data that is **realistic** (captures the essential properties of real data)

One way to quantify this is: likelihood of the **test data** under the model. (A model that memorizes the training data is overfit in exactly the same sense as a classifier can be overfit.)

$$\{x_{\text{test}}^{(i)}\}_{i=1}^N, \quad x_{\text{test}}^{(i)} \sim p_{\text{data}}$$

$$\text{generalization error} = \sum_i \log p_{\theta}(x_{\text{test}}^{(i)})$$

Energy-based models

$$\int_{\mathbf{x}} p_{\theta}(\mathbf{x}) d\mathbf{x} = 1$$

i.e. unnormalized
probability models

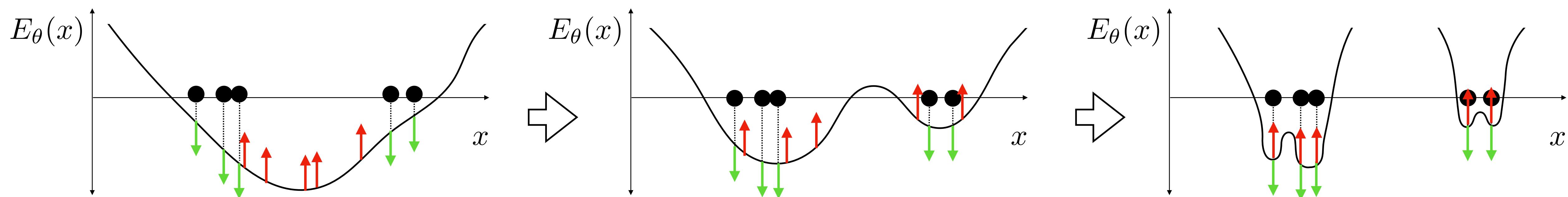
$$p_{\theta} = \frac{e^{-E_{\theta}}}{Z(\theta)} \quad Z(\theta) = \int_{\mathbf{x}} e^{-E_{\theta}(\mathbf{x})} d\mathbf{x}$$

$$\frac{p_{\theta}(\mathbf{x}_1)}{p_{\theta}(\mathbf{x}_2)} = \frac{e^{-E_{\theta}(\mathbf{x}_1)}/Z(\theta)}{e^{-E_{\theta}(\mathbf{x}_2)}/Z(\theta)} = \frac{e^{-E_{\theta}(\mathbf{x}_1)}}{e^{-E_{\theta}(\mathbf{x}_2)}}$$

\leftarrow Relative
probabilities are often
all you need (e.g., for
sampling)

Energy-based models

At convergence, green (data) and red (model) samples are identical and model update (green-red) cancels out



Contrastive divergence

Energy-based models — learning model parameters

$$\begin{aligned}\nabla_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})] &= \nabla_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log \frac{e^{-E_{\theta}(\mathbf{x})}}{Z(\theta)}] \\ &= \boxed{-\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\nabla_{\theta} E_{\theta}(\mathbf{x})]} - \boxed{\nabla_{\theta} \log Z(\theta)}\end{aligned}$$

How to measure this?

Energy-based models — learning model parameters

$$\begin{aligned} -\nabla_{\theta} \log Z(\theta) &= \frac{1}{Z(\theta)} \nabla_{\theta} Z(\theta) && \triangleleft \quad \nabla_x \log f(x) = \frac{1}{f(x)} \nabla_x f(x) \\ &= \frac{1}{Z(\theta)} \nabla_{\theta} \int_x e^{-E_{\theta}(\mathbf{x})} d\mathbf{x} && \triangleleft \quad \text{definition of } Z \\ &= \frac{1}{Z(\theta)} \int_x \nabla_{\theta} e^{-E_{\theta}(\mathbf{x})} d\mathbf{x} && \triangleleft \quad \text{exchange sum and grad} \\ &= \frac{1}{Z(\theta)} - \int_x e^{-E_{\theta}(\mathbf{x})} \nabla_{\theta} E_{\theta}(\mathbf{x}) d\mathbf{x} \\ &= - \int_x \frac{e^{-E_{\theta}(\mathbf{x})}}{Z(\theta)} \nabla_{\theta} E_{\theta}(\mathbf{x}) d\mathbf{x} \\ &= - \int_x p_{\theta}(\mathbf{x}) \nabla_{\theta} E_{\theta}(\mathbf{x}) d\mathbf{x} && \triangleleft \quad \text{definition of } p_{\theta} \\ &= -\mathbb{E}_{\mathbf{x} \sim p_{\theta}} [\nabla_{\theta} E_{\theta}(\mathbf{x})] && \triangleleft \quad \text{definition of expectation} \end{aligned}$$

Energy-based models — learning model parameters

$$\nabla_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})] = \nabla_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log \frac{e^{-E_{\theta}(\mathbf{x})}}{Z(\theta)}]$$

$$= -\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\nabla_{\theta} E_{\theta}(\mathbf{x})] - \boxed{\nabla_{\theta} \log Z(\theta)}$$

$$= -\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\nabla_{\theta} E_{\theta}(\mathbf{x})] + \boxed{\mathbb{E}_{\mathbf{x} \sim p_{\theta}} [\nabla_{\theta} E_{\theta}(\mathbf{x})]}$$

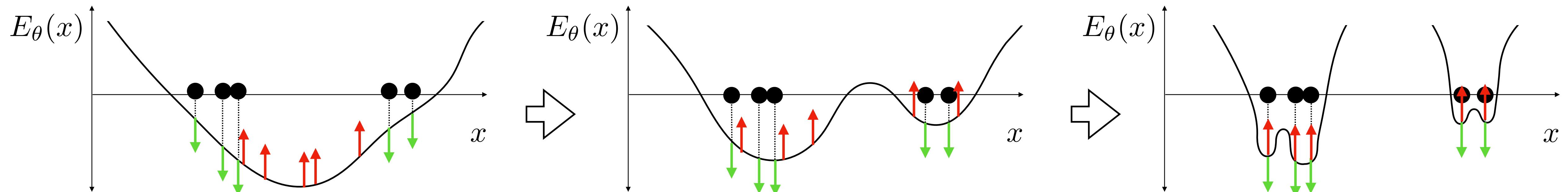
$$\approx -\frac{1}{N} \sum_{i=1}^N \nabla_{\theta} E_{\theta}(\mathbf{x}^{(i)}) + \boxed{\frac{1}{N} \sum_{i=1}^N \nabla_{\theta} E_{\theta}(\hat{\mathbf{x}}^{(i)})}$$

$$\mathbf{x}^{(i)} \sim p_{\text{data}}$$

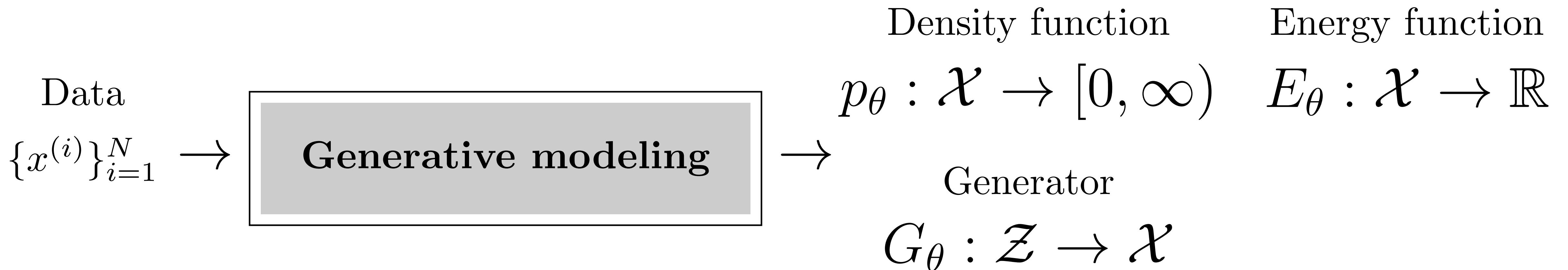
$$\hat{\mathbf{x}}^{(i)} \sim p_{\theta}$$

Energy-based models

At convergence, green (data) and red (model) samples are identical and model update (green-red) cancels out

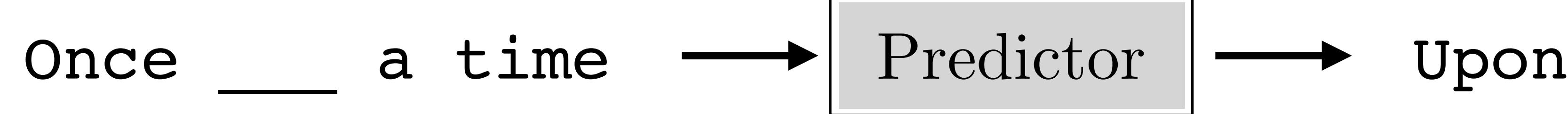


Contrastive divergence

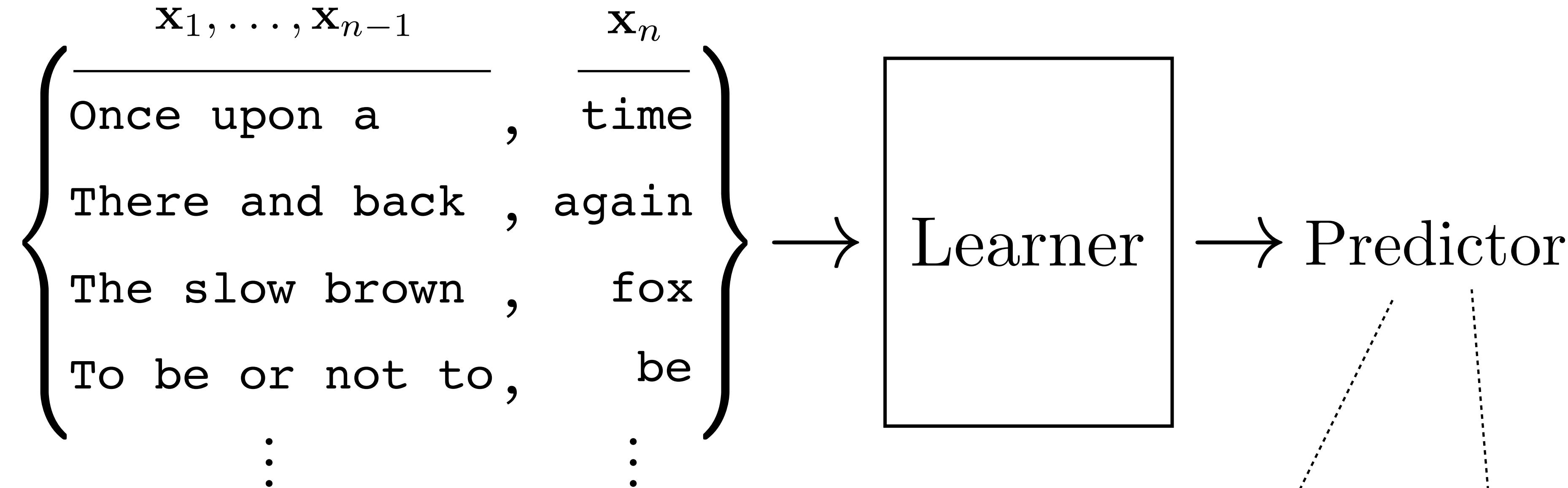


Concept #2: you can represent the data generating process directly or indirectly

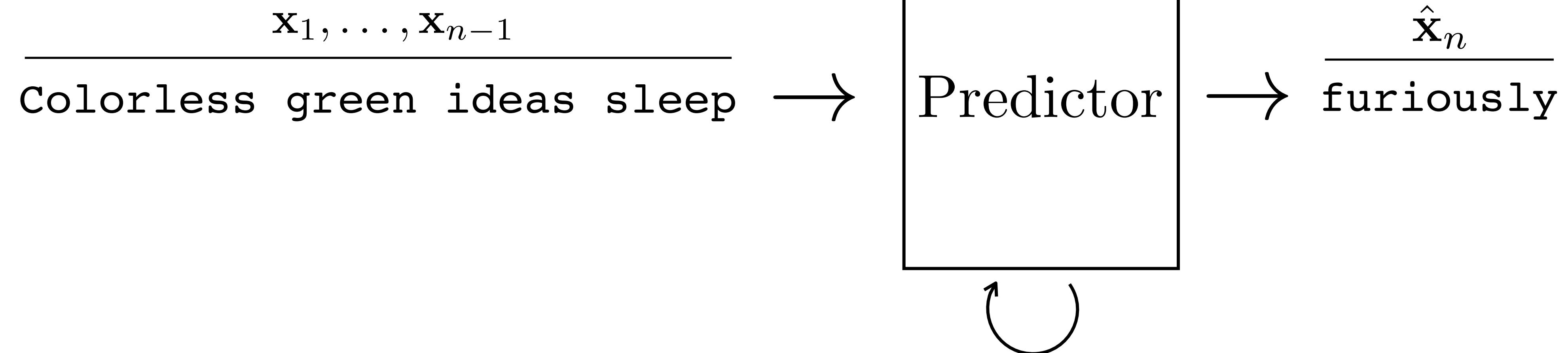
Autoregressive models



Training



Sampling



Autoregressive probability model

$$p(\mathbf{X}) = p(\mathbf{x}_n | \mathbf{x}_1, \dots, \mathbf{x}_{n-1}) p(\mathbf{x}_{n-1} | \mathbf{x}_1, \dots, \mathbf{x}_{n-2}) \dots p(\mathbf{x}_2 | \mathbf{x}_1) p(\mathbf{x}_1)$$

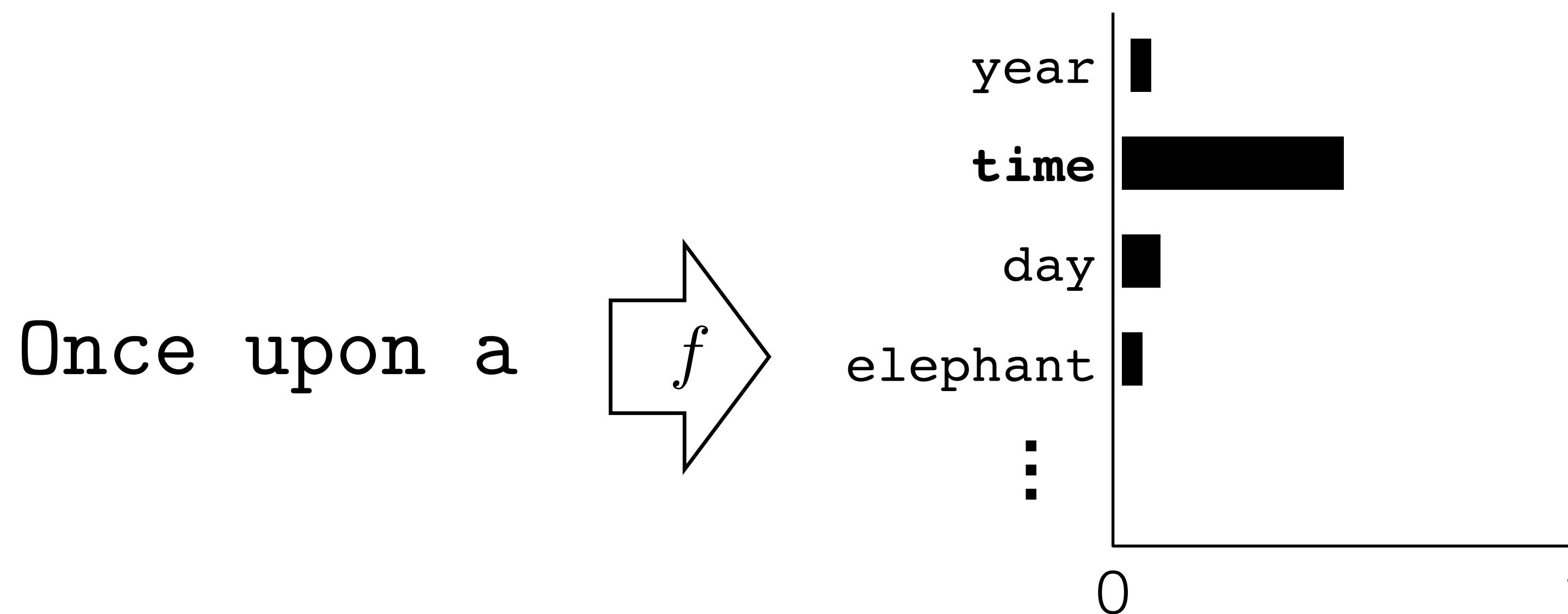
$$p(\mathbf{X}) = \prod_{i=1}^n p(\mathbf{x}_i | \mathbf{x}_1, \dots, \mathbf{x}_{i-1})$$

$p(\text{time} | \text{Once, upon, a})$
 $p(\text{a} | \text{Once, upon})$
 $p(\text{Once upon a time})$
 $p(\text{Once})$
 $p(\text{upon} | \text{Once})$

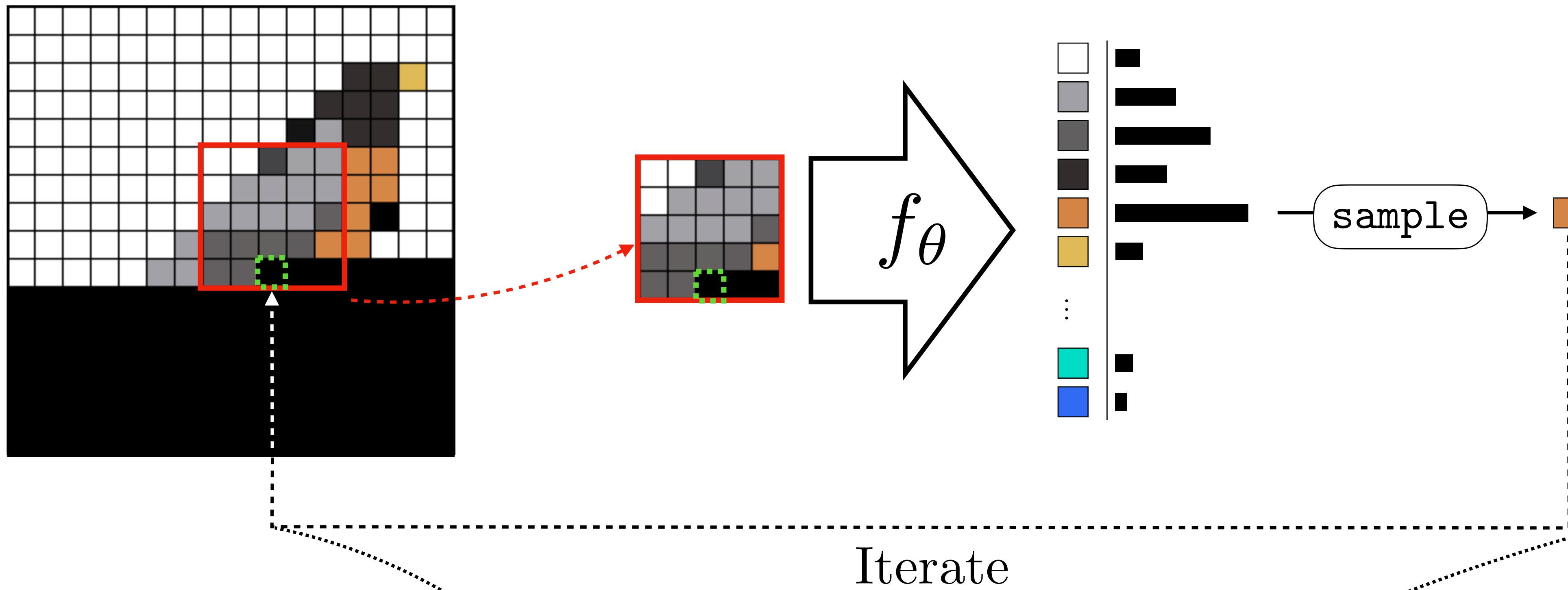
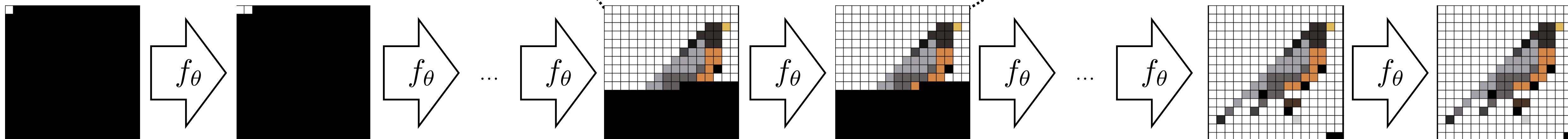
Modeling a sequence of words

How to model $p(\text{time}|\text{Once, upon, a})$?

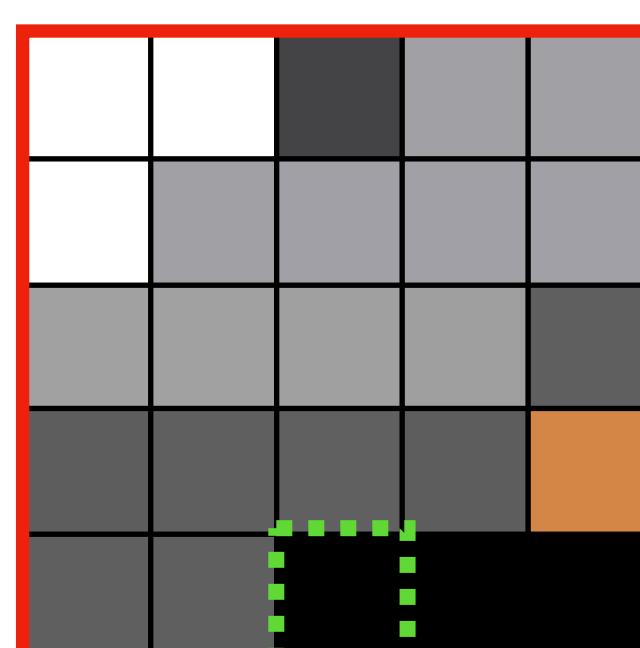
Just treat it as a next word classifier!



Autoregressive model of pixels



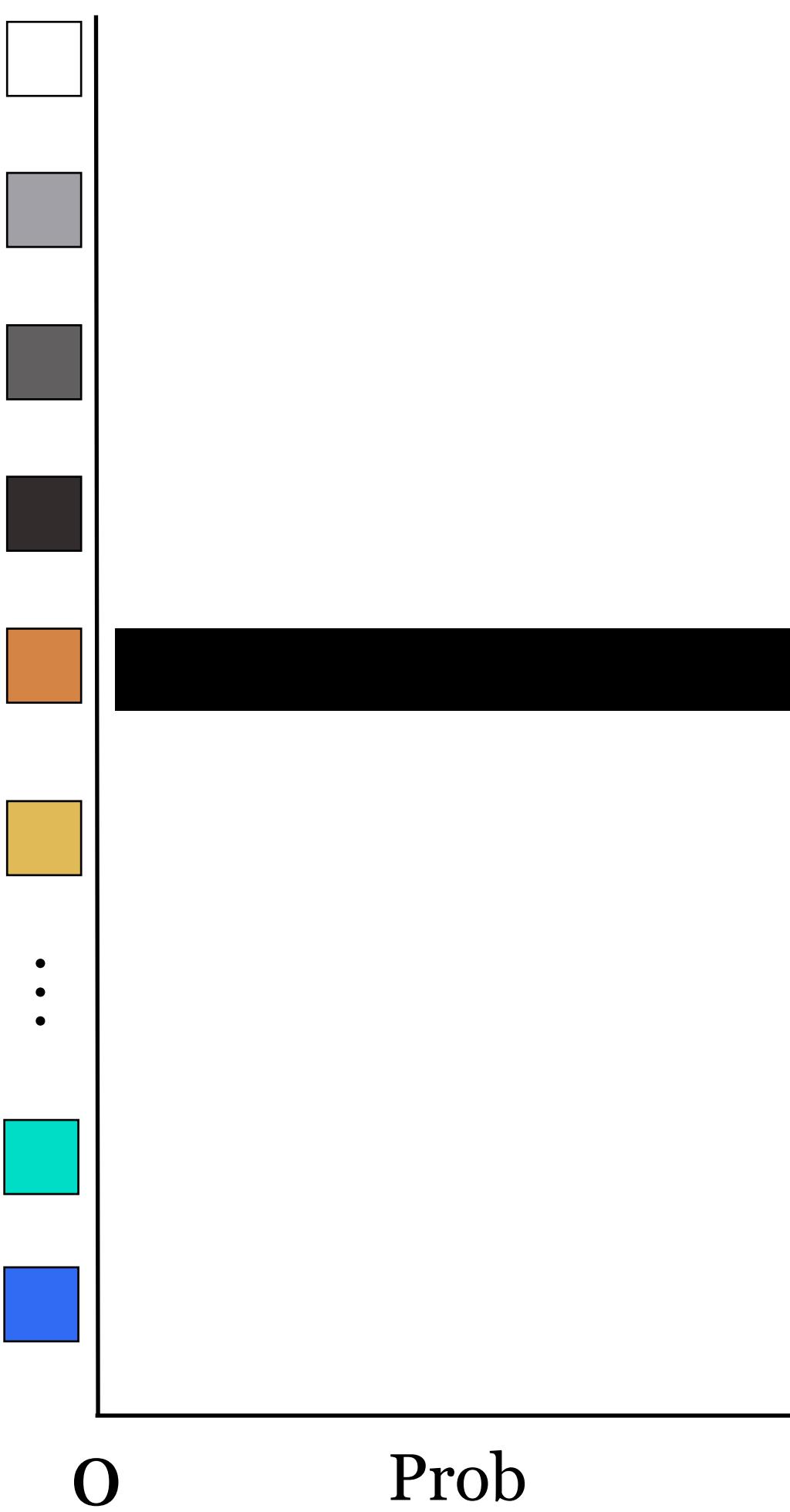
$\mathbf{x}_1, \dots, \mathbf{x}_{n-1}$



f_θ

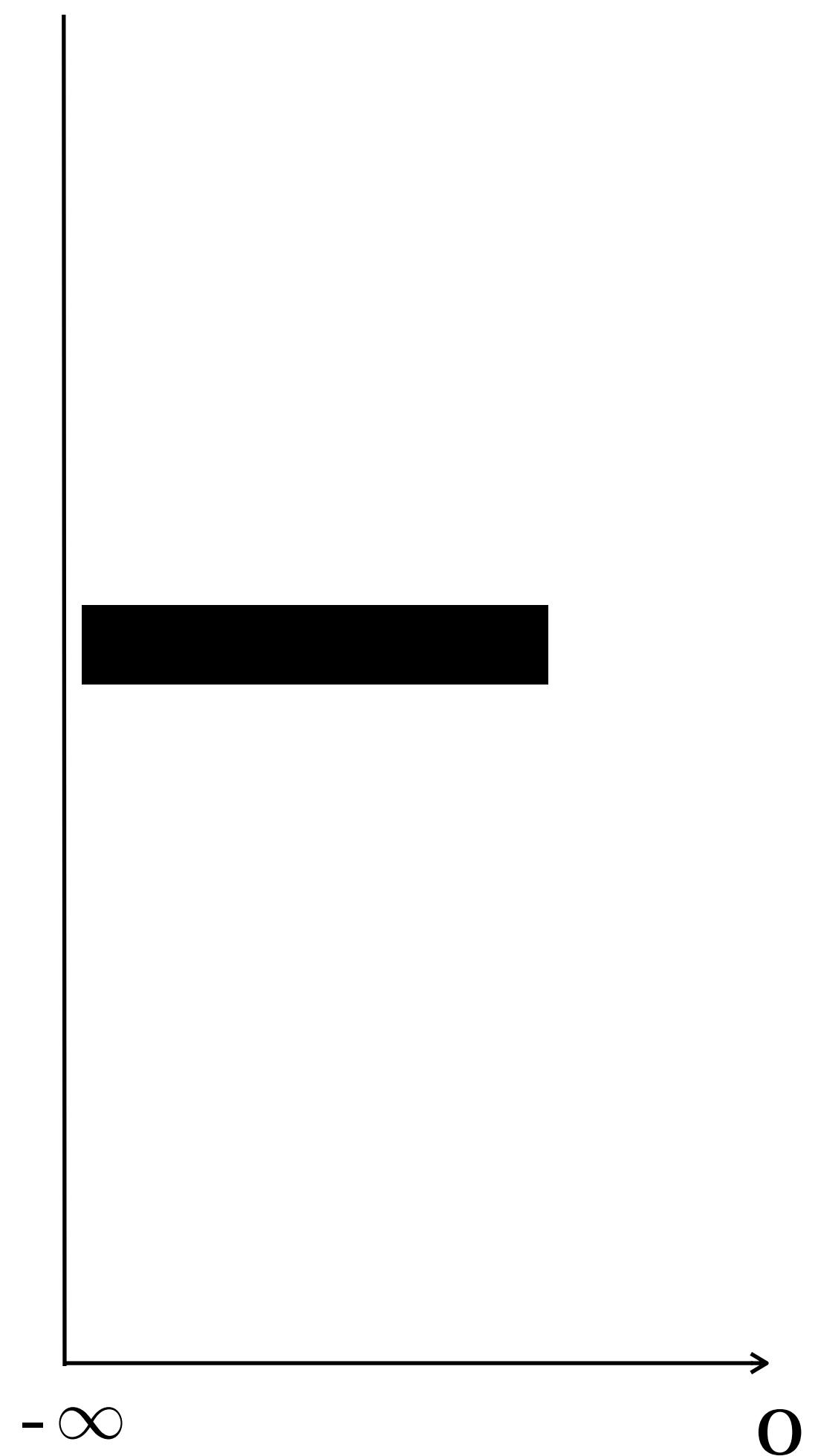
Ground truth label

\mathbf{x}_n

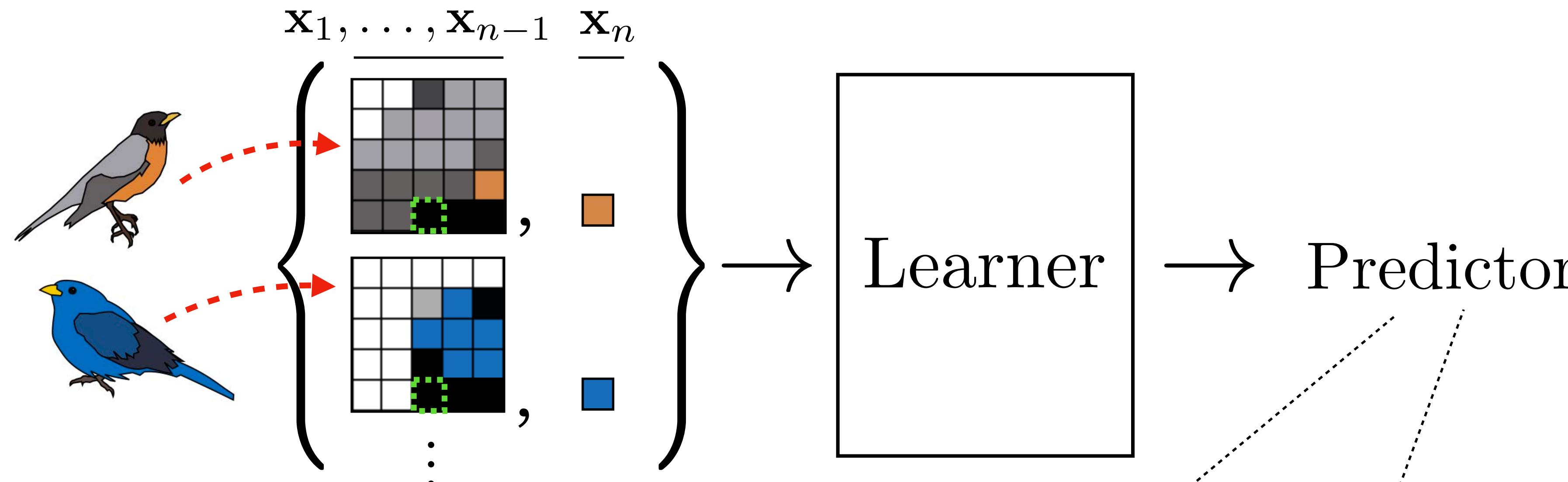


Elementwise scores

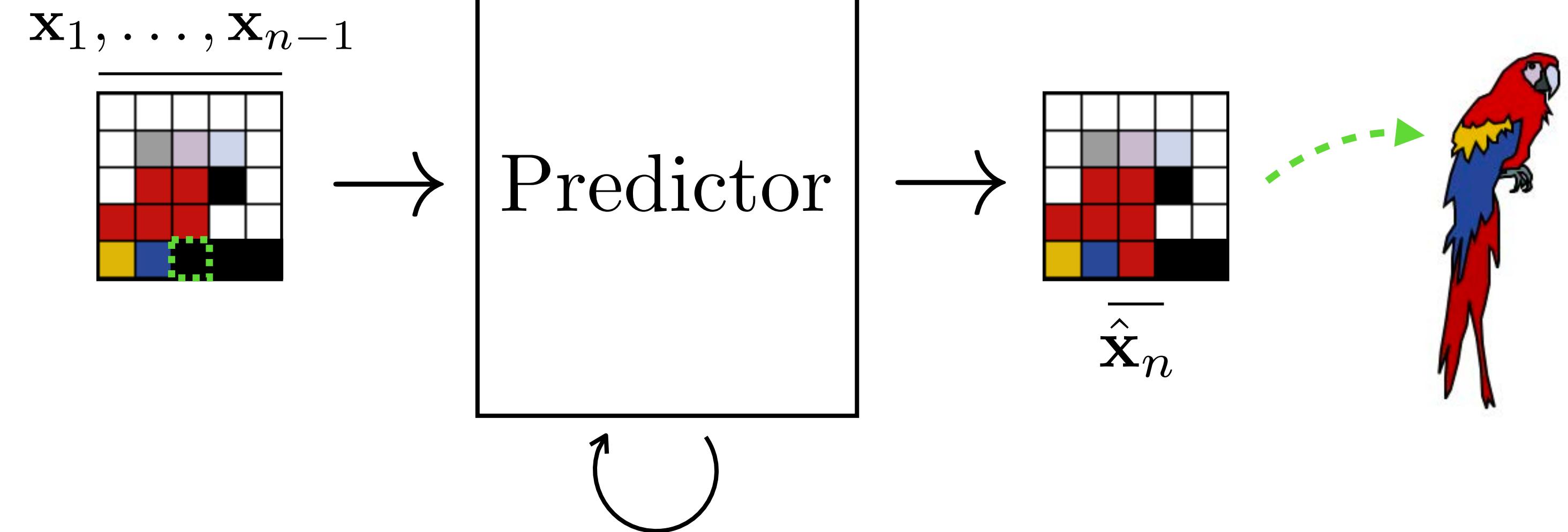
$\mathbf{x}_n \odot \log \hat{\mathbf{x}}_n$

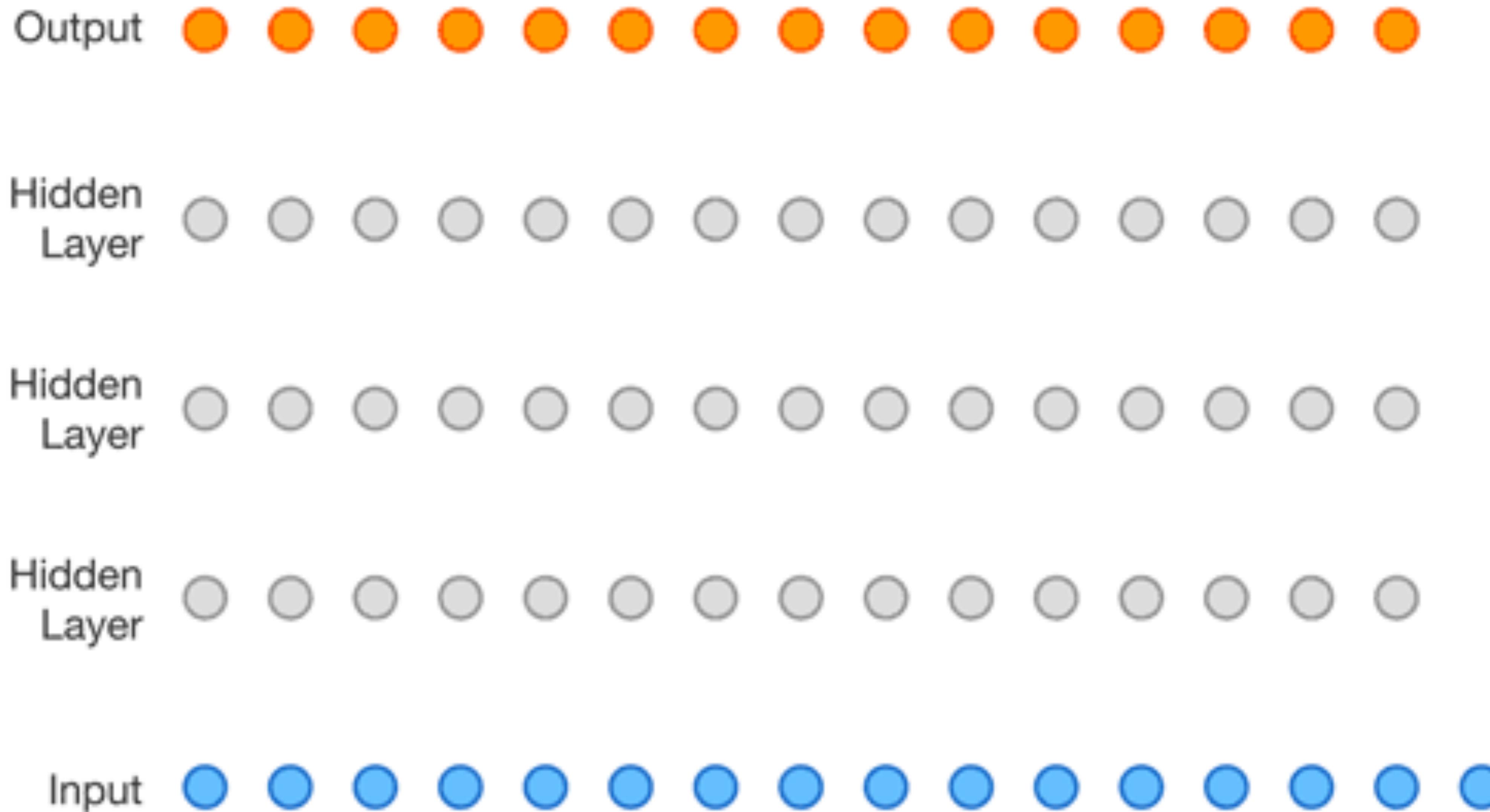


Training



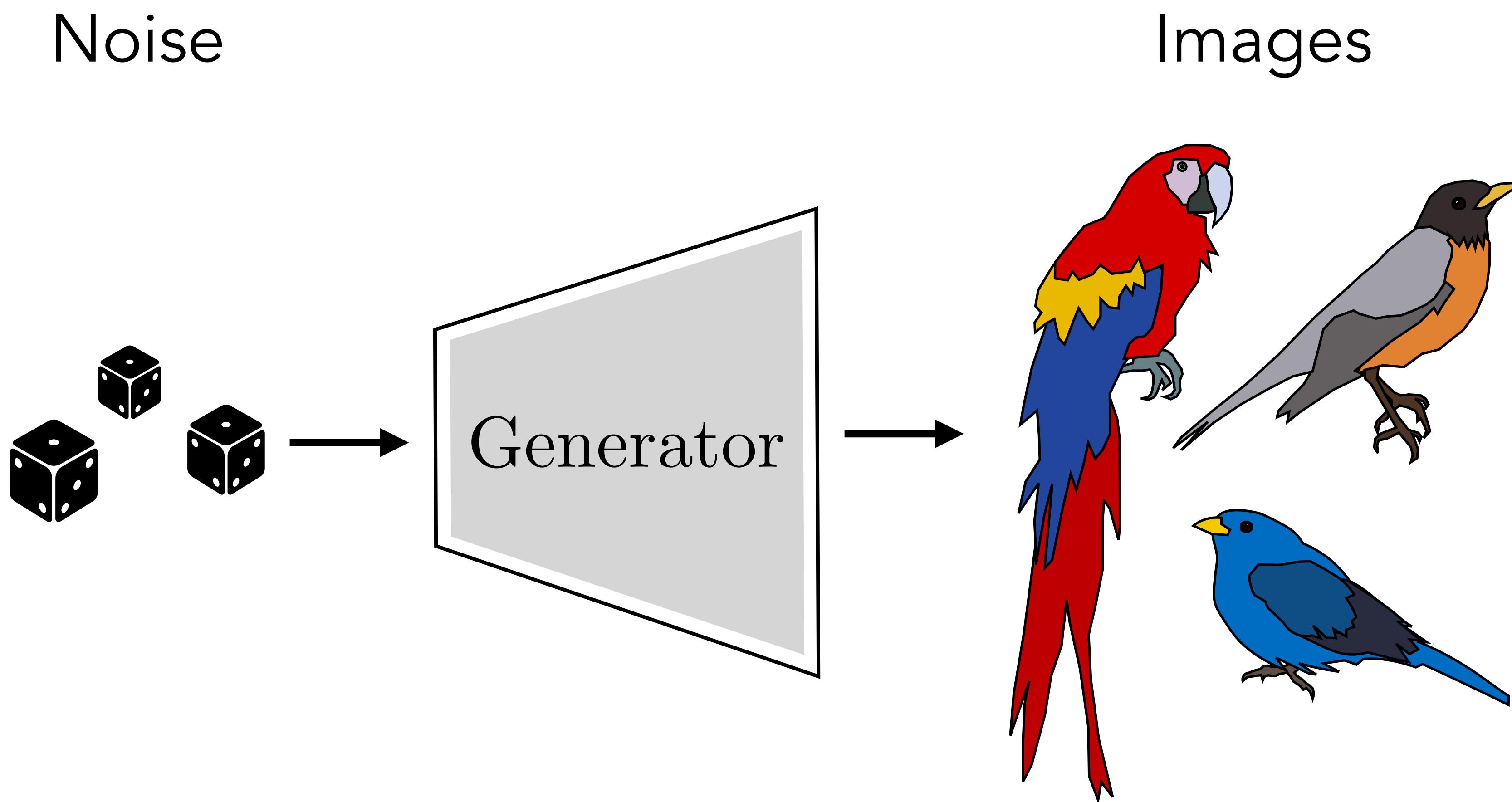
Sampling



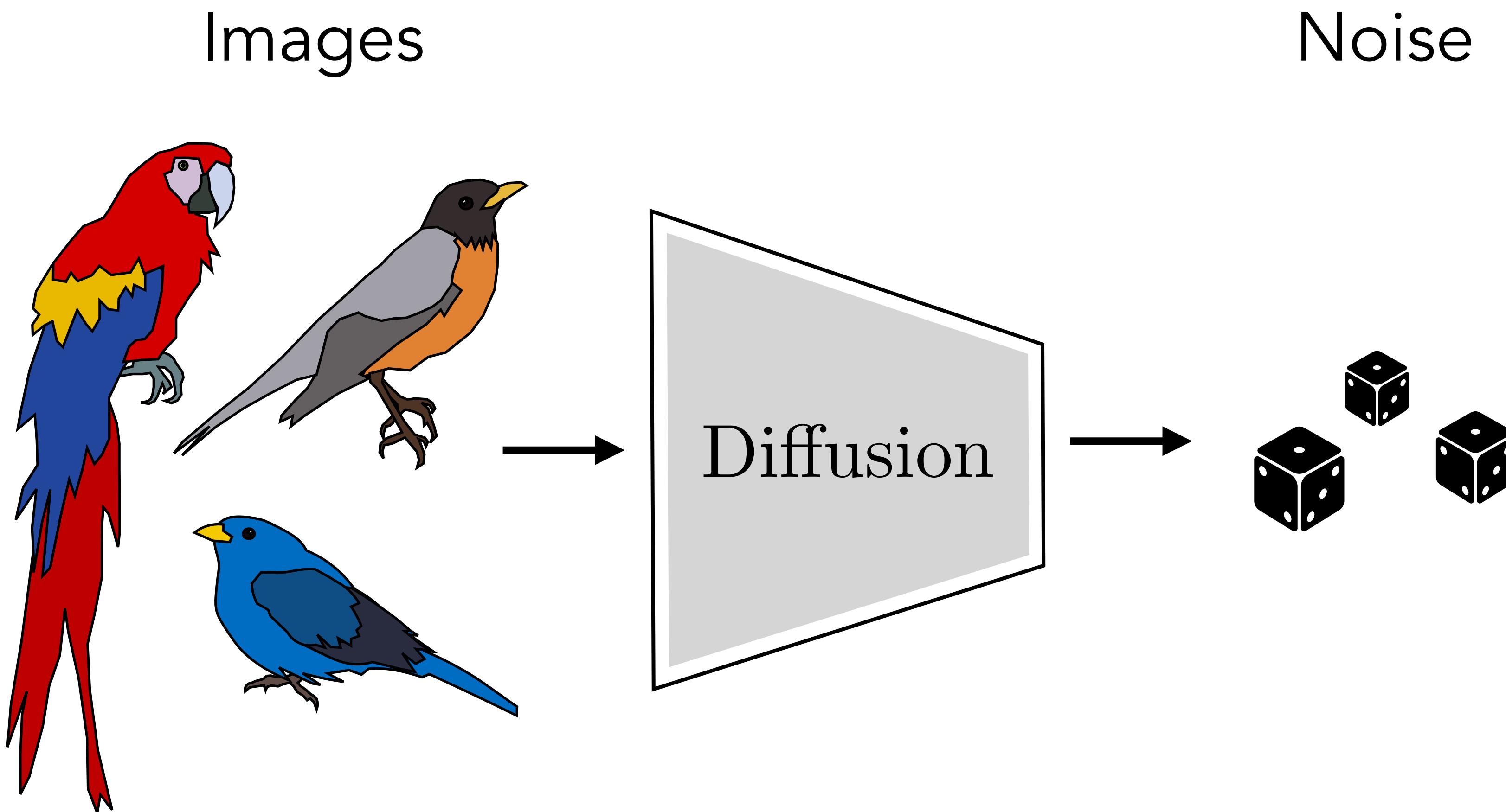


[**Wavenet**, <https://deepmind.com/blog/wavenet-generative-model-raw-audio/>]

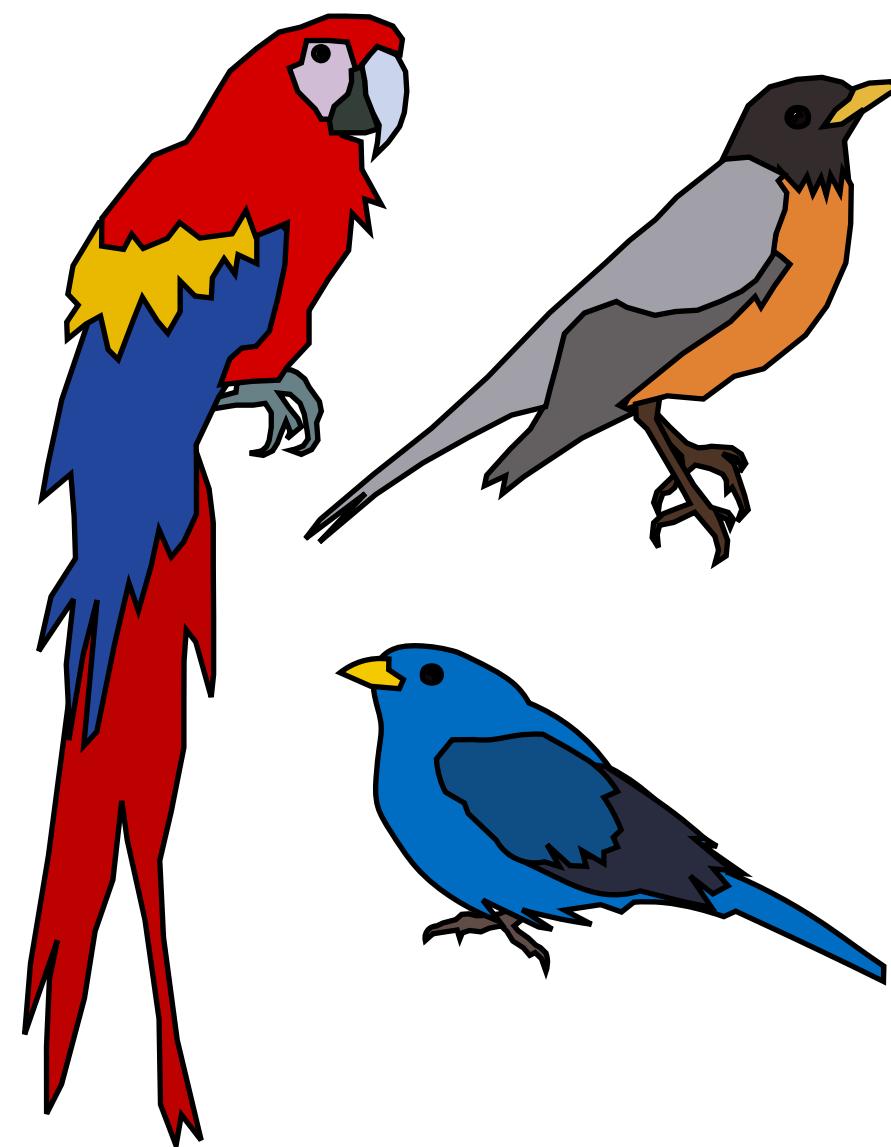
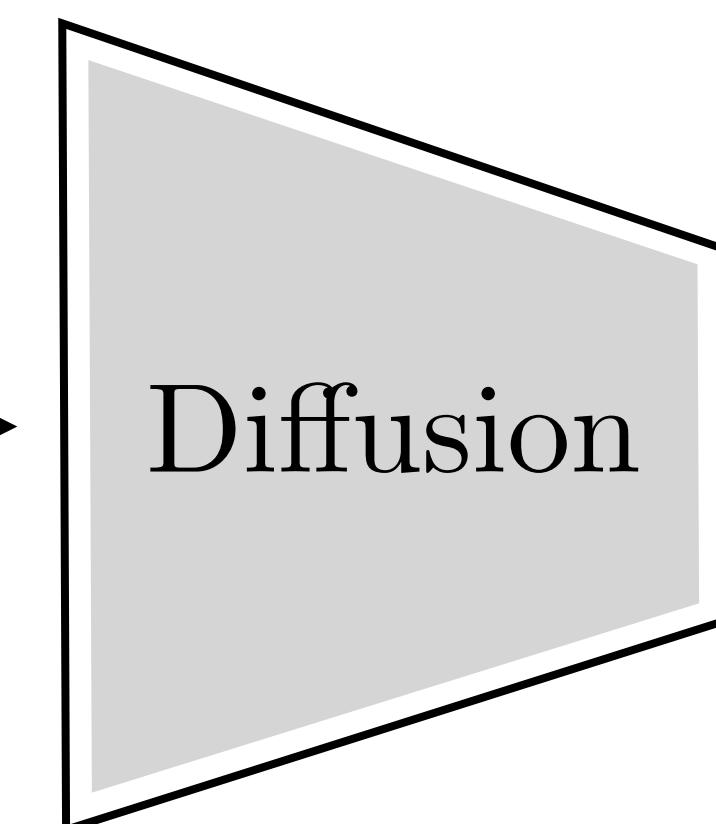
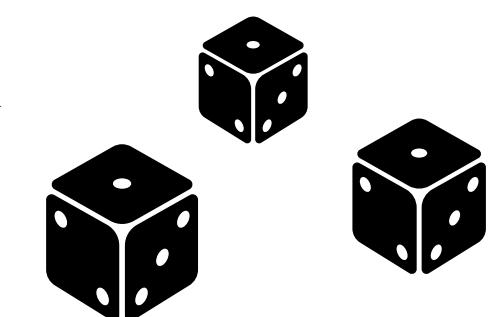
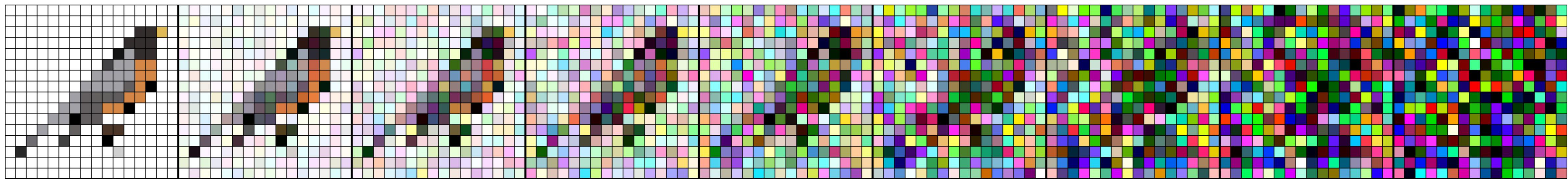
Diffusion models



Diffusion models

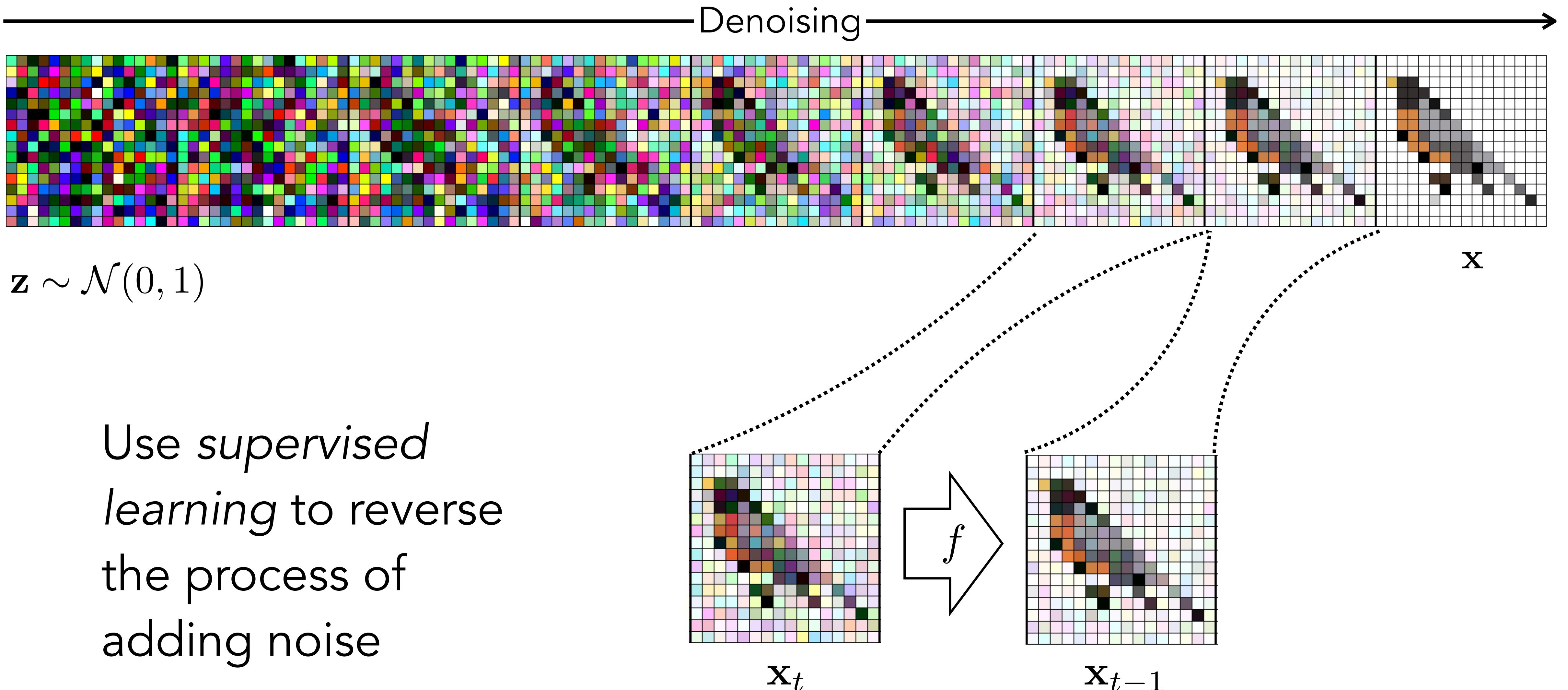


Diffusion models



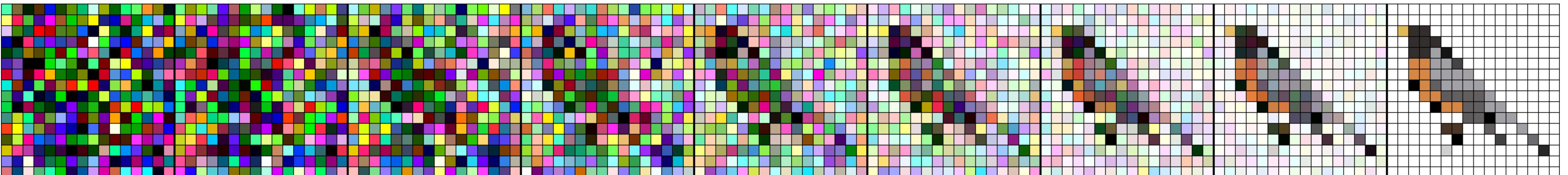
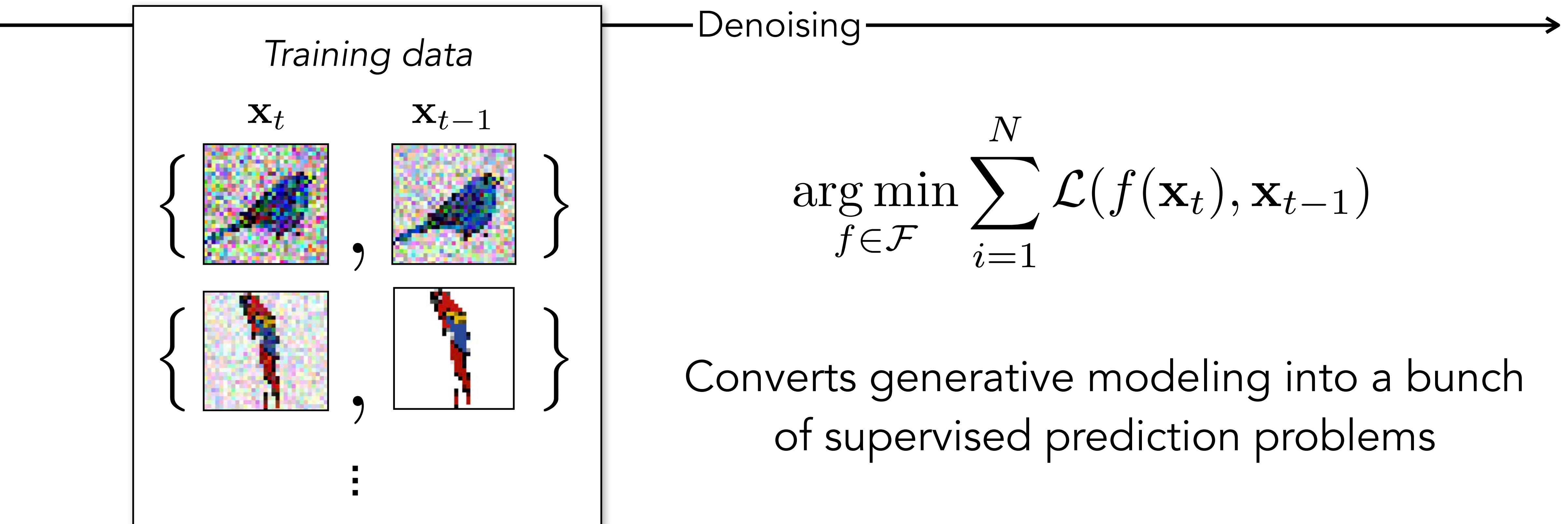
Diffusion: Just add noise

Diffusion models



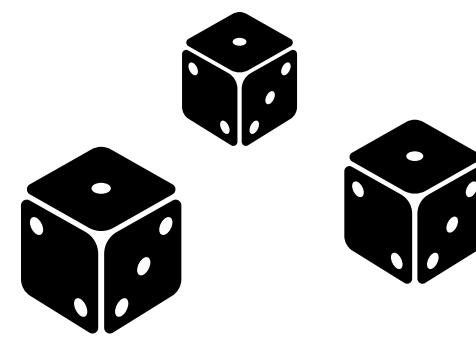
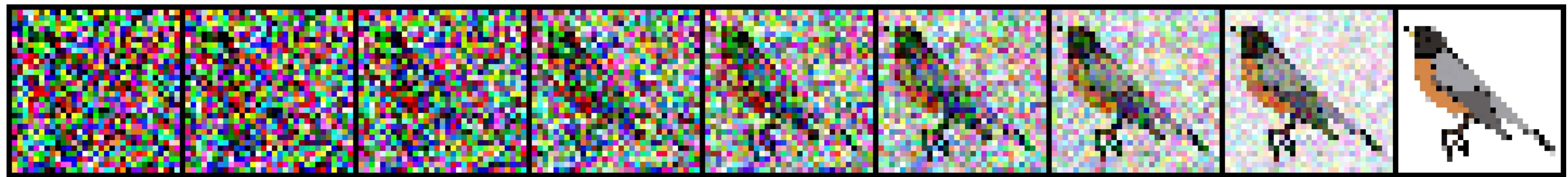
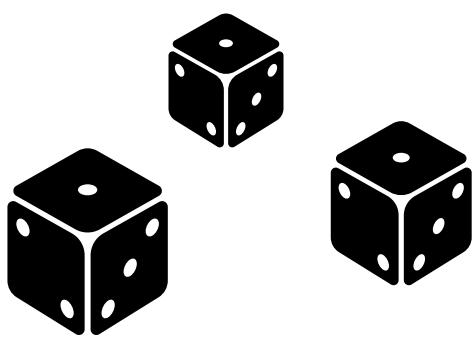
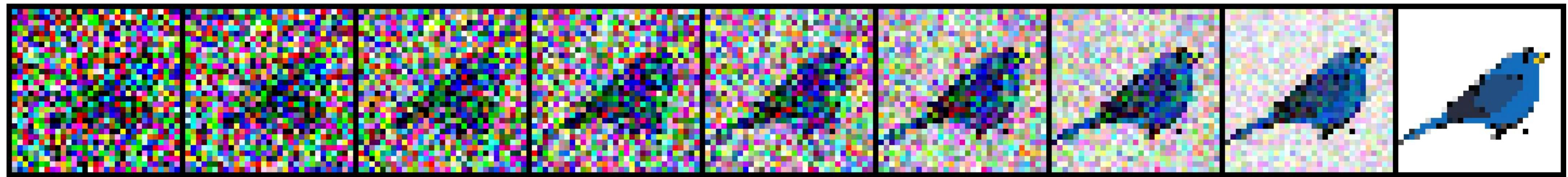
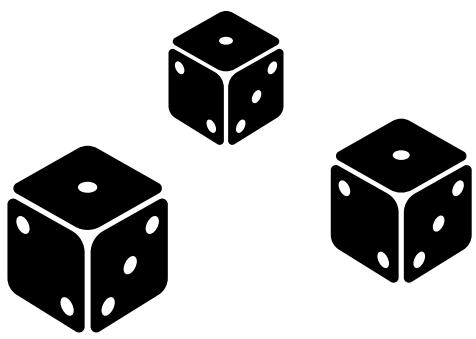
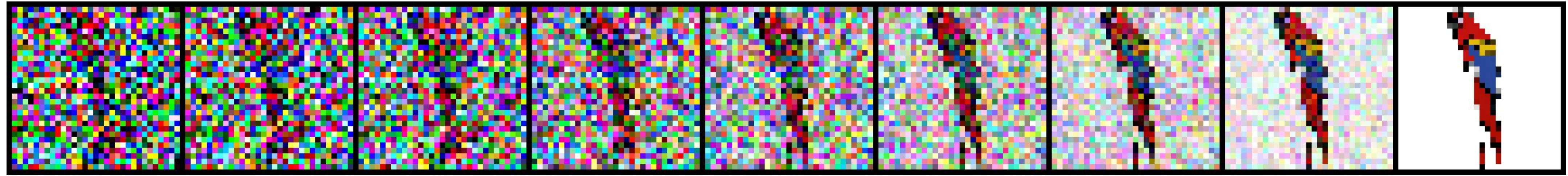
Diffusion models

$$\mathbf{z} \sim \mathcal{N}(0, 1)$$

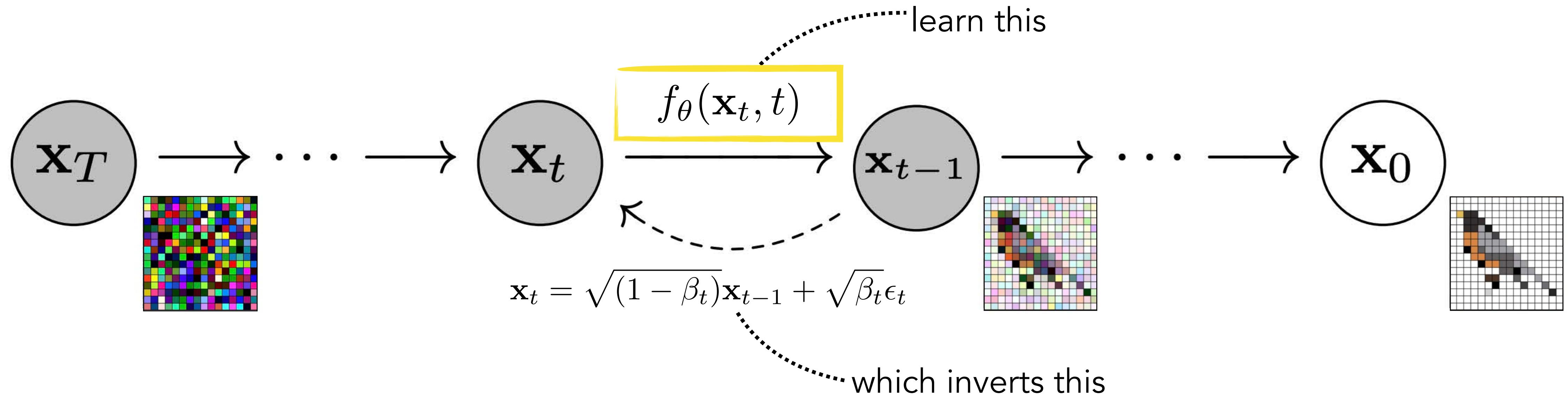


Diffusion models

Different noise samples (dice rolls) result in different images



Gaussian diffusion models



Forward process:

$$\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$\mathbf{x}_t = \sqrt{(1 - \beta_t)}\mathbf{x}_{t-1} + \sqrt{\beta_t}\epsilon_t$$

The variances, beta and sigma, are modeling choices. See Ho, Jain, and Abbeel for details.

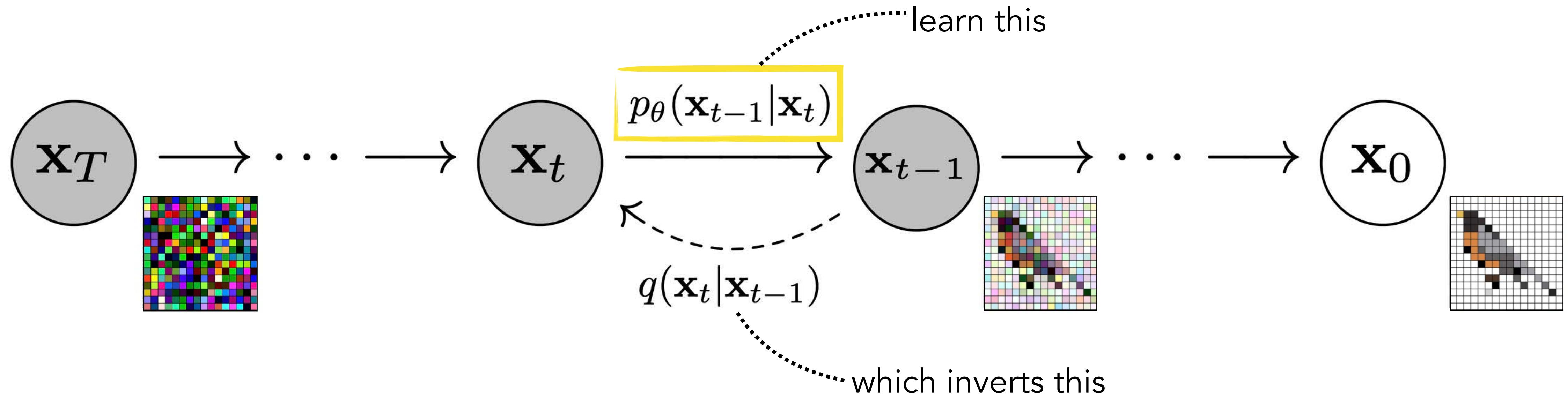
Reverse process:

$$\mu = f_\theta(\mathbf{x}_t, t)$$

$$\mathbf{x}_{t-1} \sim \mathcal{N}(\mu, \sigma^2)$$

[Fig adapted from Ho, Jain, Abbeel, 2020]

Gaussian diffusion models



Forward process:

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t)$$

Reverse process:

$$p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(f_\theta(\mathbf{x}_t, t), \sigma^2)$$

The variances, beta and sigma, are modeling choices. See Ho, Jain, and Abbeel for details.

[Fig adapted from Ho, Jain, Abbeel, 2020]

Stripped down training algorithm

Algorithm 1.2: Training a diffusion model.

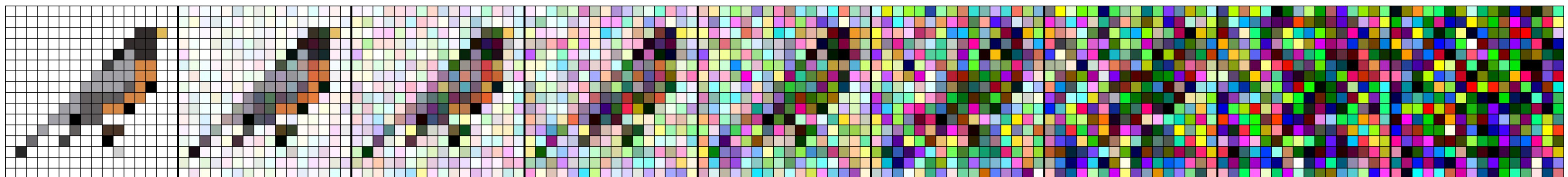
- 1 **Input:** training data $\{\mathbf{x}^{(i)}\}_{i=1}^N$
- 2 **Output:** trained model f_θ
- 3 **Generate training sequences via diffusion:**
- 4 **for** $i = 1, \dots, N$ **do**
- 5 **for** $t = 1, \dots, T$ **do**
- 6 $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 7 $\mathbf{x}_t^{(i)} \leftarrow \sqrt{(1 - \beta_t)} \mathbf{x}_{t-1}^{(i)} + \sqrt{\beta_t} \epsilon_t$
- 8
- 9 **Train denoiser** f_θ **to reverse these sequences:**
- 10 $\theta^* = \arg \min_\theta \sum_{i=1}^N \sum_{t=1}^T \mathcal{L}(f_\theta(\mathbf{x}_t^{(i)}, t), \mathbf{x}_{t-1}^{(i)}))$
- 11 **Return:** f_{θ^*}

Colab:

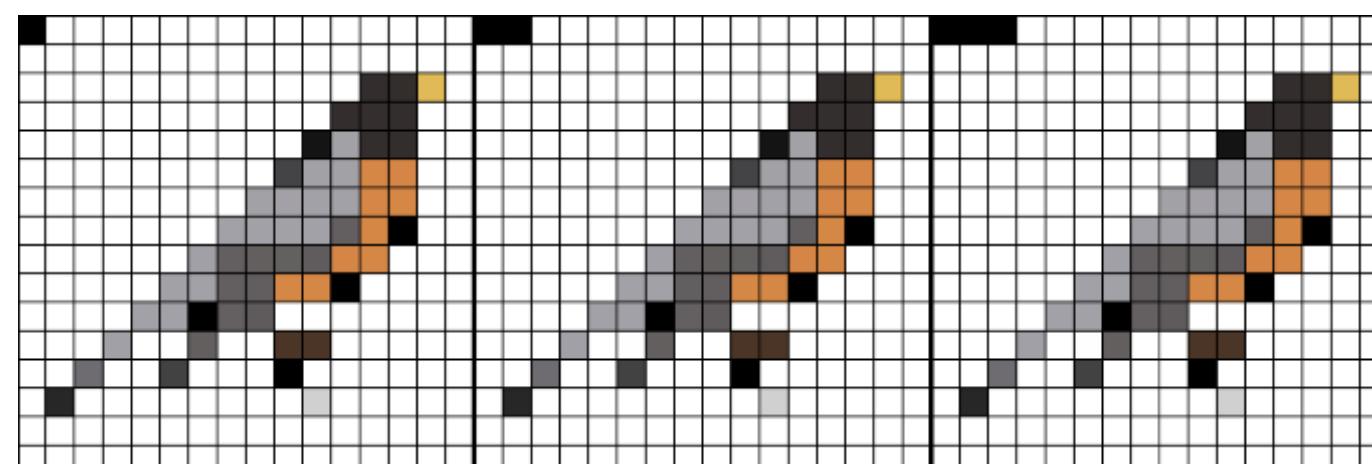
<https://colab.research.google.com/drive/1YUFwGs0lEaBUpSdJIEZtCATe44TUjw?usp=sharing>

Autoregressive models vs diffusion models

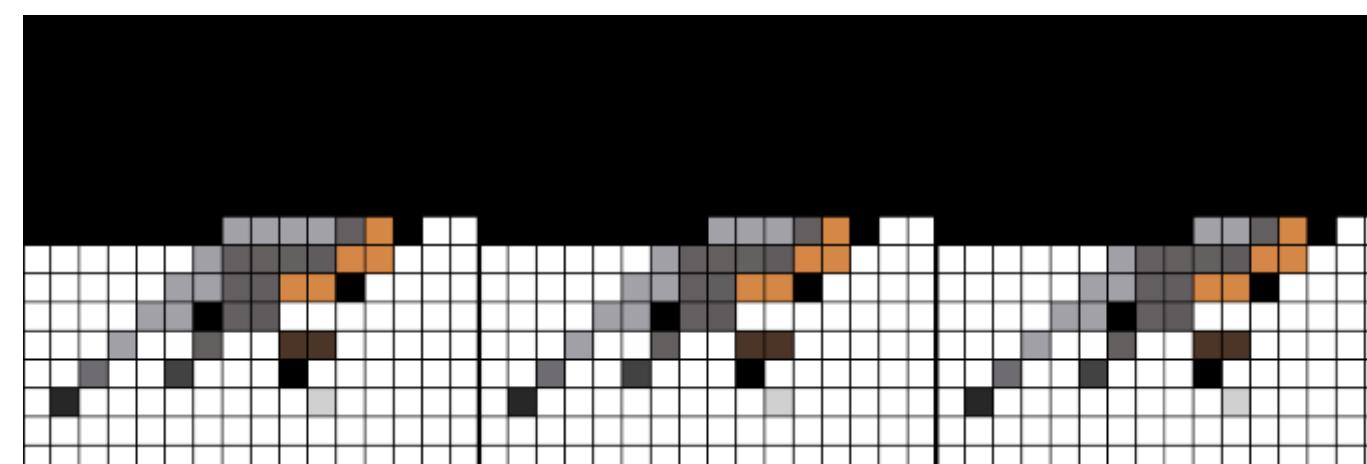
Forward diffusion process



Reverse autoregressive sequence

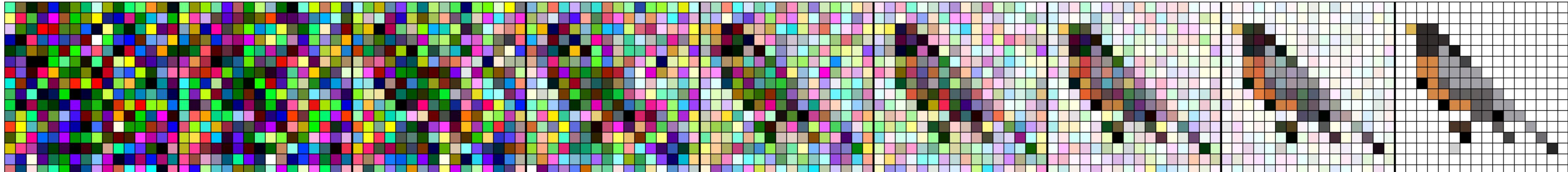


...

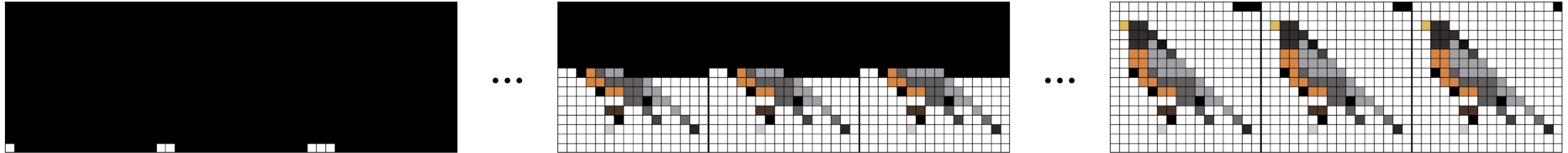


...

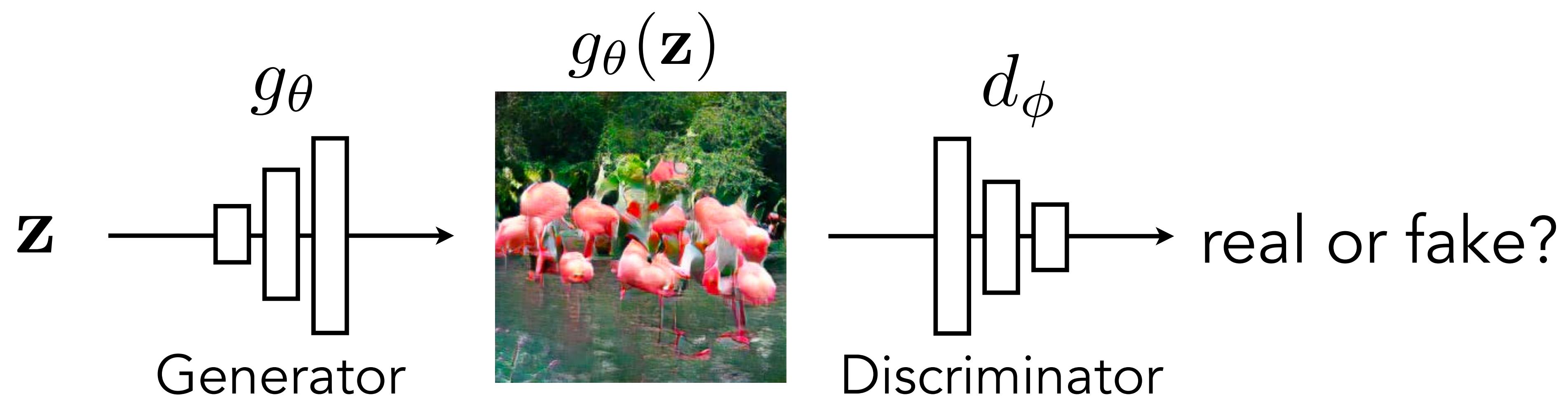
Diffusion model



Autoregressive model



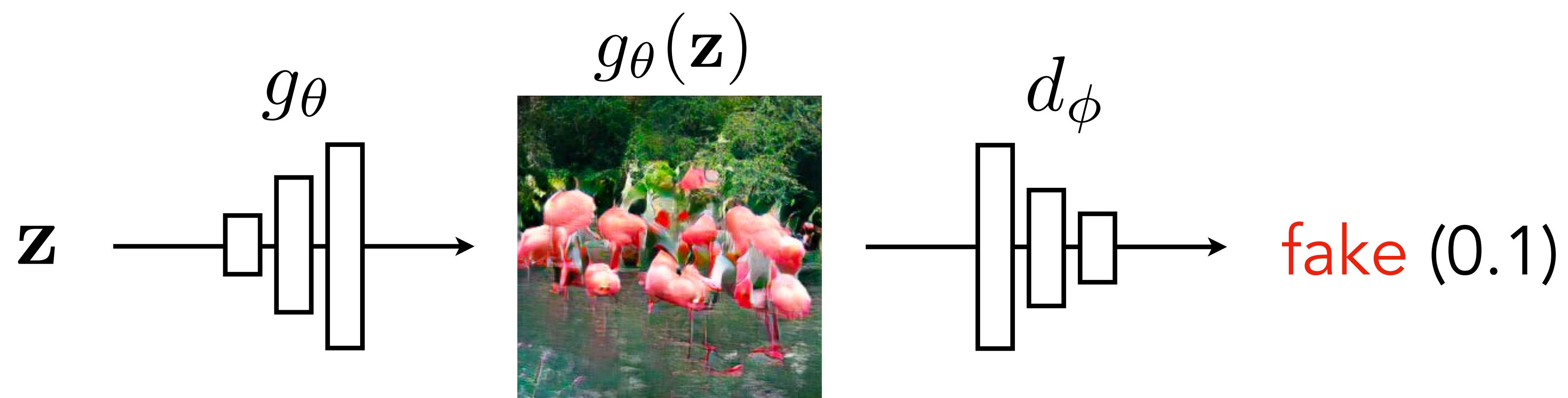
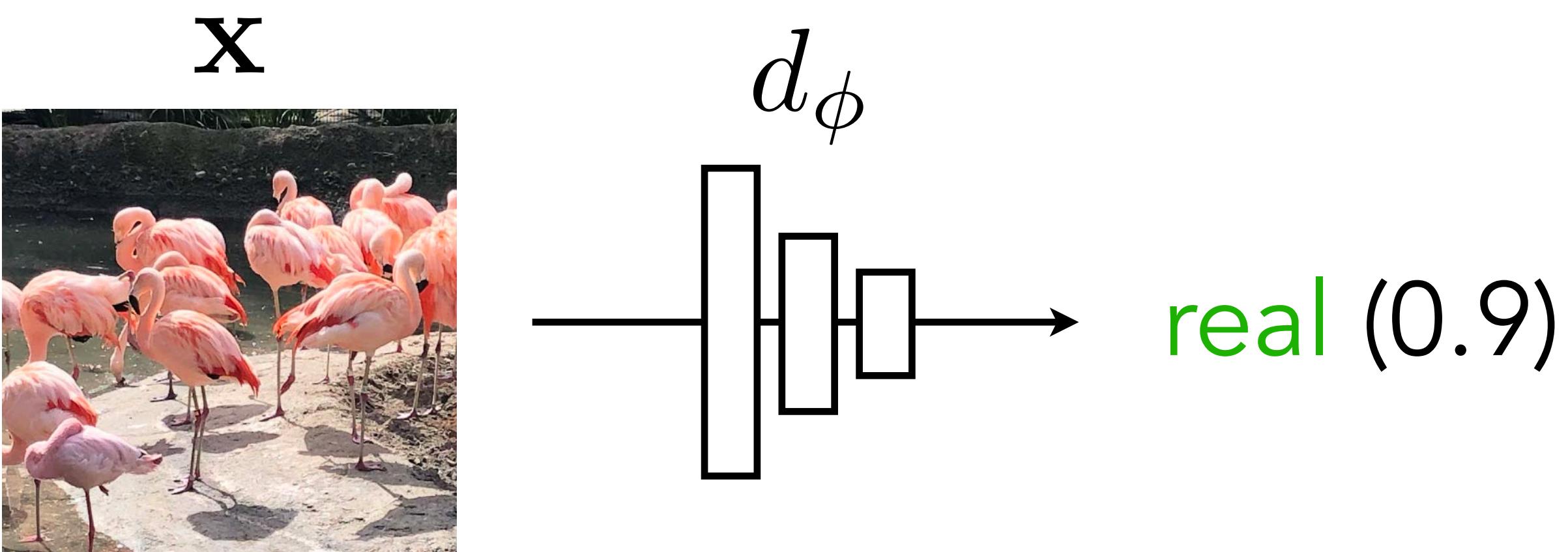
Concept #3: A common strategy is to turn generative modeling into a sequence of supervised learning problems



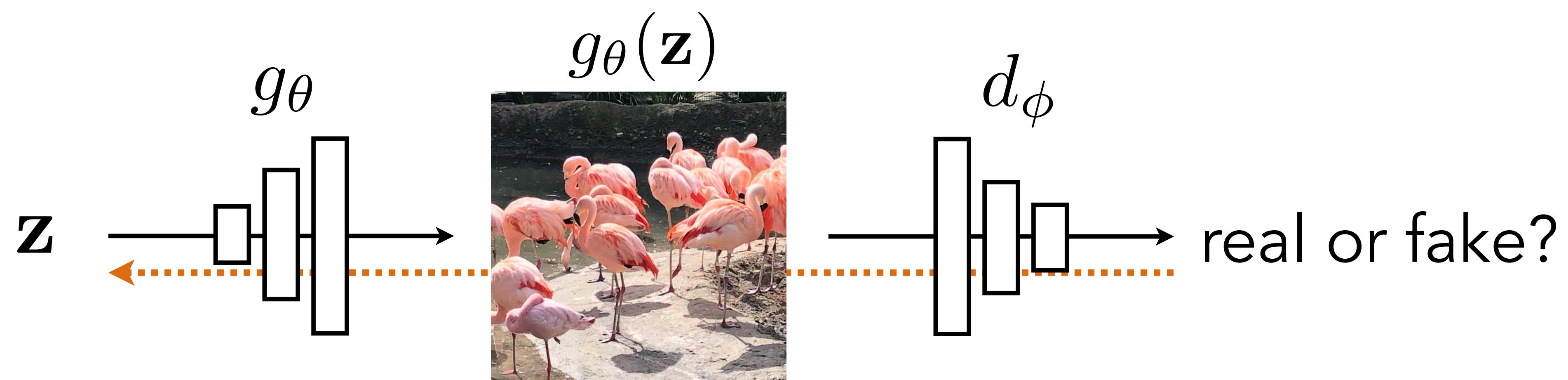
Generative Adversarial Networks (GANs)

g tries to synthesize fake images that fool d

g tries to identify the fakes

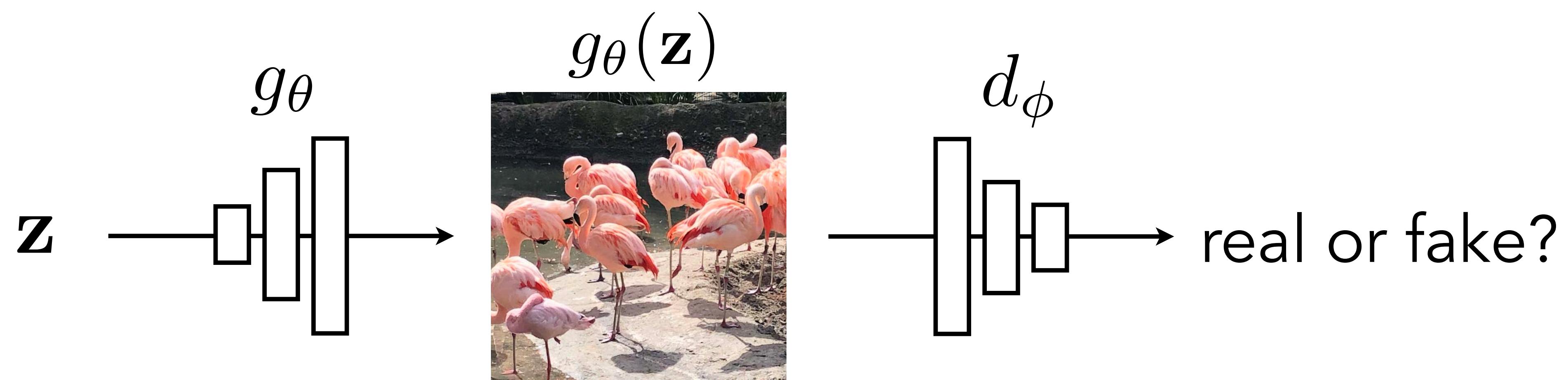


$$d_\phi^* = \arg \max_{\phi} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log d_\phi(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}} [\log(1 - d_\phi(g_\theta(\mathbf{z})))]$$



g tries to synthesize fake images that *fool* d :

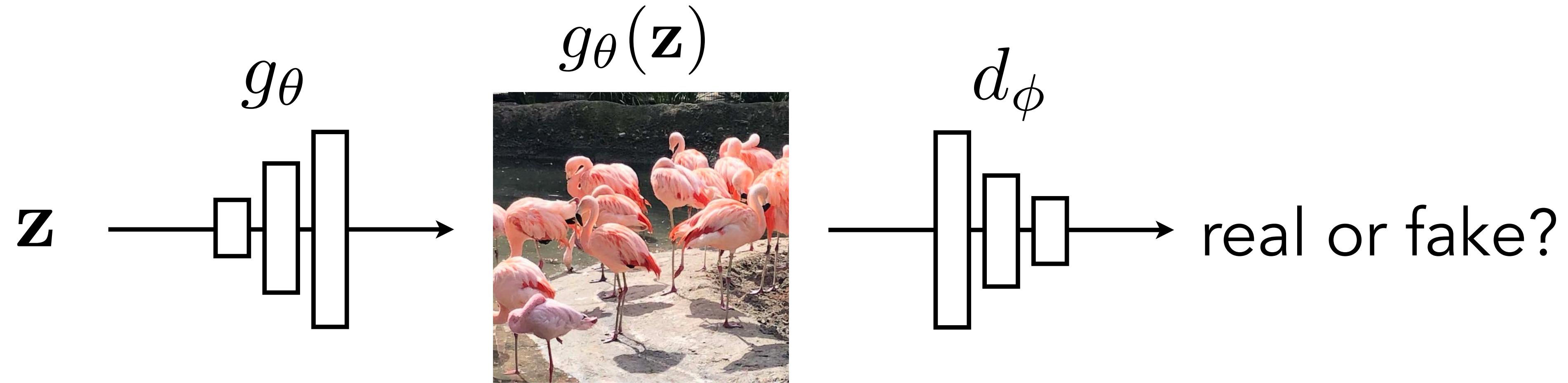
$$\boxed{\arg \min_{\theta} \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}} [\log(1 - d_{\phi}^*(g_{\theta}(\mathbf{z})))]}$$



g tries to synthesize fake images that *fool* the *best* d :

$$\arg \min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log d_{\phi}(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}} [\log(1 - d_{\phi}(g_{\theta}(\mathbf{z})))]$$

GANs — Training

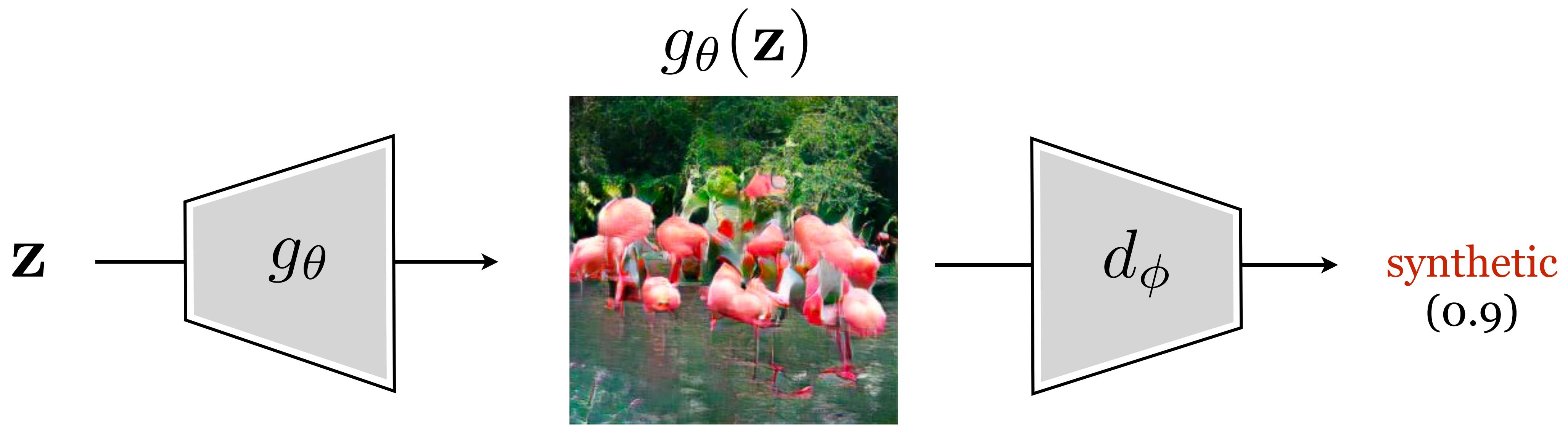


g tries to synthesize fake images that fool d

d tries to identify the fakes

- Training: iterate between training d and g with backprop.
- Global optimum when g reproduces data distribution.

Synthetic data



Real data

Training data



Discriminator's task

MIT OpenCourseWare

<https://ocw.mit.edu>

6.7960 Deep Learning

Fall 2024

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>