

# Architectural Bias on Representations

---

Jeremy Bernstein

[jbernstein@mit.edu](mailto:jbernstein@mit.edu)



## Aside: Steepest Descent (HW2)

$$\operatorname{argmin}_{\Delta w} \operatorname{Tr}(G^T \Delta w) + \frac{\lambda}{2} \|\Delta w\|_2^2$$

spectral norm

Solution for  $G = U \Sigma V^T$   reduced SVD

$$\Delta w = -\frac{\operatorname{Tr}(\Sigma)}{\lambda} U V^T$$

"steepest descent under the spectral norm"

# Neural Network Speedrunning

@kellerjordan()

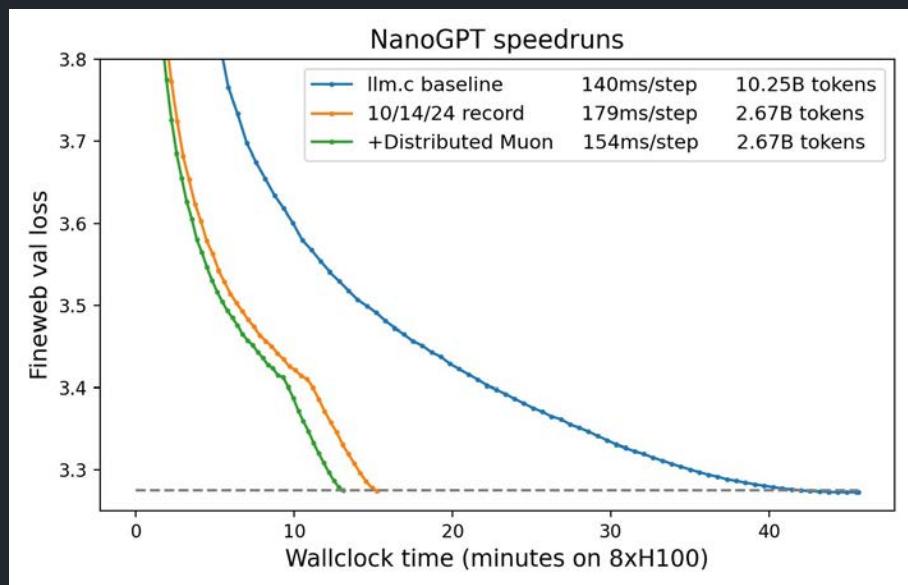
$$\Delta w = - \frac{\text{Tr}(\Sigma)}{\lambda} U V^\top$$

"steepest descent under the spectral norm"

Add some tricks: momentum

low precision

fast computation of  $UV^\top$  via iteration



3

"Muon optimizer"  
trains nanoGPT to  
3.28 val loss on  
"Fineweb" dataset  
in < 15 minutes

# Similarity-Based Representation Learning (Lecture 12)

training objective that maps similar data to nearby embeddings

DATA  
SPACE



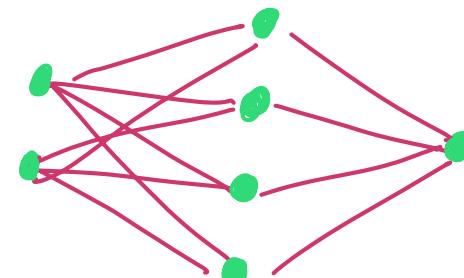
EMBEDDING  
SPACE



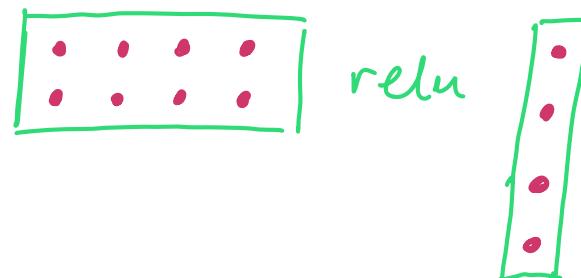
Dog © source unknown. Monkey © San Diego Zoo. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

# Perspectives on Neural Computation (Lecture 7)

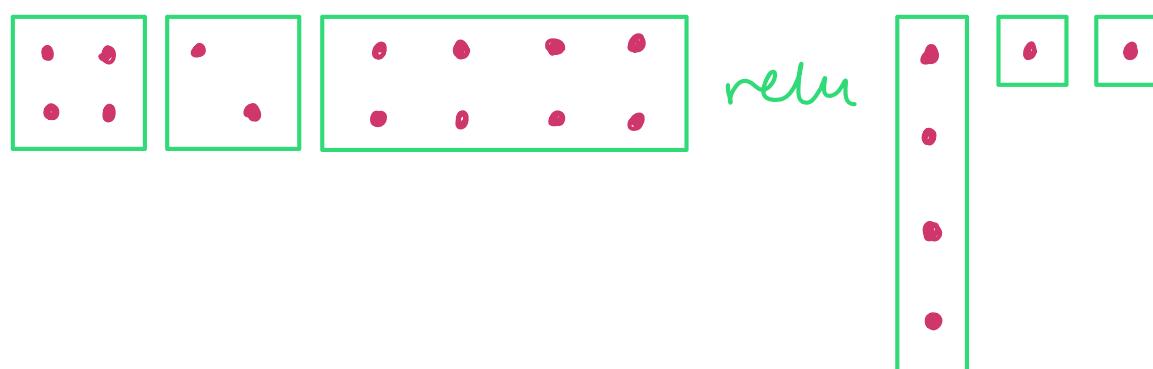
#1 NEURAL PERSPECTIVE



#2 TENSOR PERSPECTIVE

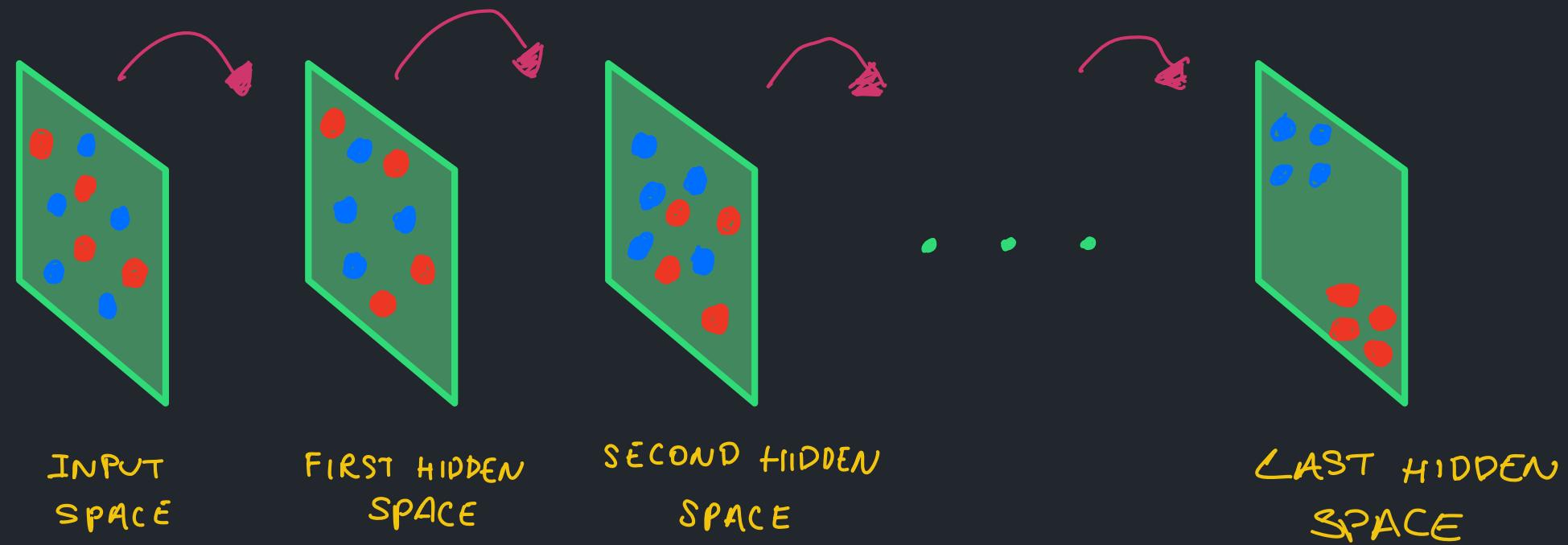


#3 SPECTRAL PERSPECTIVE



# A More Abstract Perspective

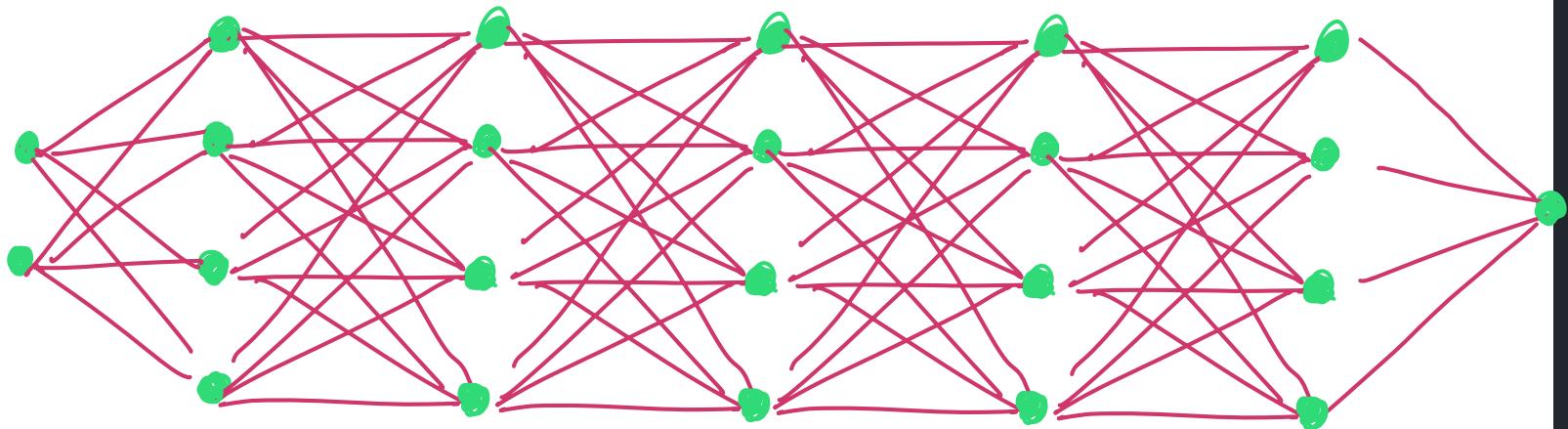
A neural net is a map through a sequence of vector spaces.



Want a good representation of the data at the final layer  
e.g. linearly separable

## This Lecture

We will develop an advanced tool that shows that a neural architecture (even without training) already expresses an opinion about data similarity.



# A Journey to the Past

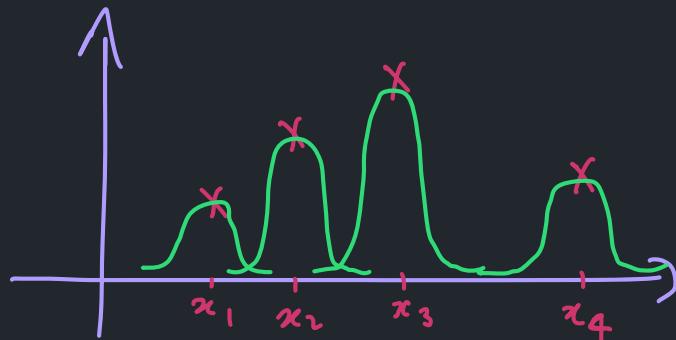
Pretend you've never heard of deep learning, and you want to fit some data.



How would you do it?

# Function Space Construction #1

Place a "bump function" on each datapoint:



$k$  is called  
the "kernel"

Formally, we consider functions of the form

$$f(x) = \sum_{i=1}^n \alpha_i k(x, x_i)$$

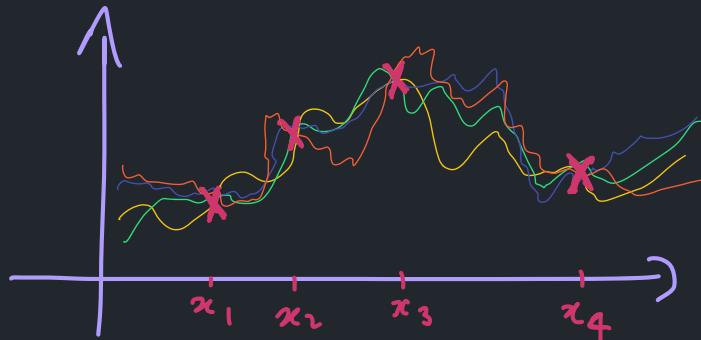
where:

- $k(x, x_i)$  is a bump centered on  $x_i$
- the  $\alpha_i$  are weights

The freedom to choose the number of bumps  $n$ , the bump centres  $x_i$  and the weights  $\alpha_i$  leads to a rich function space called a "reproducing kernel Hilbert space".

## Function Space Construction #2

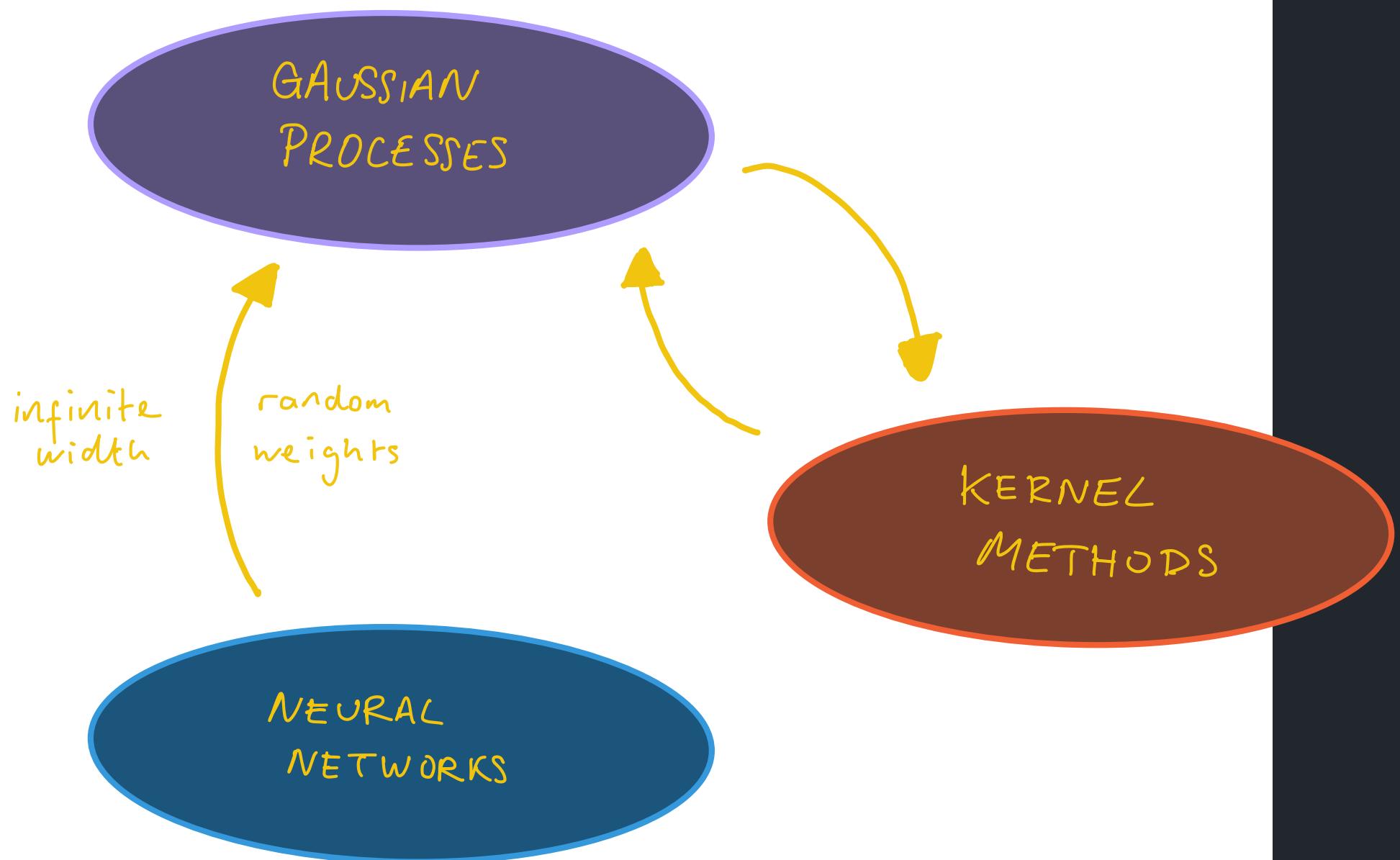
Draw random functions consistent with the data



We will look at a special way of drawing random functions that uses Gaussian random variables

→ it is called a Gaussian process (GP)

# Correspondences between Function Spaces



# GAUSSIAN PROCESSES

---

# What is a Gaussian Process Pictorially?

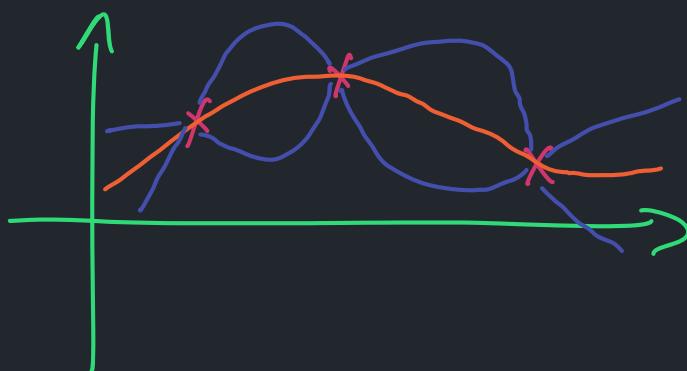
Given data



A Gaussian process gives us a distribution of consistent functions



Along with a formula for the mean and standard deviation of this distribution



# What is a Gaussian Process Informally?

Sample a Gaussian vector:

$$\boxed{11111111111111} \sim \mathcal{N}(0, \Sigma)$$

We can construct a function by plotting the components of this vector



$$\text{e.g. } \Sigma_{ij} \sim \exp - (i-j)^2$$

This leads to more "continuous looking" functions.<sup>14</sup>

# What is a Gaussian Process Formally?

Consider an input space  $X$

Let  $f(x)$  be a random variable for every  $x \in X$

Informally, think of  $f$  as an infinite-dimensional random vector indexed by  $x \in X$ .

If for every finite collection of inputs

$$x_1, x_2, \dots, x_n$$

the associated finite-dimensional random vector

$$\begin{array}{|c|c|c|c|} \hline f(x_1) & f(x_2) & \dots & f(x_n) \\ \hline \end{array} \quad \text{is Gaussian}$$

then  $f$  is a "Gaussian process" on  $X$ .

# Covariance Functions

A Gaussian process generalises

finite-dimensional  
Gaussian vectors



infinite-dimensional  
functions

The covariance matrix



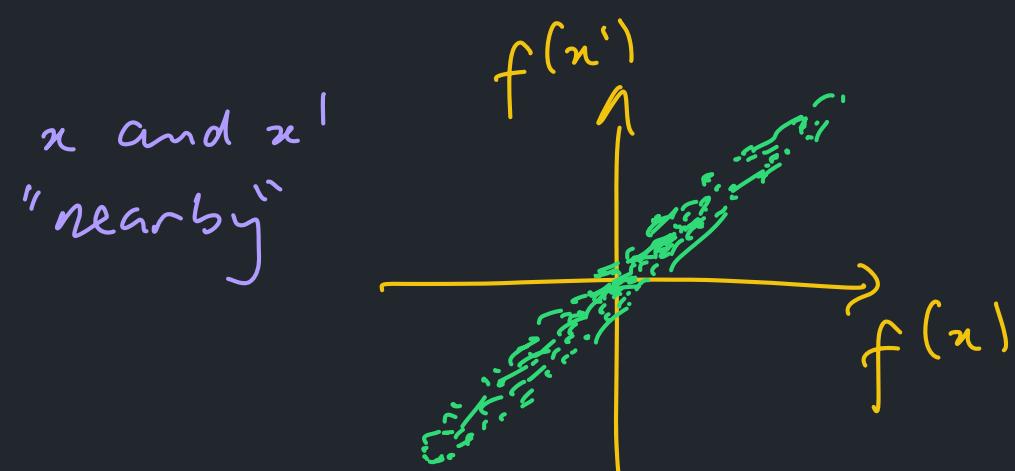
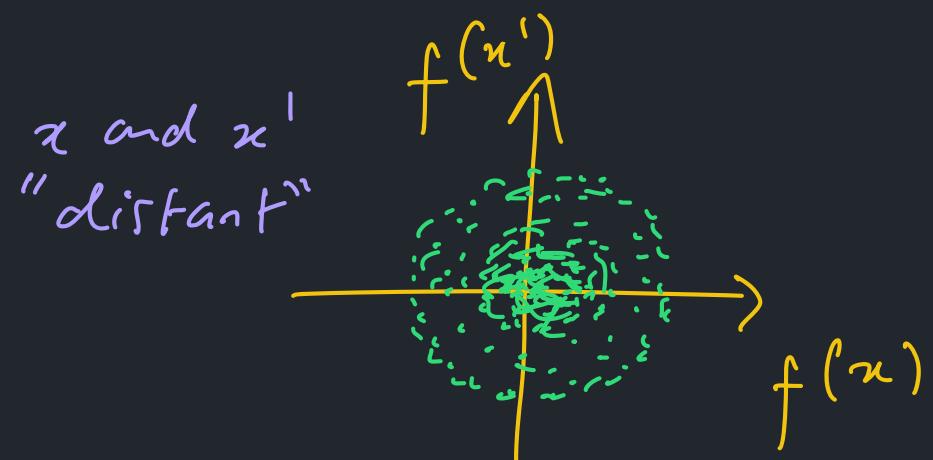
covariance function

$\Sigma_{ij}$  for  $i, j = 1, \dots, n$

$\Sigma(x, x')$  for  $x, x' \in X$

# Covariance Functions

Typically, we want a covariance function that is large for "nearby" points and small otherwise



→ choice of covariance function encodes what we mean by "nearby"

e.g. squared exponential

inner product

$$\Sigma(x, x') = e^{-\frac{(x-x')^2}{2}}$$

$$\Sigma(x, x') = \langle x, x' \rangle$$

# Conditioning on Data

Suppose we are given  $f(x_1), \dots, f(x_n)$

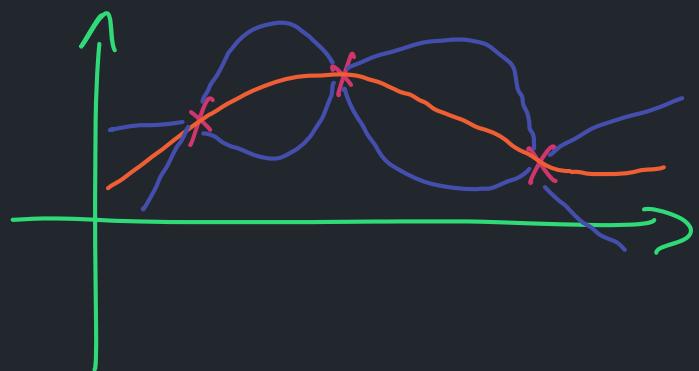
And we want to predict  $f(x_*)$

Since  $f$  is a Gaussian process, then this vector is Gaussian

$$\begin{bmatrix} f(x_1) & f(x_2) & \dots & f(x_n) & f(x_*) \end{bmatrix}$$

Can prove:  $f(x_*)$  given  $f(x_1), \dots, f(x_n)$  is  $\mathcal{N}(\mu, \sigma^2)$

The mean  $\mu(x_*)$  and standard deviation  $\sigma(x_*)$  have simple closed form formulae.

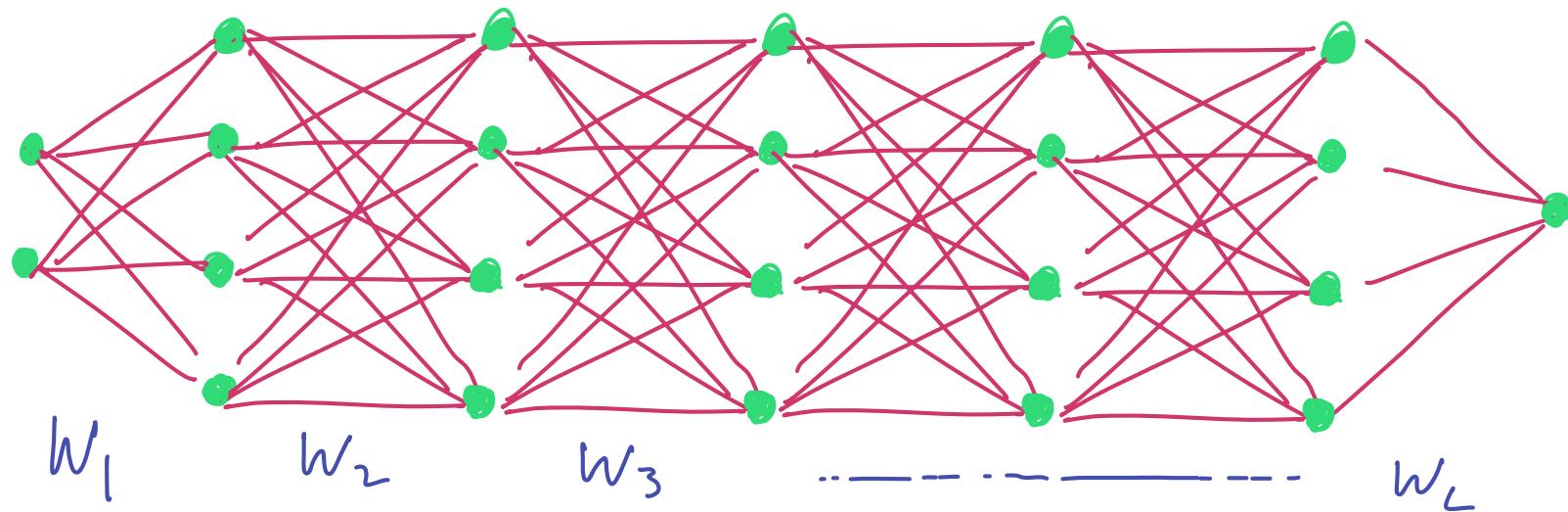


## NN-GP CORRESPONDENCE

---

# Random Weights $\Rightarrow$ Random Functions

Consider a neural network :



If we randomly sample the weights,  
we get a random function.

# Inspecting the Random Functions

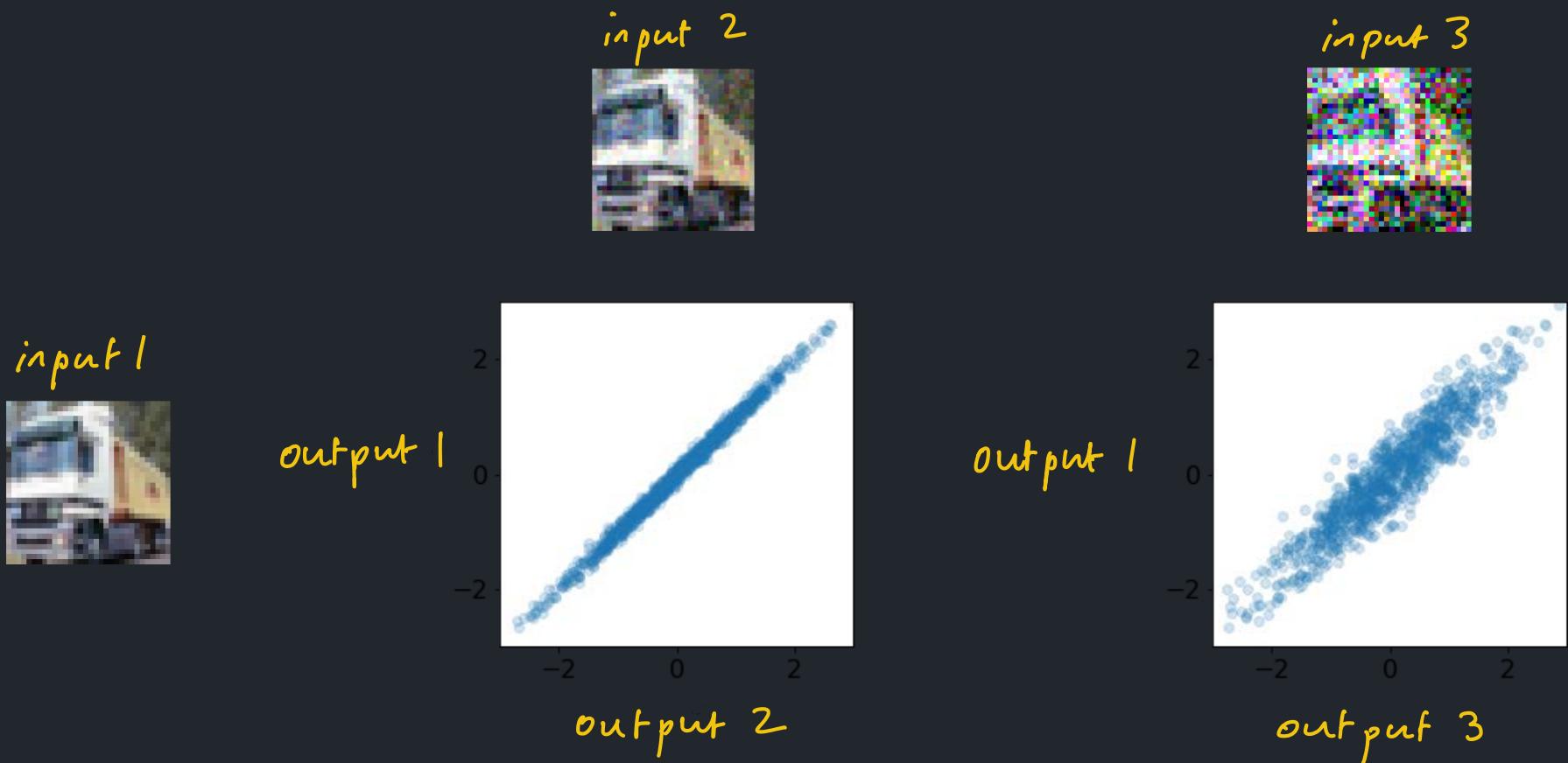
To inspect the distribution of random functions

Pick two inputs  $x$  and  $x'$

Sample 1000 random networks  $f_1, \dots, f_{1000}$

Plot scatterplot of  $\begin{bmatrix} f_1(x_1), & f_1(x_2) \\ f_2(x_1), & f_2(x_2) \\ \vdots \\ f_{1000}(x_1), & f_{1000}(x_2) \end{bmatrix}$

# 3 Layer MLP, Width 1000



Observations:

- joint distribution of pairs of outputs seems Gaussian
- covariance depends on similarity of inputs

# Neural Network - Gaussian Process Correspondence

If we sample iid the weights of an NN

then as the width  $\rightarrow \infty$

The joint distribution of any finite collection of network outputs  $f(x_1)$   $f(x_2)$  ...  $f(x_n)$  is Gaussian.

The covariance function depends on the architecture and non-linearity.

# Proof Sketch

Main tool: multivariate central limit theorem

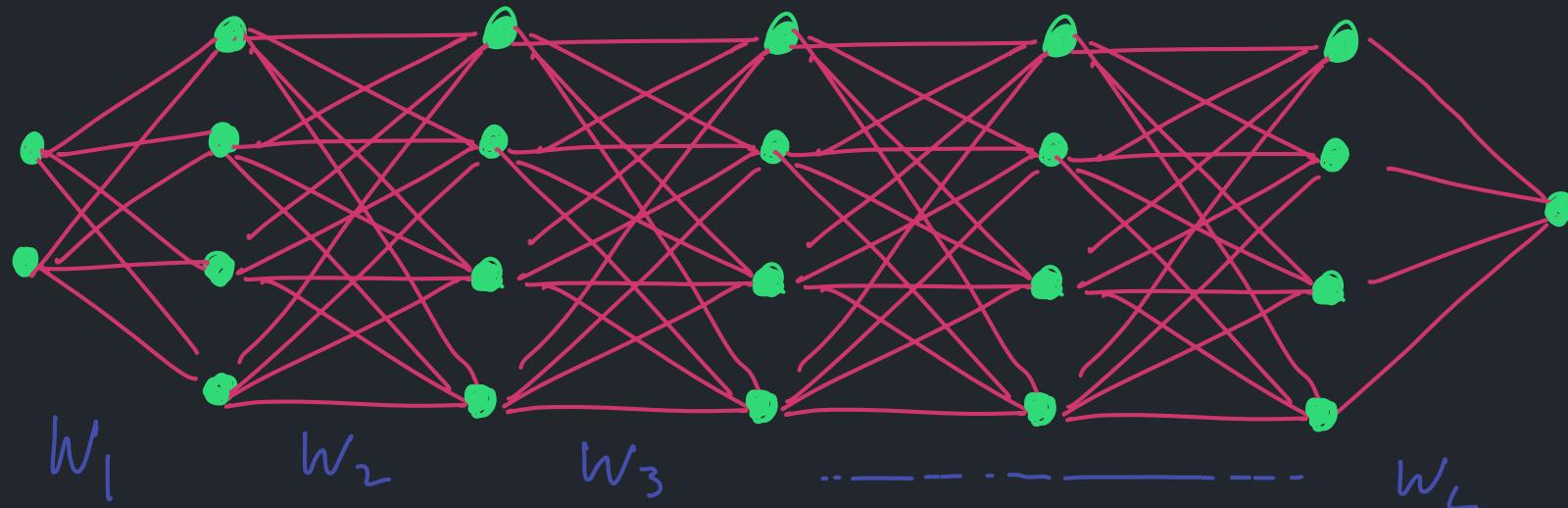
Step 1: for a fixed input and fixed layer, the activations are iid random variables

→ prove by induction on depth using MV-CLT

Step 2: for any collection of  $k$  inputs  $x_1, \dots, x_k$  the network outputs  $f(x_1), \dots, f(x_k)$  are Gaussian

→ prove by writing the vector  $f(x_1), \dots, f(x_k)$  as a sum over iid vectors from the penultimate layer and apply the MV-CLT.

# Example : MLPs with ReLU



set non-linearity to  $\phi(x) = \sqrt{2} \operatorname{relu}(x)$

sample weights iid  $\mathcal{N}(0, \frac{1}{\text{fan-in}})$

for inputs  $x, x' \in \mathbb{R}^d$ :  $\mathbb{E} f(x) = 0$

$$\mathbb{E} f(x) f(x') = \underbrace{h \circ \dots \circ h}_{L-1 \text{ times}} \left( \frac{x^T x'}{d} \right)$$

where  $h(t) = \frac{1}{\pi} \left[ \sqrt{1-t^2} + t (\pi - \arccos t) \right]$  "compositional arccosine kernel"

## Natural Questions

How does  $\Sigma(x, x')$  depend on :

- choice of architecture ?
- choice of weight distribution ?

Can this inform :

- architecture design ?
- weight regularisation strategies ?

# References

-  Bayesian Learning for Neural Networks  
Neal
-  Kernel Methods for Deep Learning  
Cho & Saul
-  Deep Neural Networks as Gaussian Processes  
Lee, Bahri, Novak et al.

MIT OpenCourseWare

<https://ocw.mit.edu>

6.7960 Deep Learning

Fall 2024

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>