

Architectural Bias on Representations

Jeremy Bernstein

jbernstein@mit.edu

Aside: Steepest Descent (HW2)

$$\operatorname{argmin}_{\Delta w} \operatorname{Tr}(G^T \Delta w) + \frac{\lambda}{2} \|\Delta w\|_2^2$$

spectral norm

Solution for $G = U \Sigma V^T$ reduced SVD

$$\Delta w = -\frac{\operatorname{Tr}(\Sigma)}{\lambda} U V^T$$

"steepest descent under the spectral norm"

Neural Network Speedrunning

@kellerjordan()

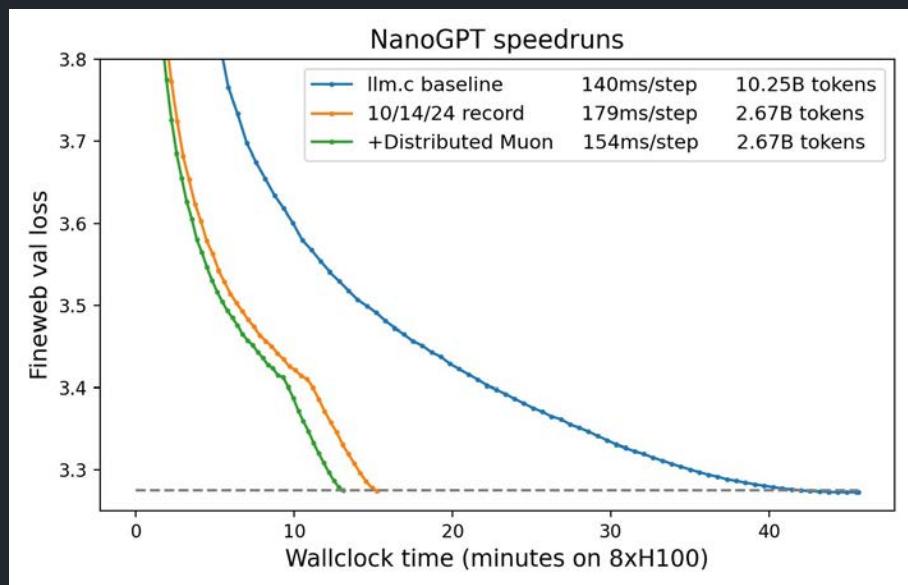
$$\Delta w = - \frac{\text{Tr}(\Sigma)}{\lambda} U V^\top$$

"steepest descent under the spectral norm"

Add some tricks: momentum

low precision

fast computation of UV^\top via iteration



3

"Muon optimizer"
trains nanoGPT to
3.28 val loss on
"Fineweb" dataset
in < 15 minutes

Similarity-Based Representation Learning (Lecture 12)

training objective that maps similar data to nearby embeddings

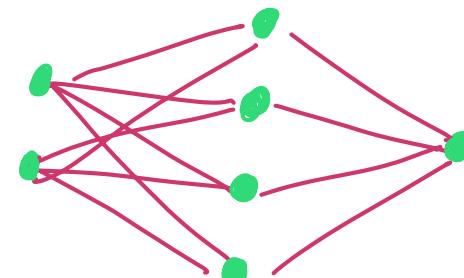
DATA
SPACE

EMBEDDING
SPACE

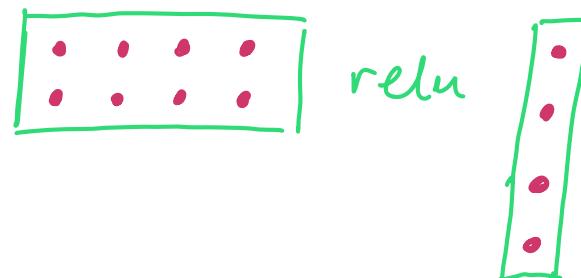
Dog © source unknown. Monkey © San Diego Zoo. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Perspectives on Neural Computation (Lecture 7)

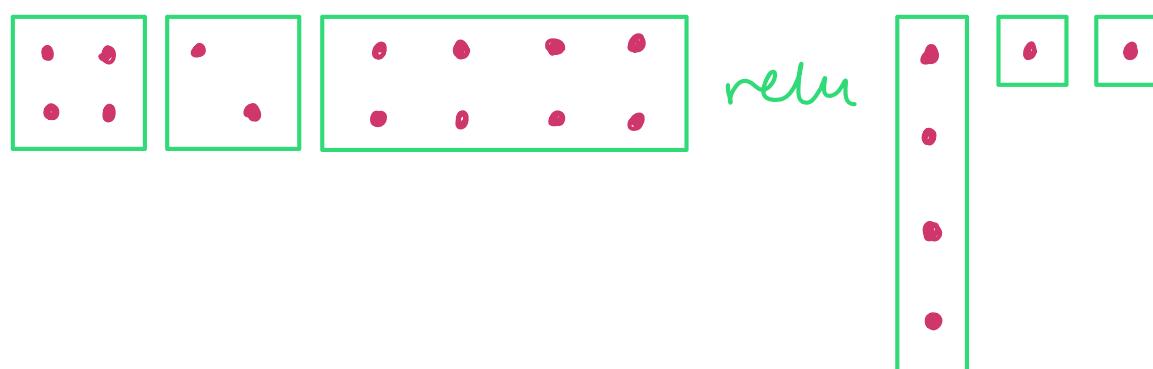
#1 NEURAL PERSPECTIVE



#2 TENSOR PERSPECTIVE

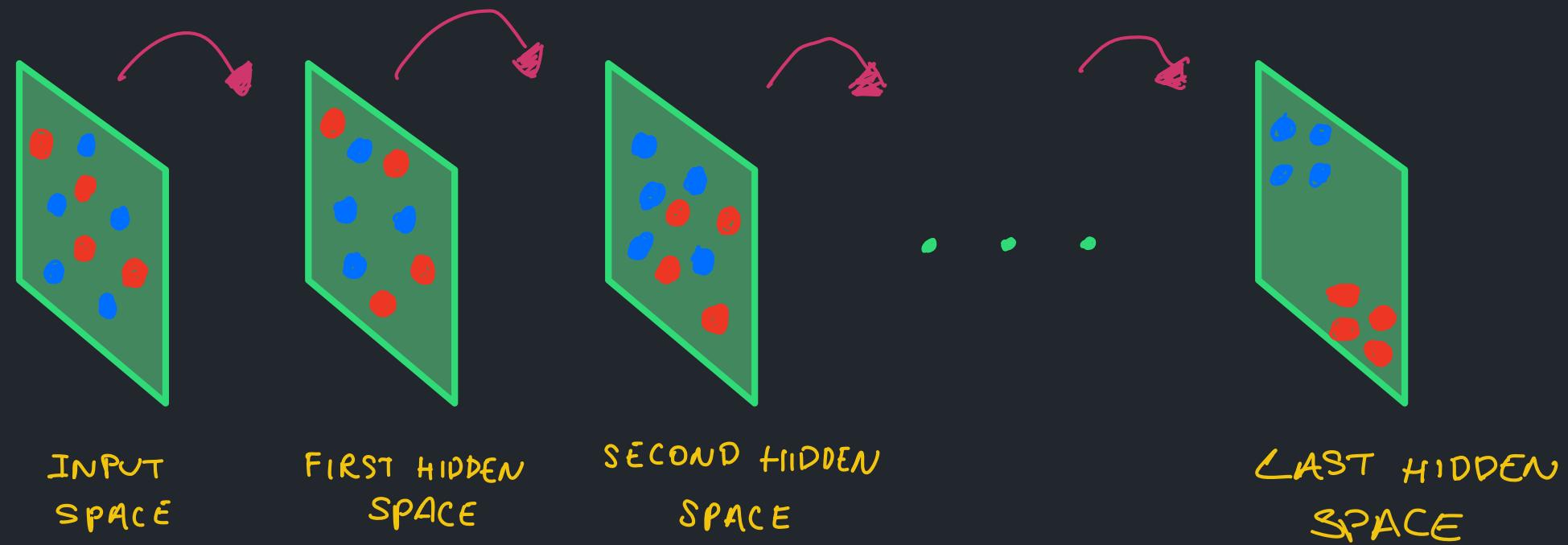


#3 SPECTRAL PERSPECTIVE



A More Abstract Perspective

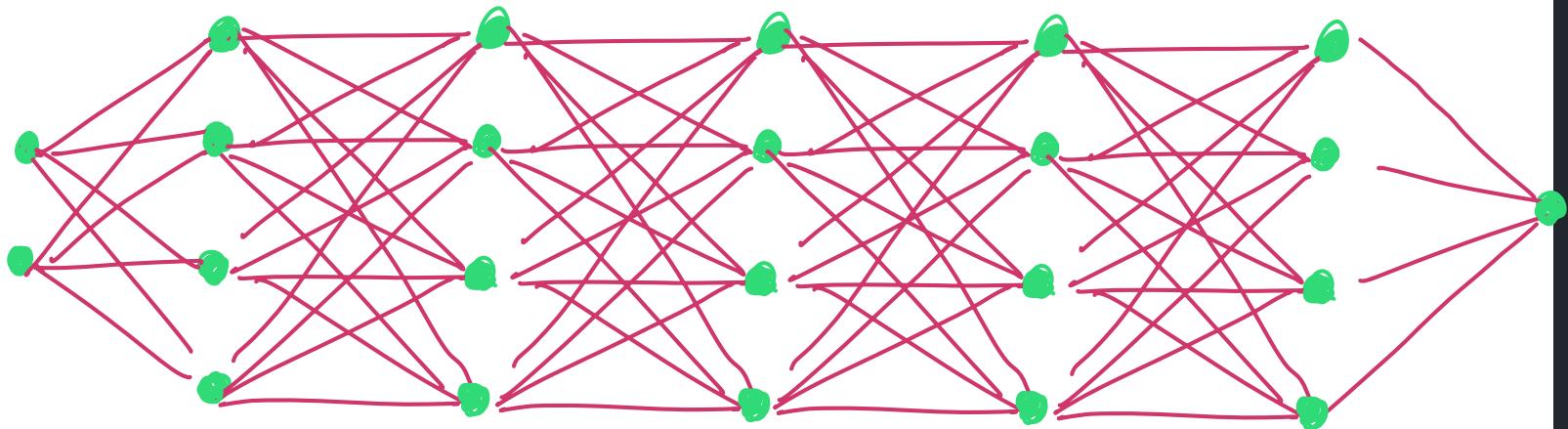
A neural net is a map through a sequence of vector spaces.



Want a good representation of the data at the final layer
e.g. linearly separable

This Lecture

We will develop an advanced tool that shows that a neural architecture (even without training) already expresses an opinion about data similarity.



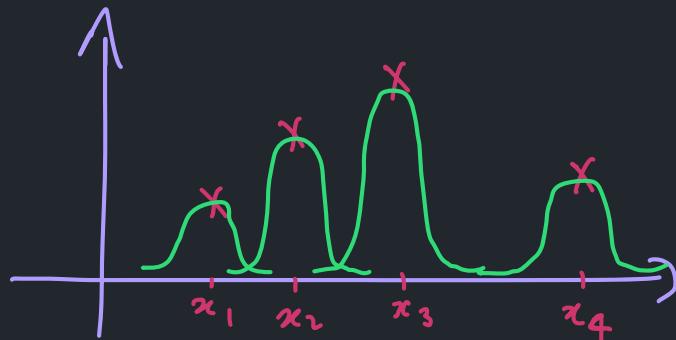
A Journey to the Past

Pretend you've never heard of deep learning, and you want to fit some data.

How would you do it?

Function Space Construction #1

Place a "bump function" on each datapoint:



k is called
the "kernel"

Formally, we consider functions of the form

$$f(x) = \sum_{i=1}^n \alpha_i k(x, x_i)$$

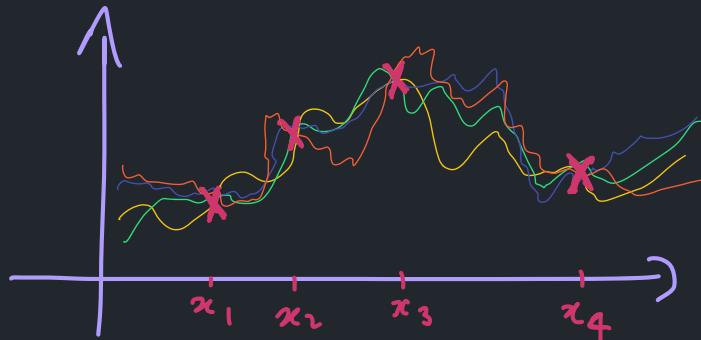
where:

- $k(x, x_i)$ is a bump centered on x_i
- the α_i are weights

The freedom to choose the number of bumps n , the bump centres x_i and the weights α_i leads to a rich function space called a "reproducing kernel Hilbert space".

Function Space Construction #2

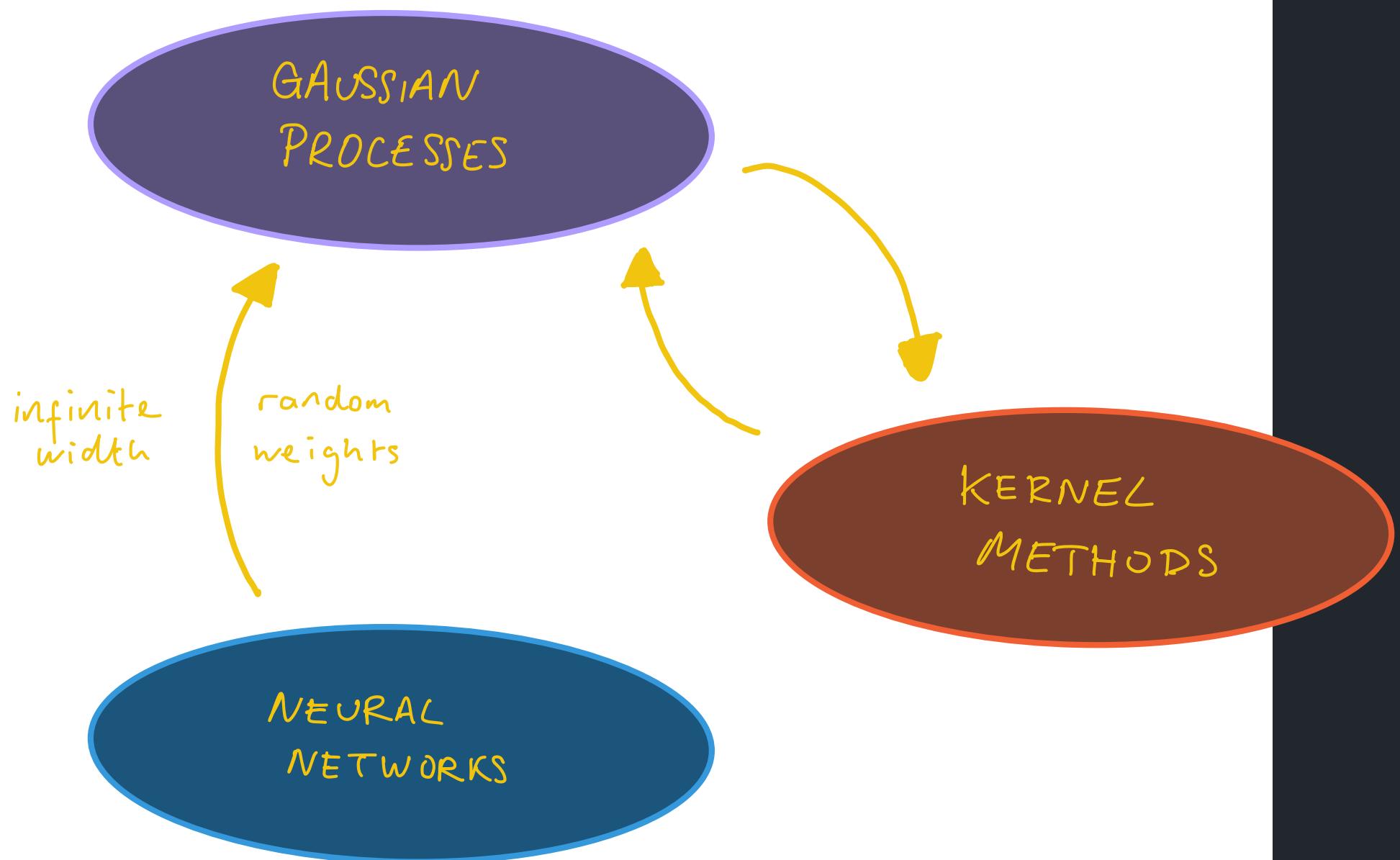
Draw random functions consistent with the data



We will look at a special way of drawing random functions that uses Gaussian random variables

→ it is called a Gaussian process (GP)

Correspondences between Function Spaces



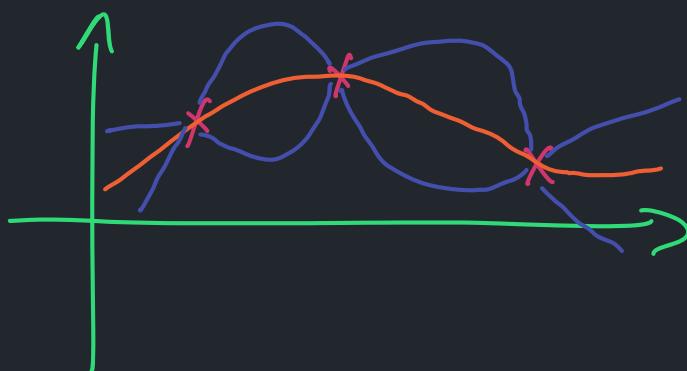
GAUSSIAN PROCESSES

What is a Gaussian Process Pictorially?

Given data

A Gaussian process gives us a distribution of consistent functions

Along with a formula for the mean and standard deviation of this distribution



What is a Gaussian Process Informally?

Sample a Gaussian vector:

$$\boxed{11111111111111} \sim \mathcal{N}(0, \Sigma)$$

We can construct a function by plotting the components of this vector

$$\text{e.g. } \Sigma_{ij} \sim \exp - (i-j)^2$$

This leads to more "continuous looking" functions.¹⁴

What is a Gaussian Process Formally?

Consider an input space X

Let $f(x)$ be a random variable for every $x \in X$

Informally, think of f as an infinite-dimensional random vector indexed by $x \in X$.

If for every finite collection of inputs

$$x_1, x_2, \dots, x_n$$

the associated finite-dimensional random vector

$$\begin{array}{|c|c|c|c|} \hline f(x_1) & f(x_2) & \dots & f(x_n) \\ \hline \end{array} \quad \text{is Gaussian}$$

then f is a "Gaussian process" on X .

Covariance Functions

A Gaussian process generalises

finite-dimensional
Gaussian vectors

infinite-dimensional
functions

The covariance matrix

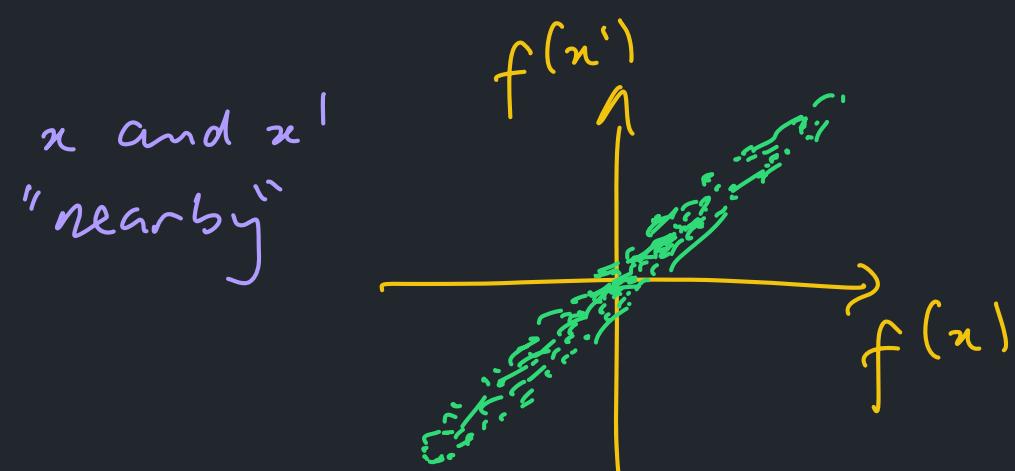
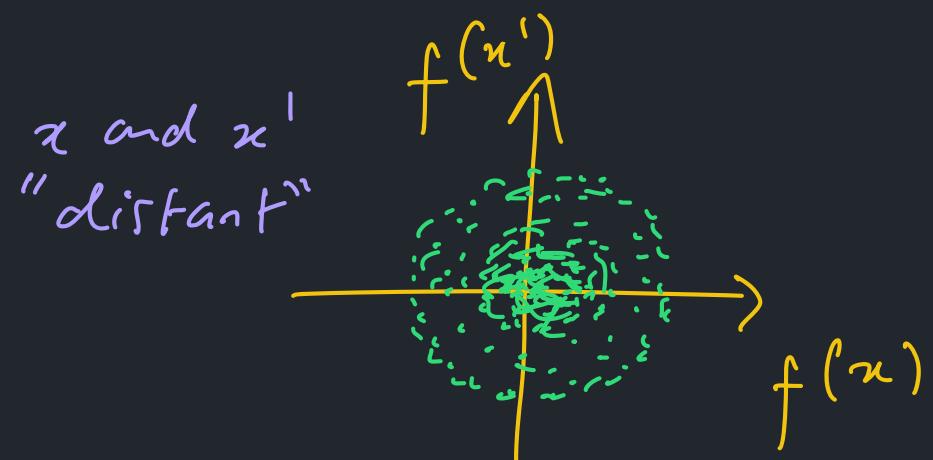
covariance function

Σ_{ij} for $i, j = 1, \dots, n$

$\Sigma(x, x')$ for $x, x' \in X$

Covariance Functions

Typically, we want a covariance function that is large for "nearby" points and small otherwise



→ choice of covariance function encodes what we mean by "nearby"

e.g. squared exponential

inner product

$$\Sigma(x, x') = e^{-\frac{(x-x')^2}{2}}$$

$$\Sigma(x, x') = \langle x, x' \rangle$$

Conditioning on Data

Suppose we are given $f(x_1), \dots, f(x_n)$

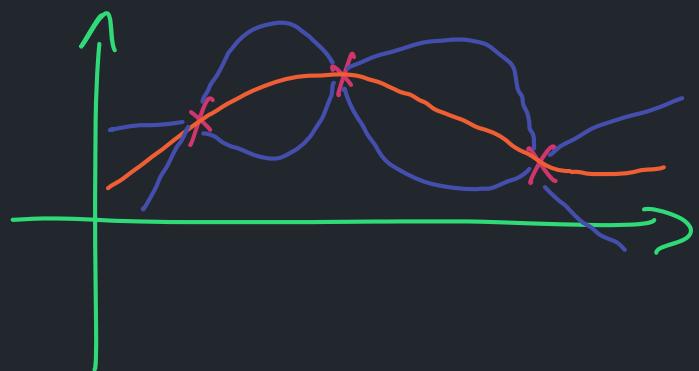
And we want to predict $f(x_*)$

Since f is a Gaussian process, then this vector is Gaussian

$$\begin{bmatrix} f(x_1) & f(x_2) & \dots & f(x_n) & f(x_*) \end{bmatrix}$$

Can prove: $f(x_*)$ given $f(x_1), \dots, f(x_n)$ is $\mathcal{N}(\mu, \sigma^2)$

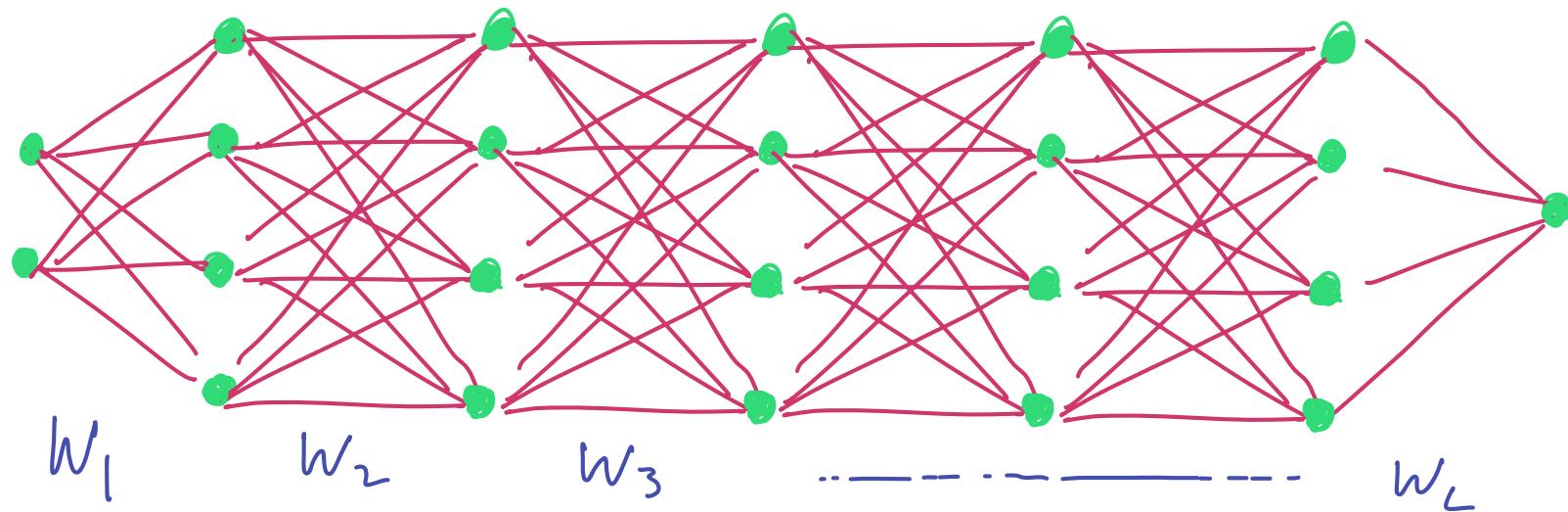
The mean $\mu(x_*)$ and standard deviation $\sigma(x_*)$ have simple closed form formulae.



NN-GP CORRESPONDENCE

Random Weights \Rightarrow Random Functions

Consider a neural network :



If we randomly sample the weights,
we get a random function.

Inspecting the Random Functions

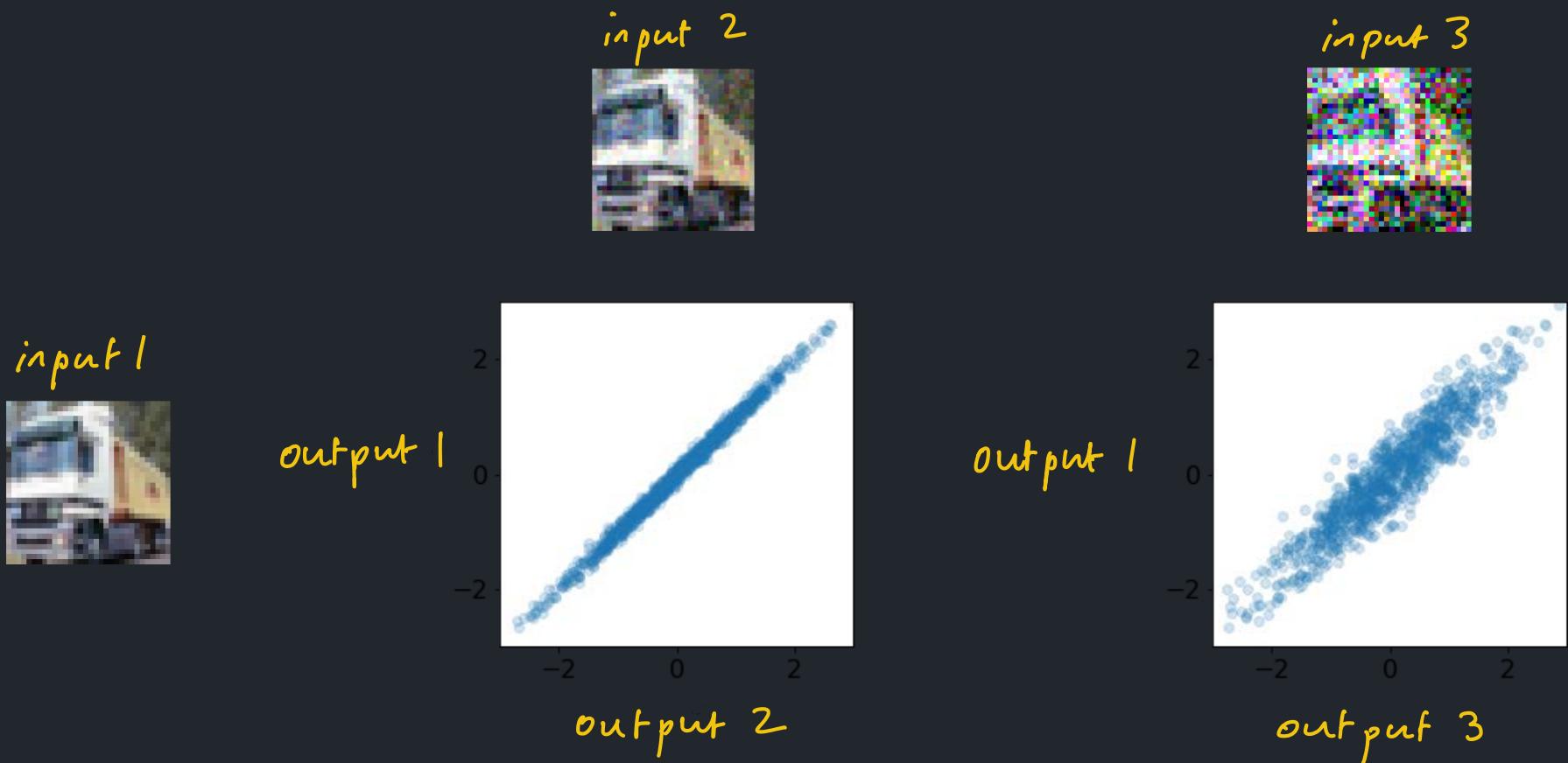
To inspect the distribution of random functions

Pick two inputs x and x'

Sample 1000 random networks f_1, \dots, f_{1000}

Plot scatterplot of $\begin{bmatrix} f_1(x_1), & f_1(x_2) \\ f_2(x_1), & f_2(x_2) \\ \vdots \\ f_{1000}(x_1), & f_{1000}(x_2) \end{bmatrix}$

3 Layer MLP, Width 1000



Observations:

- joint distribution of pairs of outputs seems Gaussian
- covariance depends on similarity of inputs

Neural Network - Gaussian Process Correspondence

If we sample iid the weights of an NN

then as the width $\rightarrow \infty$

The joint distribution of any finite collection of network outputs $f(x_1)$ $f(x_2)$... $f(x_n)$ is Gaussian.

The covariance function depends on the architecture and non-linearity.

Proof Sketch

Main tool: multivariate central limit theorem

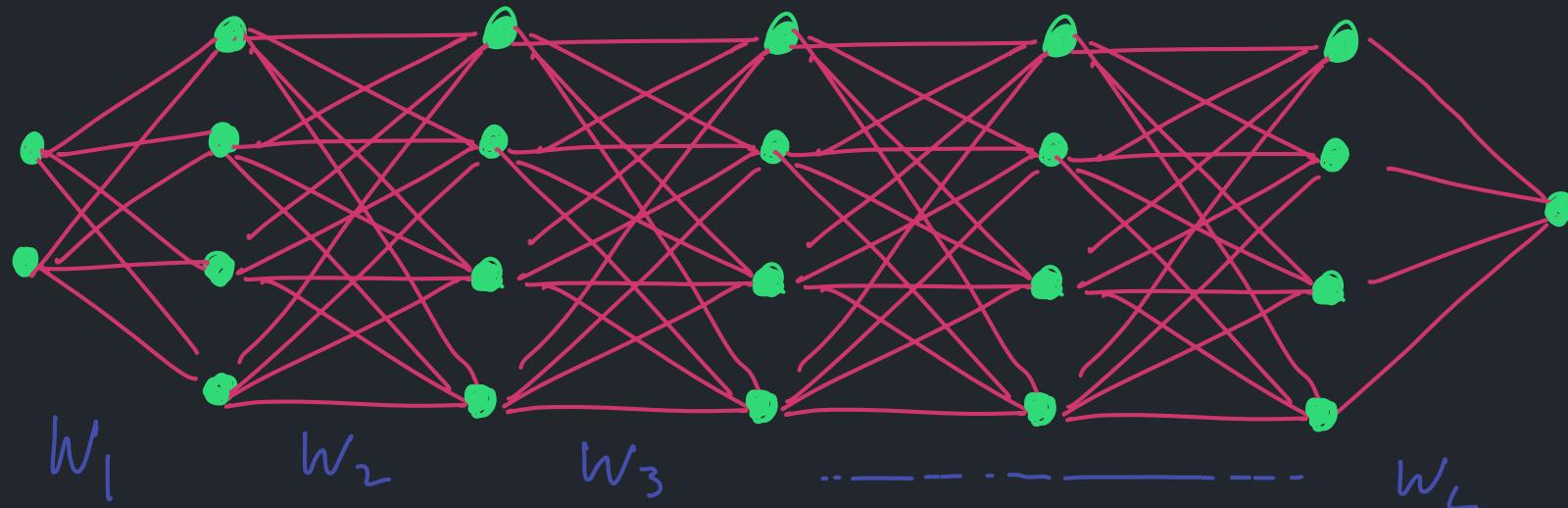
Step 1: for a fixed input and fixed layer, the activations are iid random variables

→ prove by induction on depth using MV-CLT

Step 2: for any collection of k inputs x_1, \dots, x_k the network outputs $f(x_1), \dots, f(x_k)$ are Gaussian

→ prove by writing the vector $f(x_1), \dots, f(x_k)$ as a sum over iid vectors from the penultimate layer and apply the MV-CLT.

Example : MLPs with ReLU



set non-linearity to $\phi(x) = \sqrt{2} \operatorname{relu}(x)$

sample weights iid $\mathcal{N}(0, \frac{1}{\text{fan-in}})$

for inputs $x, x' \in \mathbb{R}^d$: $\mathbb{E} f(x) = 0$

$$\mathbb{E} f(x) f(x') = \underbrace{h \circ \dots \circ h}_{L-1 \text{ times}} \left(\frac{x^T x'}{d} \right)$$

where $h(t) = \frac{1}{\pi} \left[\sqrt{1-t^2} + t (\pi - \arccos t) \right]$ "compositional arccosine kernel"

Natural Questions

How does $\Sigma(x, x')$ depend on :

- choice of architecture ?
- choice of weight distribution ?

Can this inform :

- architecture design ?
- weight regularisation strategies ?

References

- Bayesian Learning for Neural Networks
Neal
- Kernel Methods for Deep Learning
Cho & Saul
- Deep Neural Networks as Gaussian Processes
Lee, Bahri, Novak et al.

MIT OpenCourseWare

<https://ocw.mit.edu>

6.7960 Deep Learning

Fall 2024

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>