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Neural Network Speedrunning kellerjord 
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steepest descent under the spentral norm 

Add some tricks momentum 
low precision 

fast computation of UV via iteration 
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Similarity Based Representation Learning Lecture 12 

raining objective that maps similar data to nearby embedding 
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Perspectives on Neural Computation Lecture 7 

NEURAL PERSPECTIVE T.frfffgfoo 

2 TENSOR PERSPECTIVE run 

3 SPECTRAL PERSPECTIVE 

rem 

5



ii 0,0

Li

A More Abstract Perspeitive 

A neural net is a map through a sequence of 
vector spacer 
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Want a goodrepresentation of the data at the final layer 
e g linearly separable 
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This Lecture 

a neural architecture even without training already 
expresses an opinion about data similarity 
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A Journey to the Past 

Pretend you've never heard of deep learning and 

you want to fit some data 

How would you do it 
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Function Space Construction I 

Place a bump function on each datapoint 

i it 
Formally we consider functions tee 

theElder 

f la É ai k se ai d 

where Kfa ni is a bump I centred on a 

the x are weights 
The freedom to choose the number of bumps n the bump 
centres se and the weights ai leads to a rich function space
called a reproducing kernel Hilbert space 
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Function Space Construction 2 

Draw random functions consistent with the data 

Kitir 
We will look at a spelial way of drawing random 

functions that uses Gaussian random variables 

it is called a Gaussian process EP 
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Correspondences between Function Spaces 

IIinfinity Geignis 
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GAUSSIAN PROCESSES 

12



What is a Gaussian Process Pictorially 

Given data 
X 

A Gaussian process gives us 
a distribution of consistent MAY functions 

Along with a formula for the 
mean and standard deviation 

of this distribution 13



What is a Gaussian Process Informally 

Sample a Gaussian vector 

we can construct a function by plotting the components of III 

Man t 
Idea setup I such that consecutive components are correlated 

e g Zijn exp fi ji 

This leads to more continuous looking functions 14



What is a Gaussian Process Formally 
Consider an input space X 

Let flu be a random variable for every u E X 

Informally think of f as an infinite dimensional 
random rector indexed by X E X 

If for every finite collection of inputs 
R i 22 An 

The associated finite dimensional radon vector 

ten t.tt iddtly 
Gasca 
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Covariance Functions 

A Gaussian process generalises 

finite dimensional infinite dimensional 
Gaussian vectors functions 

The covariance matrix y covariance function 

Zij for i j l in I n n for sein EX 
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Covariance Functions 

Typically we want a covariance function that 
is large for nearby points and small otherwise 

f'T se and a 

pen 

nearby 

fin i i 

Choice of covariance function encodes what we 

mean by nearby 
e g squared exponential I n n é th n't 

inner product I n n ke n 
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Conditioning on Data 

Suppose we are given flu f Ina 
And we want to predict flux 
Since f is a Gaussian process then this vector is Gaussian 

antiittitiittiittia 
The mean pula and standard 
deviation o ay have simple
closed form formulae 
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NN GP CORRESPONDENCE 
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Random Weights Random Functions 
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If we randomly sample the weights 
we get a random function 
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Inspeiting the Random Functions 

To inspect the distribution of random functions 

Pink two inputs se and a 

Sample 1000 random networks fi frou 

P 

f
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3 Layer MCP Width 1000 

input 2 input3 

input 

output output f 

output 2 output3 

Observations 

joint distribution of pairs of outputs seems Gaussian 

covariance depends on similarity of inputs 
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Neural Network Gaussian Process Correspondence 

If we sample iid the weights of an NN 

then as the width t o 

The joint distribution of any finite collection 
of network outputs flail flu f un 

is Gaussian 

The covariance function depends 
on the 

architecture and non linearity 
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Proof Sketch 

Main tool multivariate central limit theorem 

Steph for a fixed input and fixed layer the 
activations are iid random variables 

prove by induction on depth using MV CLT 

Stef for any collection of K inputs at pan
the network outputs flu f na are Gaussia 

prove by writing he vector flail final 
as a sum over iid renters from the penultimate 
layer and apply the MV CLT 
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Example MEPs with Recu 

t.EE EE 

set non linearity to p a I rely a 

sample weights iid NCO f in 

For inputs i'end 
Fifi Iggy 

where hit Vitt t fit arrest compositional 
are cosine 
kernel 
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Natural Questions 

How does 2 u u depend on 

choice of architecture 

choice of weight distribution 

Can this inform 
architecture design 
weight regularisation strategies 
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