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Roadmap: similarity-based representation learning 

• Representation learning — why?

• What is a “good” representation?

• Metric learning

• Contrastive representation learning (self-supervised)

• What does it do?

• Models
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Why learn representations? 

• To improve generalization

• To do more learning (transfer learning)

• To exploit geometric similarity for new data or queries:

• Have we seen the face of this person before or is it new?
• Retrieval: which items are similar to the query?

• To improve clustering with side information (similar/dissimilar pairs)

• Dimensionality reduction (often unsupervised)

What do we expect from such representations? 
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What is a “good” representation? 

“Generally speaking, a good representation is one that makes a 
subsequent learning task easier.” — Deep Learning, Goodfellow et al. 
2016 

What could this mean? 
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What is a “good” representation? 

1. Compact (minimal)

2. Explanatory (sufficient)
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What is a “good” representation? 

3 winning strategies look at: 

• Geometry of representation: consistency, separation

• Robustness to perturbations
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What helps generalization? 

• Representations of CIFAR-10 data with true and random labels

image: Chuang et al., Measuring generalization with optimal transport, 2021 77



What helps generalization? 

• Representations of CIFAR-10 data with true and random labels

Concentration/consistency:
Data from the same class is 
close together 
Separation: classes are well
separated 
Robustness 

generalizes cannot generalize 

image: Chuang et al., Measuring generalization with optimal transport, 2021 88



What is a “good” representation? 

1. Compact (minimal)

2. Explanatory (sufficient)

3. Concentration: Data from the same class is close together

4. Separation: classes are well separated

5. Robustness to irrelevant perturbations

How could we encourage a model during training to achieve this? 
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Similarity-based representation learning 

• Encourage good representations via feedback in terms of similarity: 
pairs of similar/dissimilar inputs 

Unsupervised Supervised 

1010



 

Metric Learning 

• Euclidean distance in input space may be not ideal

• Instead: learn a metric that respects desired properties

• Goal: learn a metric where:

• data points that “belong together” are similar (close together)

• data points that are “different” are dissimilar (far apart)

• “Supervision”: similarity information.
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Metric learning (linear) 

• Data points x1, …, xn 

• Weak supervision: similar

dissimilar

• Goal: learn a linear transformation z = Wx that respects similarity

• Use Euclidean distance in representation space:
2z i − z j = ( x i − x j ) W W (x i − x j ) x i − x j

2
A = A = W W

Mahalanobis distance with positive semidefinite matrix A, dA(xi, xj) = ˜ xi − xj˜ A 

How can we phrase this as an optimization problem? 
1212



“Losses”: upper/lower bound constraints 

• first approach (Xing et al 2003):

min dA (x i , x j )2 min distance of similar points
A 0

( i,j ) ̃  S introduced the term and problem in 2003 

s.t. dA (x k , x )2 ° 1 keep distance of dissimilar points 
( k, ) ̃  D 

• can swap objective and constraint (upper bound for similar pairs)

• many related ideas & follow-ups, e.g.
information-theoretic metric learning (Davis et al 2007):
preserve distribution information (relative entropy between Gaussians) while
observing upper/lower bounds as constraints
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Simple example 

14 figure: Ng et al 2003 

© source unknown. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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Improvements / developments 

• Nonlinear transformations (kernels, deep metric learning)

• Contrastive losses

• Normalization of representations: angle instead of distance
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Deep metric learning 

• Linear metric learning: learn a linear transformation z = Wx 

• Deep metric learning: learn a nonlinear transformation z = f(x) 

neural network 

optimize not over psd matrices but weights of a neural network
DreamSim: Learning New Dimensions of

Human Visual Similarity using Synthetic Data
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Contrastive losses: intuition 
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Contrastive losses 

distance of dissimilar pair(s) ˛ distance of similar pair(s) 

• Triplet loss (Schroff et al 2015):

margin 

 

     

18

related: Large-margin Nearest Neighbor metric 
learning (LMNN) (Weinberger et al 2009) 18



 

Contrastive losses 

distance of dissimilar pair(s) ˛ distance of similar pair(s) 

• Triplet loss (Schroff et al 2015):

margin 
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Triplet network 

20 figure: https://omoindrot.github.io/triplet-loss 20

https://omoindrot.github.io/triplet-loss


 

Contrastive losses 

distance of dissimilar pair(s) ˛ distance of similar pair(s) 

• Improvements: compare to multiple negatives per positive pair, e.g. 
Lifted structured loss (Song et al 2015): compare to all negatives in a batch 

f (x i ) − f (x j ) 2 
or smooth relaxation of the max 

2121



Example embedding 

22 figure: Song et al 2015 22



Example query results (neighbors) 

figure: Song et al 2015
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What makes an image “similar”? 
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Similar in: 

• Pose

• Perspective

• Foreground
color

• Number of items

• Object shape

24 figure: Fu*, Tamir*, Sundaram* et al 2023 24



Which pairs should we present? 

“hard” negatives:  

• currently “misplaced”, i.e., closer to anchor than a positive example

• accelerate learning, needed for triplet loss

figure: Kaya & Bilge: Deep Metric Learning: A Survey, 2019 2525



Roadmap: similarity-based representation learning 

• Representation learning — why?

• What is a “good” representation?

• Metric learning

• Contrastive representation learning (self-supervised)

• What does it do?

• Models
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Self-supervised contrastive representation learning 

• Ideas from metric learning and self-supervision
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Common setup 

d−1• Encoder maps data onto a hypersphere: f : ˝ 
Cross-entropy for softmax “classifier” to discriminate “classes” defined by 
similarities 

ef(x)ˆ f(x+)/˜ 
pull positive
pair together 

min (x,x+)˙ ppos,{x−
i }i

N 
=1˙ pdata 

−log 
f ef(x)ˆ f(x+)/˜ + ˇ N push negative

i ef(x)ˆ f(x−
i )/˜ 

pairs apart =1 

2828



Common setup 

d−1• Encoder maps data onto a hypersphere: f : ˝ 
Cross-entropy for softmax “classifier” 

ef(x)ˆ f(x+)/˜ 
pull positive
pair together 

min (x,x+)˙ ppos,{x−
i }i

N 
=1˙ pdata 

−log 
f ef(x)ˆ f(x+)/˜ + ˇ N push negative

pairs apart 

• Noise-contrastive estimation (NCE) (Gutmann & Hyvärinen 2010),
InfoNCE loss (van den Oord et al 2018), … similar losses also in
metric learning

29

i ef(x)ˆ f(x−
i )/˜ 

=1 
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Common setup 

d−1• Encoder maps data onto a hypersphere: f : ˝ 
Cross-entropy for softmax “classifier” 

ef(x)ˆ f(x+)/˜ 
pull positive
pair together 

min ,{x−
i }N −log 

f 
(x,x+)˙ ppos i=1˙ pdata ef(x)ˆ f(x+)/˜ + ˇ N push negative

pairs apart 

As self-supervised learning, can 
outperform supervised pre-training (for some tasks) 
(He et al 2020, Misra & van der Maaten 2020) 

i ef(x)ˆ f(x−
i )/˜ 

=1 

3030
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Why map to a hypersphere? 

• more stable training (logistic regression needs regularization)

• well-clustered classes on hypersphere are linearly separable (cut off caps)

figure: Wang & Isola 2020 3131



(top-mid), foreground color (mid-left), number oÿtems (mid-right), and object shape (bottom-left). This allows 
us to learn a  new metric (DreamSim) that better coincides with human judgments w.r.t. existing similarity 
metrics (LPIPS) or embedding-based metrics extracted from recent large vision models (DINO &  CLIP). 

Abstract

Current perceptual similarity metrics operate at the level of pixels and patches. 
These metrics compare images in terms of theirlow-levelcolors and textures, but 
fail to capture mid-level similarities and di°erences in image layout, object pose, 
and semantic content. In this paper, we develop a  perceptual metric that assesses 
images holistically. Our first step is to collect a new dataset of human similarity 
judgments over image pairs that are alike in diverse ways. Critical to this dataset 
is that judgments are nearly automatic and shared by all observers. To achieve 
this we use recent text-to-image models to create synthetic pairs that are perturbed 
along various dimensions. We observe that popular perceptual metrics fall short 
of explaining our new data, and we introduce a  new metric,DreamSim, tuned to 
better align with human perception. We analyze how our metric is a°ected by 
di°erent visual attributes, and find that it focuses heavily on foreground objects and 
semantic content while also being sensitive to color and layout. Notably, despite 
being trained on synthetic data, our metric generalizes to real images, giving strong 
results on retrieval and reconstruction tasks. Furthermore, our metric outperforms 
both prior learned metrics and recent large vision models on these tasks. 
Our project page:https://dreamsim-nights.github.io/

˜ Equal contribution, corresponding authors. Order decided by random seed. 

How can we make this “self-supervised”? 

ef(x)ˆ f(x+)/˜ 
pull positive
pair together

min ,{x−
i }N −log (x,x+)˙ ppos i=1˙ pdataf ef(x)ˆ f(x+)/˜ + ˇ N 

push negativei ef(x)ˆ f(x−
i )/˜ 

pairs apart =1 

• What are the similar (positive) and 
dissimilar (negative) pairs? 

3232



   

What are positive and negative examples? 

Negative examples:
randomly uniformly
drawn from data 

Positive examples:
perturbations that keep
semantic meaning,
data augmentation 

33
(Chen, Kornblith, Norouzi, Hinton 2020) 
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Positive and negative samples 

e.g. SimCLR:

• for each data point in the batch, generate 2 random augmentations as
positive pair

• all other 2(B-1) augmented samples in the batch (of size B) are used as
negatives f 

positive pair 

f 
f 

34
negative sample 

34



Variations 

Negative 

[CMC, Tian, Krishnan, Isola 2020] 

…
 

Anchor Positive 35

Cross-Channel Representation Learning

(𝑥, 𝑦) are two “views” of the same scene

35



Variations 

Negative 

Anchor Positive 

…
 

36

Video Representation Learning

(𝑥, 𝑦) are two “views” of the same scene

[“Slow Feature Learning”, Wiskott & Sejnowski 2002] 

[Mobahi, Collobert, Weston 2009] 

[Wang & Gupta 2015] 

[Isola, Zoran, Krishnan, Adelson 2016] 

[Sermanet, Lynch, Chebotar et al. 2018] 

[van den Oord, Li, Vinyals 2018] 

36



Variations 

Negative 
( , )!"#$!%&'!()*$&+,!'-!%.$!+"/$!+0$1$

!"#$%"$&'()*)+# ,-&./&*&#0"0)+#,!&"/#)#$ 

[Karpathy, Joulin, Fei-Fei 2014] 
…

 

[CLIP, Radford, Kim et al. 2021] 

1,2"#,)*,/)3)#$," 
4+/*&,)#,",3&*&/0 

Anchor Positive 3737



What is this method doing? 

2 ingredients: 

• Contrastive loss (which specific form)

• Data (which positive/negative pairs)

3838



 

What is the contrastive loss doing? 

˘ cont( f ) = (x,x+)˙ ppos,{x−
i }N

i=1˙ pdata 
−log 

ef(x)ˆ f(x+)/˜ 

ef(x)ˆ f(x+)/˜ + ˇ N 
i ef(x)ˆ f(x−

i )/˜ 
=1 

• cross-entropy loss to distinguish data points

• maximizes a lower bound on mutual information between “views”
f(x), f(x+) (Poole et al, 2019):

MI( f(x), f(x+)) � log(N) − ˘( f ) 

3939



What (else) is the contrastive loss doing? 

• Recall: properties of “good” representations: 

1. Concentration/Alignment: Data from the same class is close together, 
remove irrelevant information 

2. Separation: classes are well separated, do not lose information 

3. Robustness to irrelevant perturbations 

4040
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Relation Between Representation Quality and Alignment & Uniformity 

306 STL-10 Encoders 108 BookCorpus Encoders 
figures: Wang & Isola, 2020 4343



What is the contrastive loss doing? 

• Loss function encourages:

1. Concentration/Alignment: Data from the same class is close together,
remove irrelevant information

2. Separation: classes are well separated, do not lose information

• What do the selection of positive and negative pairs encourage?

4444



What are we “teaching” the model via choice of pairs? 

• positive pairs = augmentations of the same data point
should be close

• => learned representation is invariant to perturbations induced by data
augmentations: learned invariance

• Finding the “right” invariances can be challenging for different types of
data

• Learned versus hard-coded invariances (geometric DL lecture): when
would we use which?

4545



What is the contrastive loss doing? 

• Loss function encourages: 

1. Concentration/Alignment: Data from the same class is close together, 
remove irrelevant information 

2. Separation: classes are well separated, do not lose information 

• Data encourages: 

3. Robustness to irrelevant perturbations 

4646



Ingredients to make self-supervised CL work (better) 

• heavy data augmentation

• projection heads } SimCLR model 

• large batch size (many negative examples)

• choice of data pairs / hard negative examples

4747



   

Effect of data augmentation 

(figure: Grill et al 2020) 

4848



Projection head 

• contrastive loss is applied to a transformed version g(h) of the representation h 

• g is linear or small MLP

• use h for downstream task

• Projection head improves
performance!

4949



Projection head 

• Projection head improves performance.

• Why?
Possibly because representation h then
need not be completely invariant to 
augmentations, can retain some 
information 

5050



Effect of batch size 

• SimCLR uses all points in
a batch as negative
examples for a positive
pair

• needs large number of
negative pairs = large
batch sizes

• Expensive. Newer
methods make this more
efficient (like MoCo, He
et al. 2020)

5151



Improving negative samples 

• We are pushing apart negative pairs. Negative pairs are random pairs
from the data.

using only true negatives 

random pairs 

52 figure: Chuang et al, Debiased contrastive learning 52



Supervised or semi-supervised contrastive learning 

• Contrastive learning provides more geometric and robustness feedback
than cross-entropy loss

• Idea: in addition to data augmentation, use images from same class as
positive pairs (multiple positive pairs)

Khosla et al 2020 5353



• 10,000 Species
• 2.7M Training ImagesCase study: iNaturalist 2021 • 50k Validation Images
• 500k Test Images

5454



Slide: Elijah ColeCole et al., When Does Contrastive Visual Representation Learning Work?, CVPR 2022 5555



Coarse-grained 

Slide: Elijah Cole 5656



Coarse-grained 

Fine-grained 

Slide: Elijah Cole 5757



Coarse-grained 

Fine-grained 

Slide: Elijah Cole 

S. umbilicata

S. ornata
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Coarse-grained Fine-grained

Slide: Elijah Cole

Slide © Elijah Cole. Image © Cole, et al. This content is excluded 
from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/
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Slide: Elijah Cole 6060



Slide: Elijah Cole 

Supervised training from 
scratch (full dataset). 
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Slide: Elijah Cole 

Supervised training from 
scratch (full dataset). 

Self-supervised with linear 
probe (full dataset). 
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Slide: Elijah Cole 

Supervised training from 
scratch (full dataset). 

Self-supervised with linear 
probe (full dataset). 

Train on finest level, 
eval at coarser levels 

6363



Slide: Elijah Cole 

Big gap! 

Not a small difference: 
iNat21 ~30% gap 

Imagenet ~7% gap 

6464



Slide: Elijah Cole 

Gap is small for coarse 
groupings 

6565



Slide: Elijah Cole 

Gap grows as 
evaluation is made 
more fine-grained

6666



Supervised on iNat21 

Same species 

Different species 

67 Slide: Elijah Cole 67



On ImageNet, contrastive SSL matches supervised. 

On iNat21, contrastive SSL lags far behind

Supervised on iNat21 

SimCLR on iNat21 

Cole et al., When Does Contrastive Visual Representation Learning Work?, CVPR 2022 Slide: Elijah Cole 6868



Summary 

• Good representations capture relevant similarity/dissimilarity information

• well-clustered, compact and separated/spread out classes:

• preserves relevant information

• teaches relevant invariances (“forget” irrelevant information)

• supervised or self-supervised

6969
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