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12. Representation Learning |

* Nets learn representations
 Why learn representations?
e Autoencoders

e Clustering and VQ

e Selt-supervised learning by reconstruction



* Deep nets transform datapoints, layer by layer
e Each layer is a different representation of the data

* [n the forward direction, the mapping goes from
observed data to latent embeddings — this direction is
called representation learning

* In the reverse direction, the mapping goes from latent
embeddings to observed data — this direction is called
generative modeling

Representation learning —>

Embedding

Data

<——— (Generative modeling



----------- layer 3 representation of image
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................ layer 1 representation of image

Represent data as a neural embedding — a vector/tensor of neural activations
(perhaps representing a vector ot detected texture patterns or object parts)
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x2vec
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Two different ways to represent a function
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Two different ways to represent a function
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Data transformations for a variety of neural net layers

Xout Xout
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Activations

Parameters

v VR w®

Wiring graph

Equation

[i] = max(xi,[i], 0)
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MLP
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(linear)
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Training iteration
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Loss: 0.71

Loss: 0.71

Steepest descent

in spectral norm ‘
(see pset 2) ! Il
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Code to make these: https://colab.research.google.com/drived 1VBw_HOQgb6J2HCgozEO-ktUM_KSFaYVUD?usp=sharing



CLIP

[Radford*, Kim* et al., ICML 2021]
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maps from complex
data space to simple
embedding space
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[Serre, 2014]
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What do deep nets internally learn?
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Deep Net “Electrophysiology”

© source unknown. All rights reserved. This content is excluded
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[Zeiler & Fergus, ECCV 2014
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Visualizing and Understanding CNNs

[https://arxiv.org/pdt/1311.2901]

Image patches that
activate several of the
layer 1 neurons most

strongly
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[Zeiler and Fergus, 2014]
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Image patches that
activate several of the
layer 2 neurons most

strongly
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[Zeiler and Fergus, 2014]
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[Zeiler and Fergus, 2014]
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Image patches that
activate several of the
layer 5 neurons most

strongly
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[Serre, 2014]

Left © Springer Science+Business Media, LLC, part of
Springer Nature. Right © Zeiler and Fergus. All rights
reserved. This content is excluded from our Creative
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[Zeiler & Fergus, ECCV 2014]



What is a representation?

Mainly, we will restrict our attention to vector embeddings

A representation of a data domain &2 is a functionf: X — R that
assigns a feature vector to each input in that domain. This function is
called an encoder.

A representation of a datapoint X is a vector z € R with z = f(X).

22



Why learn representations?



To do more \earning! (aka Transfer learning)

"Generally speaking, a good representation is one that makes a subsequent
learning task easier.” — Deep Learning, Goodfellow et al. 2016
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Often, what we will be “tested” on is not what we were trained on.
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Iramning

Genre recognition
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Linear adaptation: freeze f, train a new linear map to new target data
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Iramning

Genre recognition

Z

J —~[w|-

Encoder Prediction
Head

{ YOI Jolele]

classical
hip hop
rock

metal
alternative

rap

Adapting

Preference prediction

Like

Neural

01 -w-

Dislike

O@O]

Finetuning: initialize t' as f, then continue training on new target data
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Pretraining

Genre recognition
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Finetuning

* Pretrain a network on task A, resulting in parameters W and b
* |nitialize a second network with some or all of W and b

* Train the second network on task B, resulting in parameters W' and b’
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How do you learn a gooad representation?



Representation learning

Good representations are:

1. Compact (minimal) building

o

2. Exp\anato ry (sufficient)

3. Disentangled (independent factors)

4. Interpretable

5. Make subsequent problem solving easy

6. ...7

[See “Representation Learning”, Bengio 2013, for more commentary]
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Learning from examples

(aka supervised learning)

Training data

{atV) y1}
{2y — Learner | — f: X — Y

{x(i%) | y(S)}

fr= argmmZE Ly )

JFer
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| earning without examples

(includes unsupervised learning / self-supervised learning)

Data

{z1}
{«} — Learner | —> ?
{2}
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Representation Learning

Data
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Two basic approaches: 1) compression, 2) prediction

Learning Learning
Method Principle Short Summary
Autoencoding  Compression Remove redundant information
Contrastive Compression  Achieve invariance to viewing transformations
Clustering Compression Quantize continuous data into discrete categories
Future prediction  Prediction Predict the future
Imputation Prediction Predict missing data
Pretext tasks Prediction Predict abstract properties of your data

(Question: are these actually different?)

35



L earning via compression

Image
Compact mental

representation

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/
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Learning via compression

compressed image code
(vector z)
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Learning via compression

compressed image code
(vector 2)
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© source unknown. All rights reserved. This content is

excluded from our Creative Commons license. For more . . .

information, see https://ocw.mit.edu/help/fag-fair-use/ [e . g .y H I ntO N & Sa ‘ d kh Utd N OV, SCI ence 2006]
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Autoencoder

Data space Representation space Data space

““““ Reconstruction
error

Encoder Decoder

* % T 2
f*,g" = argminEx [x — g(f(x))l;
g
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Data
{X(i) }?:1 —7

Lo autoencoder
Objective

L(F(x),x) = | F(x) — x|

Hypothesis space
F=gof:RY R - RV

®

Typically, M<N

40




© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more x
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Lo, autoencoder

Objective \ 7 /

Data L(F(x),x) = ||F(x) — x| ’

{x"}L, — Hypothesis space — f /f \

F=gof:RY - RM 5 RY

X

What it f and g are both linear?
Then the embedding spans the same M-dimensional subspace as PCA
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Data

Quick experiment

Lo autoencoder

Objective
L(F(x),x) = ||F(x) - x];

Hypothesis space
F=gof:RY - RM 5 RY
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accuracy (%)
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Clustering
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Clustering — a rep learning perspective

(a1

i “bird” * WWhat's the best representation
that humans have come up with so
tar?

a2

i “bird” * L anguage!

e \Words are the atoms of language

 Clustering is the problem of

B “temple’  Making up new words for things

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/ 45




kK-means

* Map datapoints to integers (i.e. cluster)

* In such a way that each datapoint is as close as possible to the mean of
the cluster it is assigned to

7.5 1 7.5 1
5.0 1 5.0 $
&3
2.5 1 2.5
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~7.5 1 ~7.5
75 50 -25 00 25 50 7.5 75 50 -25 00 25 50 7.5



* Map datapoints to integers (i.e. cluster)

kK-means

* [n such a way that each datapoint is as close as possible to its cluster’s
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code mean
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Encoder
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k_ Mmeans k-means (L-)

Objective
L(F(x),x) = || F(x) — ||,

Data Hypothesis space

X" — F=gof:{x}L, = {1,....k} - RM

Optimizer

Block coordinate descent

f and g are both lookup tables
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VQ i etS VQ Autoencoder (Ls)

Objective
L(F(x),x) = [F(x) = x5 +...

Data Hypothesis space

X" — F=gof:{x}L, = {1,....k} - RM

Optimizer

Backprop w/ approximations

What if f and g are both deep nets?

Then we call this a “"Vector Quantized” Autoencoder
(e-g-: VQVAE, VQGAN) [see e.qg., Oord, Vinyals, Kavukcuoglu, 2017]
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Data compression

Data



L abel prediction




Data prediction

aka “self-supervised learning”

Some data Other data
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Grayscale image: L channel
X € ]RHXW><1

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

L=

Color information: ab channels

? c RHXWx2
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[Zhang, Isola, Efros, ECCV 2016]




© source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information,
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[Zeiler & Fergus, ECCV 2014
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Stimuli that drive selected neurons (conv5 layer)

flowers

© source unknown. All rights
reserved. This content is excluded
from our Creative Commons license.
For more information, see
https://ocw.mit.edu/help/fag-fair-use/




Selt-supervised learning

56

Common trick:

Convert “unsupervised” problem
into “supervised” empirical risk
minimization

Do so by cooking up “labels”
(prediction targets) from the raw
data itself — called pretext task



Pretext task:

Class
prediction

Future frame
prediction

Next pixel
prediction

Model
schematic:

© source unknown. All rights reserved. This content is
excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/
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Imputation: one pretext task to rule them all?

Spatial Spatial Channel
imputation imputation imputation

Pretext task:
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Masked Autoencoder
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Courtesy of He, et al. Used under CC BY.

[He, Chen, Xie, et al. 2021]



Bidirectional Transtormers (BERT)

Colorless green 1deas sleep furiously

[ N A O A

[ N U R O

Tok N SEP Tok1 | ... ToxM / - \
| |
Masked Sentence A Masked Sentence B I I I I I
1 3
Unlabeled Sentence A and B Pair T T T T T T T T T

Colorless green i1deas sleep furiously

[He, Chen, Xie, et al. 2021]
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Masked prediction often works better than autoencoding

il —[

Raw Reconstructed

Data Data

71— [l —

Raw Predicted
Grayscale Color
Channel Channels
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Classification performance
ImageNet Task [Russakovsky et al. 2015]
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[Zhang, Isola, Efros, ECCV 2016]



Masked prediction often works better than autoencoding

K
Why? o/&
‘?'90
e Hypothesis 1: It's hard to control compression via a dimensional bottleneck. /‘94&
Requires fiddling with the architecture. Low-dimensional embeddings have bad &

properties in terms of optimization, etc.

e Hypothesis 2: Autoencoders have shortcuts where they can copy part of the input
and get a decent loss. They fall into these traps (local minima) even it global
minimizer is in fact good.

e Hypothesis 3: Masked prediction is closer to the downstream problems we care
about, which are mainly about prediction.

e Still an open question!
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Y. LeCun

How Much Information is the Machine Given during Learning?

P “Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar reward given once in a
while.

p A few bits for some samples

P Supervised Learning (icing)

» The machine predicts a category or a few numbers
for each input

» Predicting human-supplied data
> 10—10,000 bits per sample

P Self-Supervised Learning (cake génoise)

» The machine predicts any part of its input for any
observed part.

© Yann LeCun, IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/

» Predicts future frames in videos
» Millions of bits per sample [Slide Credit: Yann LeCun]

© 2019 IEEE International Solid-State Circuits Conference 1.1: Deep Learning Hardw%e: Past, Present, & Future 59




Summary

1. Deep nets learn representations, just like our brains do

2. This is usetful because representations transfer — they act as prior
knowledge that enables quick learning on new tasks

3. Representations can also be learned without labels, which is great since
labels are expensive and limiting

4.Without labels there are many ways to learn representations. We saw:
1. representations as compressed codes

2. representations as predictions of missing data
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