Lecture 10: Memory and sequence modeling
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11. Memory and sequence modeling

* CNNs for sequences

e RNNs

e |STMs

* Sequence models and long memory
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Recurrent Neural Networks (RNNs) o o e o
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Recurrent Neural Networks (RNNSs)
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Recurrent Neural Networks (RNNSs)
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Recurrent Neural Networks (RNNS)
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Deep Recurrent Neural Networks (RNNS)
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Backprop through tlme
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Parameter sharing
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The problem of long-range dependences

Why not remember everything”
e Memory size grows with t

e [his kind of memory is nonparametric: there is no finite set of
parameters we can use to model it

e BNNs make a Markov assumption — the future hidden state only
depends on the iImmediately preceding hidden state

o By putting the right info in to the hidden state, RNNs can model
depedences that are arbitrarily far apart

29



The problem of long-range dependences
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e Capturing long-range dependences requires propagating information
through a long chain of dependences.

e Old observations are forgotten

e Stochastic gradients become high variance (noisy), and gradients may
vanish or explode
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Optional reading: more detailed discussion of stability analysis In
recursion from a control theory perspective from Bhiksha Raj @ CMU

| ,
s

The streetlight effect is a type of observational bias where people only look for whatever
they are searching by looking where it is easiest COBY-NC 2.0

“1-27. Drunk under the lamp post” by Peter Morvile,

“I'm searching for my keys.”

https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Spring.2019/archive-f19/www-bak11-22-2019/
document/lectu re/lse101 3.recurrent?.pdf
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LSTMs

Long Short Term Memory
[Hochreiter & Schmidhuber, 1997]

A special kind of RNN designed to avoid forgetting.

This way the default behavior is not to forget an old state. Instead of forgetting
by default, the network has to learn to forget.
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Ci = Cell state
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Decide what information to throw away from the cell state.

Each element of cell state is multiplied by ~1 (rememlber) or ~0 (forget).

[Slide derived from Chris Olah: r;gtp://colah.github.io/posts/201 5-08-Understanding-LSTMS/]


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

which indices to write to

/

it =0 (Wi-lhi—1,2¢] + b;)
C~'t = tanh(Wc-[ht_l,xt] | bc)

N\

what to write to those indices

Decide what new information to add to the cell state.

[Slide derived from Chris Olah: Q}tp://colah.github.io/posts/201 5-08-Understanding-LSTMS/]
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It ”r"% Ci = e *Ci—1 + 14 x C}

Forget selected old information, write selected new information.
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After having updated the cell state’s information, decide what to output.

[Slide derived from Chris Olah: r;gtp://colah.github.io/posts/201 5-08-Understanding-LSTMS/]
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Sequence models



Once upon

Once

Autoregressive models

a time —»

Predictor

Predictor

41

— tame

—» Upon



a0 Once upon a , time

-

E There and back , again .

= — | Learner | — Predictor

CS The slow brown fox P

— To be or not to, be

a0

S X1, .o X1 X,
]

g‘ Colorless green 1deas sleep % Predictor % furiously
4w

P

42

)



Autoregressive probability model

p(X) = p(Xn|X1, -+ s Xn-1)P(Xn-1|X1,---,Xpn—2) ... p(X2|x1)p(x1)

n

p(X) = Hp(xi\xl, o X))

1=1

p(time|Once, upon, a)

/_/H

p(alOnce, upon)

—
p(Once upon a time)

H,_/

p(Once)

R/_/

p(upon|Once)

43



Modeling a sequence of words
How to model p(time|Once,upon,a) ?

Just treat it as a next word classifier!
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How to represent words as numbers?
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We can represent words as 1-hot-

vectors of size K, where K is the size
the vocabulary (e.g., K=100,000).
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How to represent words as numbers?

Prediction vy
f@ : X — R%
all
o
o Or, represent each character as a
4l class (e.qg., K=26 for English letters),
Once upon a jj> -l
I and represent words as a sequence
ol ot characters.
h I

46



Outputs

Hidden

Inputs ‘ Q

"Molecule-2-text”

47



o" oe? 49
'\' .
b «/@o ,o 'o «/

Outputs

wwwwwwm

Input

48



Iraming
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Max-likelihood objective: maximize probability the

model assigns to each target word: arg max log pg (y)
0
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1raining Teacher forcing
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Testing

Samples
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Sample from predicted distribution over words.
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Alternatively, sample most likely word.
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TeStlng Beam search
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Sample multiple sequences (top-k greedy completions on each step),
then pick the sequence with highest score.

Score could be model’s confidence: Po(¥i,--.,yY1T|X)
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The problem of long-range dependences

Why not remember everything”
e Memory size grows with t

e [his kind of memory is nonparametric: there is no finite set of
parameters we can use to model it

e BNNs make a Markov assumption — the future hidden state only
depends on the iImmediately preceding hidden state

o By putting the right info in to the hidden state, RNNs can model
depedencies that are arbitrarily far apart
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The problem of long-range dependences

Other methods exist that do directly link old “memories”
(Observations or hidden states) to future predictions:

e [emporal convolutions

o Attention / Transformers (see https://arxiv.org/albs/1706.03762)

e Memory networks (see https://arxiv.org/abs/1410.3916)
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Modeling arbitrarily long sequences

e Recurrence — recurrent weights are shared across time § g g
O O O
°® ) o O O

¢ Convolution — conv weights are shared across time
O O O
e Attention — weights are dynamically determined as a ™ O ©
function of the data (conv kernel with attention weights is 30 0 O

shown on the right)
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Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d 1s the representation dimension, £ 1s the kernel
s1ze of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional Ok -n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

[“Attention is All you Need”, https://arxiv.org/abs/1706.03762]
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Even-larger-context transformers

Efficiency from sparsification
Reformer replaces quadratic dot product attention with a mechanism that uses local

v.org/albs/2001.0445"

)

hashing to get to O(n log n) (https://arxi
Performers introduce the use of positi

ve orthogonal random

get to O(n) (https://arxiv.org/pdf/2009."

4794)

features within attention to

Linformers use low-rank matrix approximation to get O(n) in time and space (https://

arxiv.org/pdf/2006.04 /68)
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Even-larger-context transformers

Local + global
e Transformer XL uses segment-level recurrence and fancy positional encoding to
INncrease context (https://arxiv.org/ans/1901.02860)
e Longformer scales self-attention linearly with sequence length as opposed to

quadratically, using deconstructed local + global attention (https://arxiv.org/albs/
2004.05150)

e Big Bird uses a combo of random, dense sliding window, and global token attention to
get sparsity, also O(n) (https://arxiv.org/pdi/2007.14062)

© Beltagy, et al. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.
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Even-larger-context transto

Retrieval-enhanced
e RETRO enables retrieval from trillion-token databases based on

rMers

ocal similarity,

swapping model parameters for direct lookup (helps separate language modeling from

fact lookup) (https://arxiv.org/abs/2112.04426)
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Image courtesy of J. Alammar. Used under CC BY-NC-SA.
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https://arxiv.org/abs/2112.04426

How far back can we go with attention?

BERT: 512 tokens

GPT-2: 1024 tokens

GPT-3: 2048 tokens

GPT-4: 8,000 tokens, with a souped up 32K token version available

Anthropic apparently has a model with a 100K token window (about
/5K words)
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When do we actually need long-term context?
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Memory tast and slow

parameters are “slow memory”

Data Parameters
(1) (VN
{x"",y"Whi, — Learner —7 ‘9 Statistic of the dataset

Data Activations
x@® —> | Neural Net |— h¥

.0

Statistic of a datapoint

activations are “fast memory”
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Fast weights? Slow activations?

* Hypernets are nets that output weights of another net — these
weights are a “fast memory” of the input to the hypernet.

* Code books use tensors of activations that are learned (backprop
to activations). These activations are “slow memory” of the dataset
you are learning.
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11. Memory and sequence modeling

* CNNs for sequences

e RNNs

e |STMs

* Sequence models and long memory
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9. Memory and sequence modeling

* CNNs for sequences

e RNNs

e |STMs

* Sequence models
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