

Lecture 10: Memory and sequence modeling

Speaker: Sara Beery

11. Memory and sequence modeling

- CNNs for sequences
- RNNs
- LSTMs
- Sequence models and long memory

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

kindergarten classroom

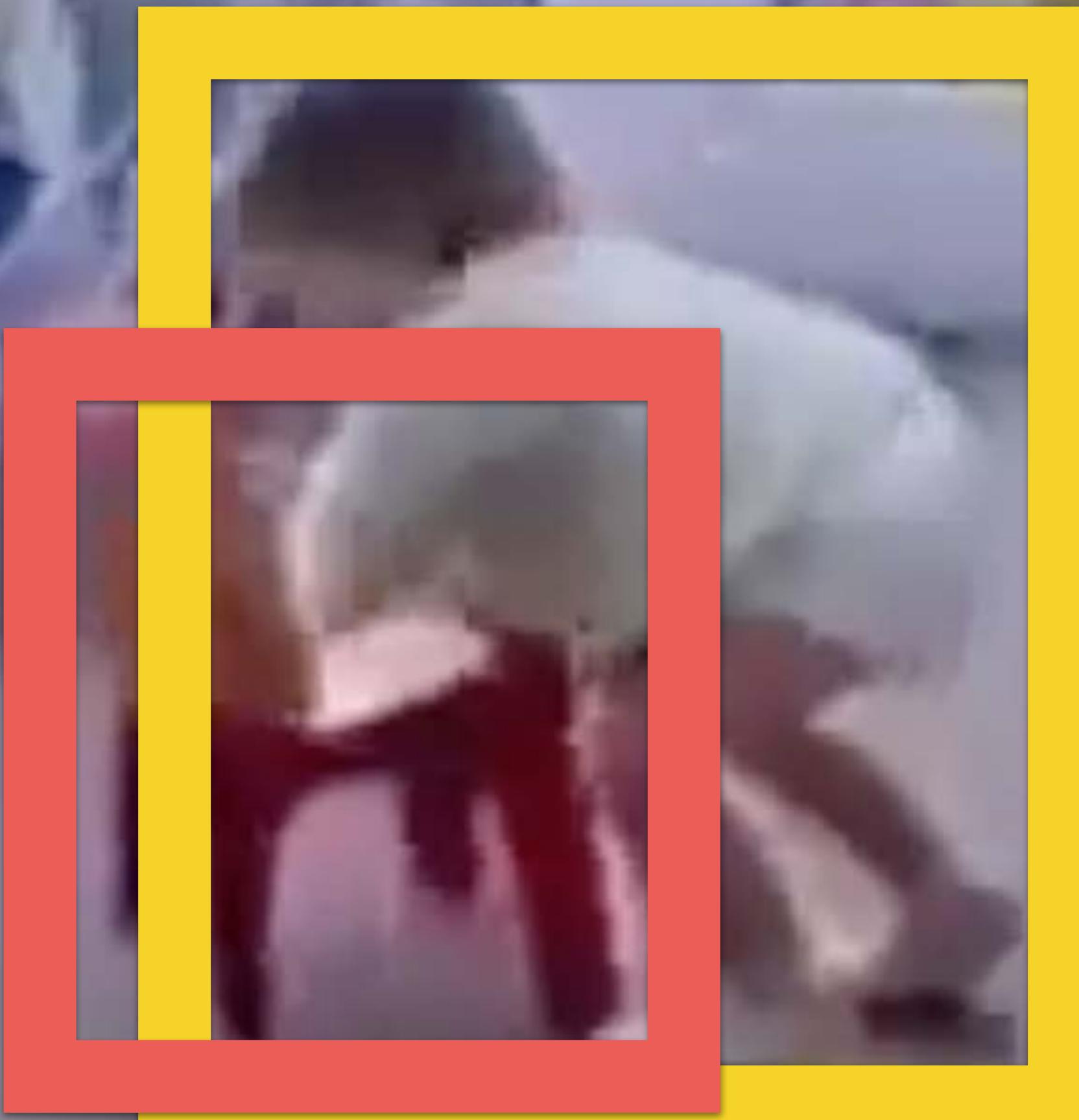
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

television

person

chair

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>



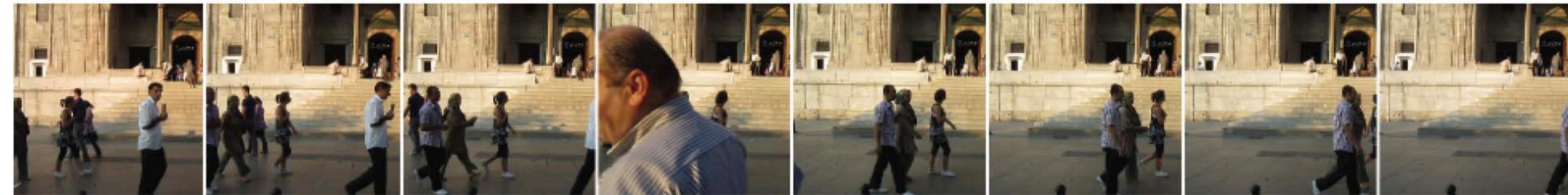
“What color is the chair?”

“What color is the chair?”
red

“What will the girl do next?”

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

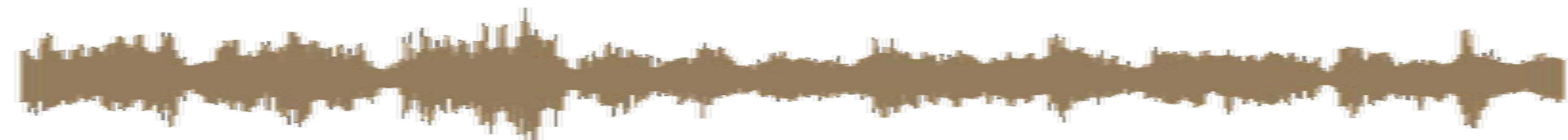
Sequences



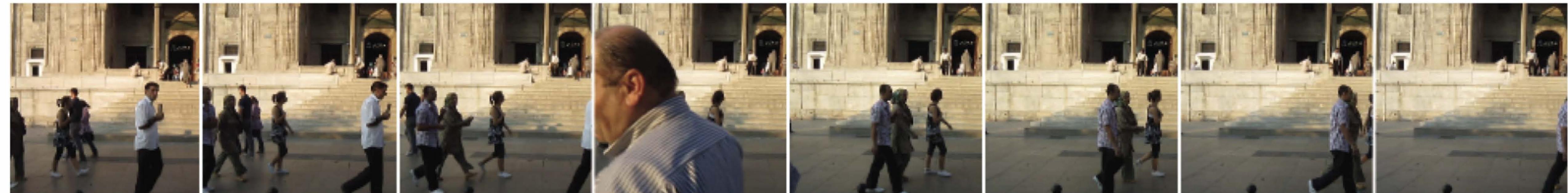
time

“An”, “evening”, “stroll”, “through”, “a”, “city”, “square”

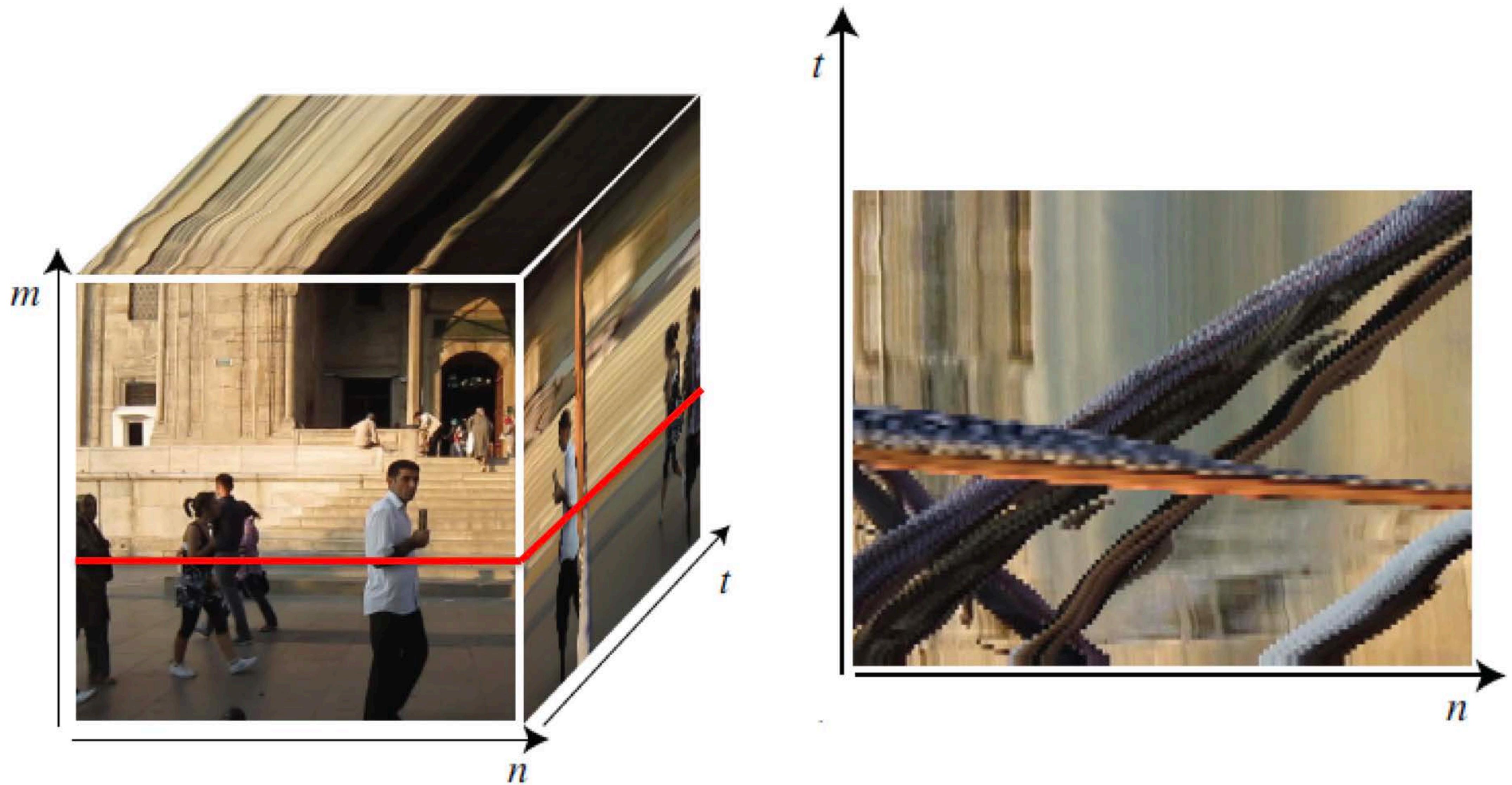
time



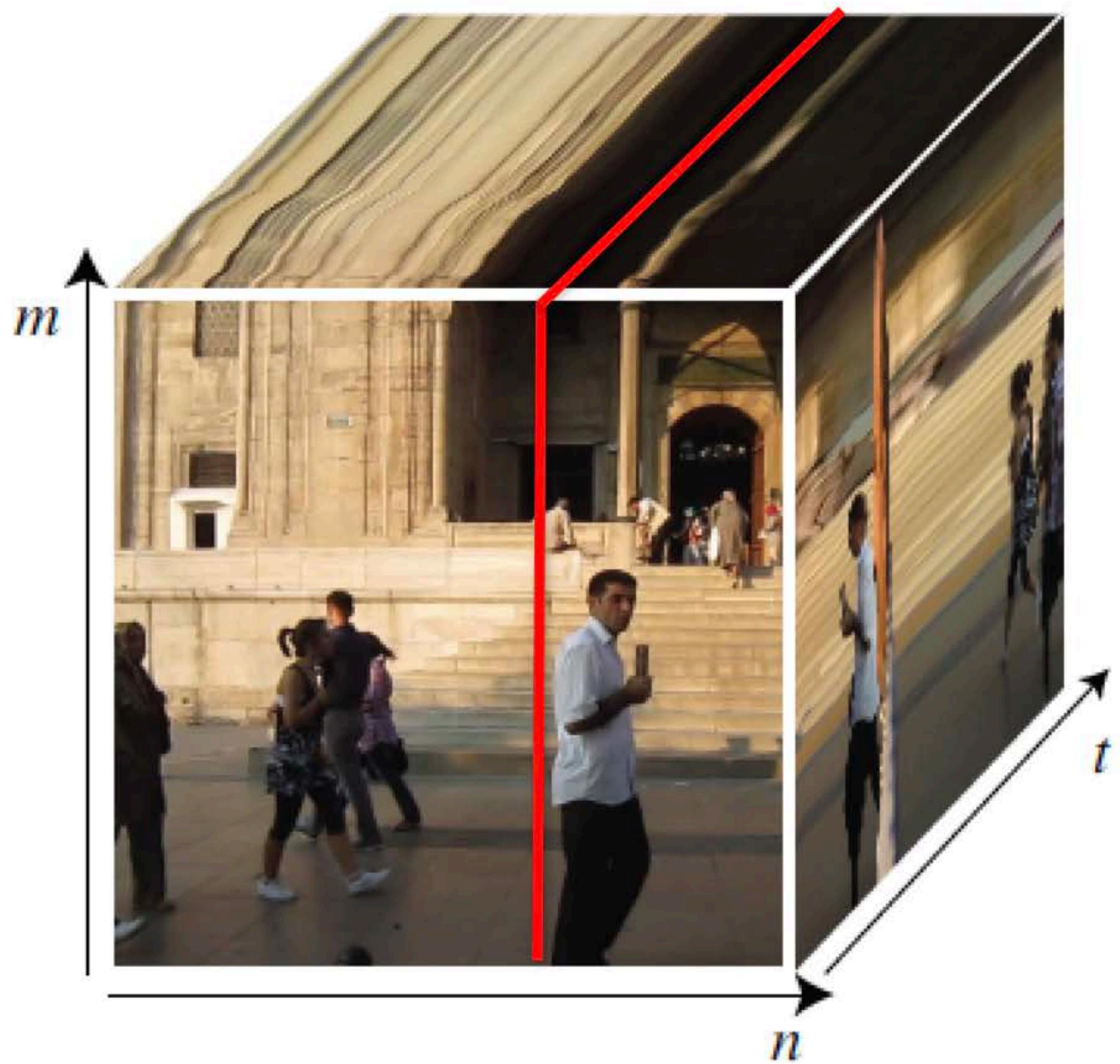
time



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

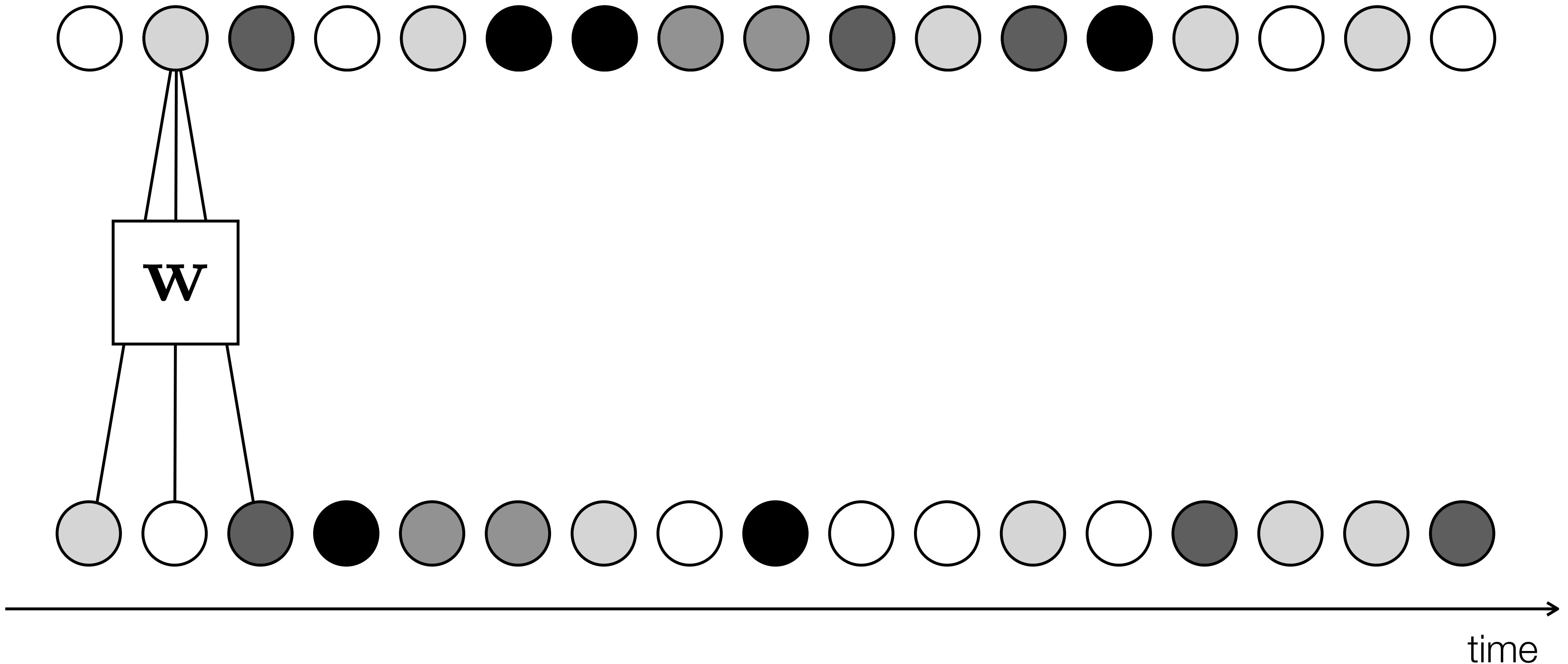


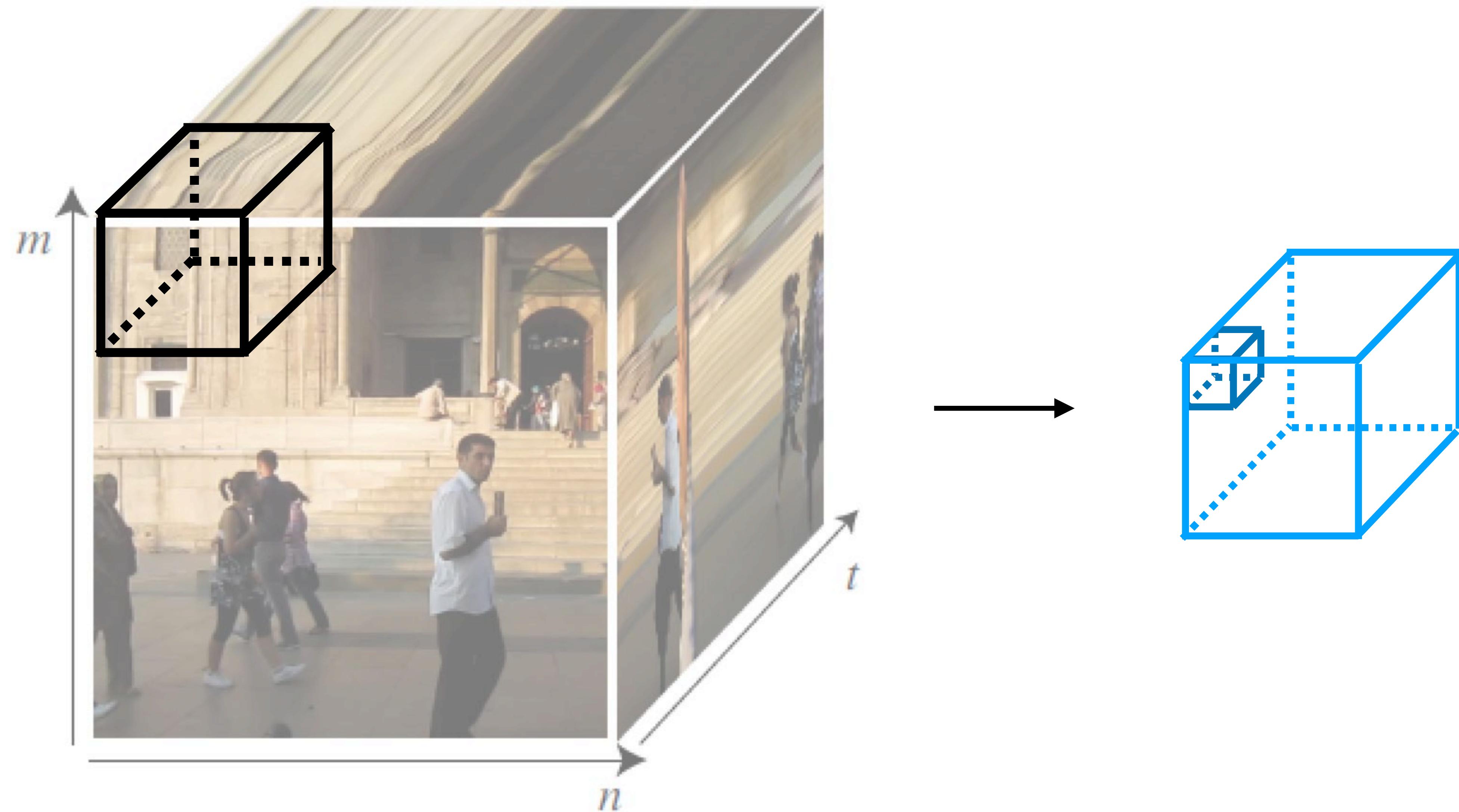
© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>



© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

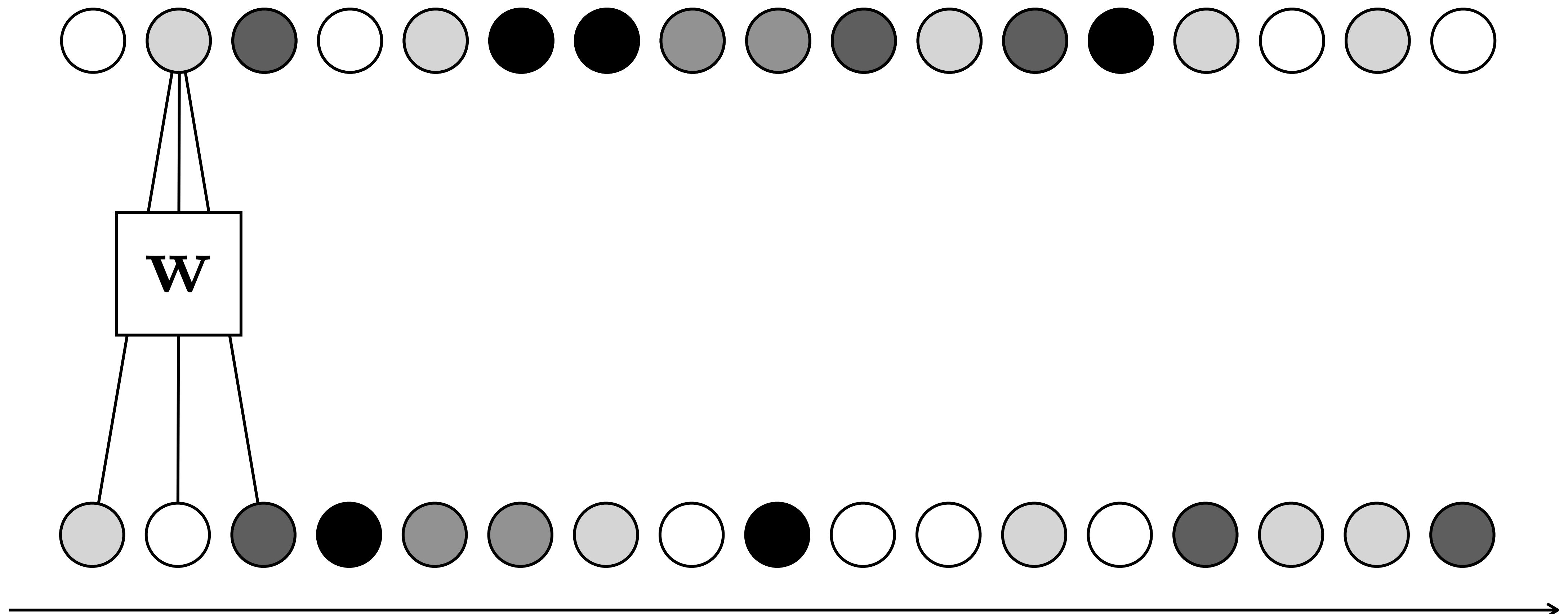
Convolutions in time





© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

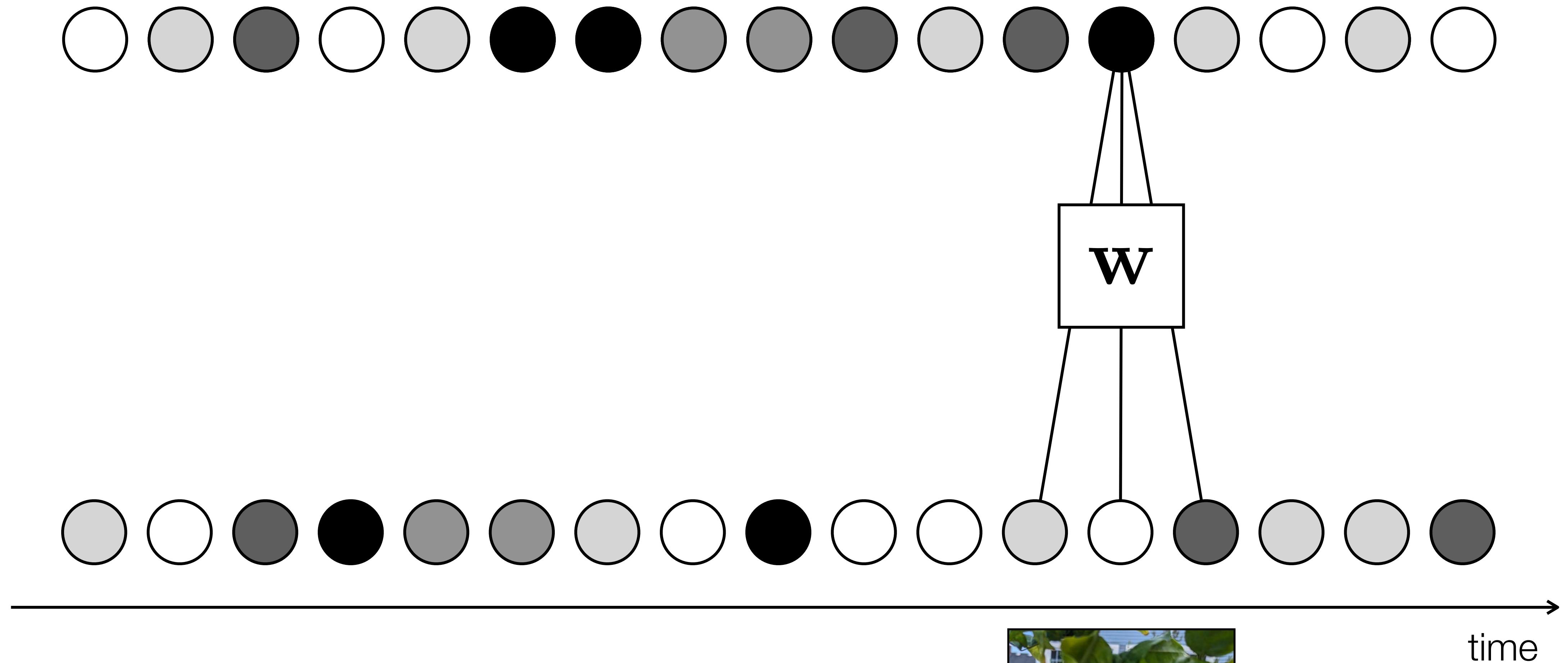
Frank



Images © source unknown. All rights reserved.

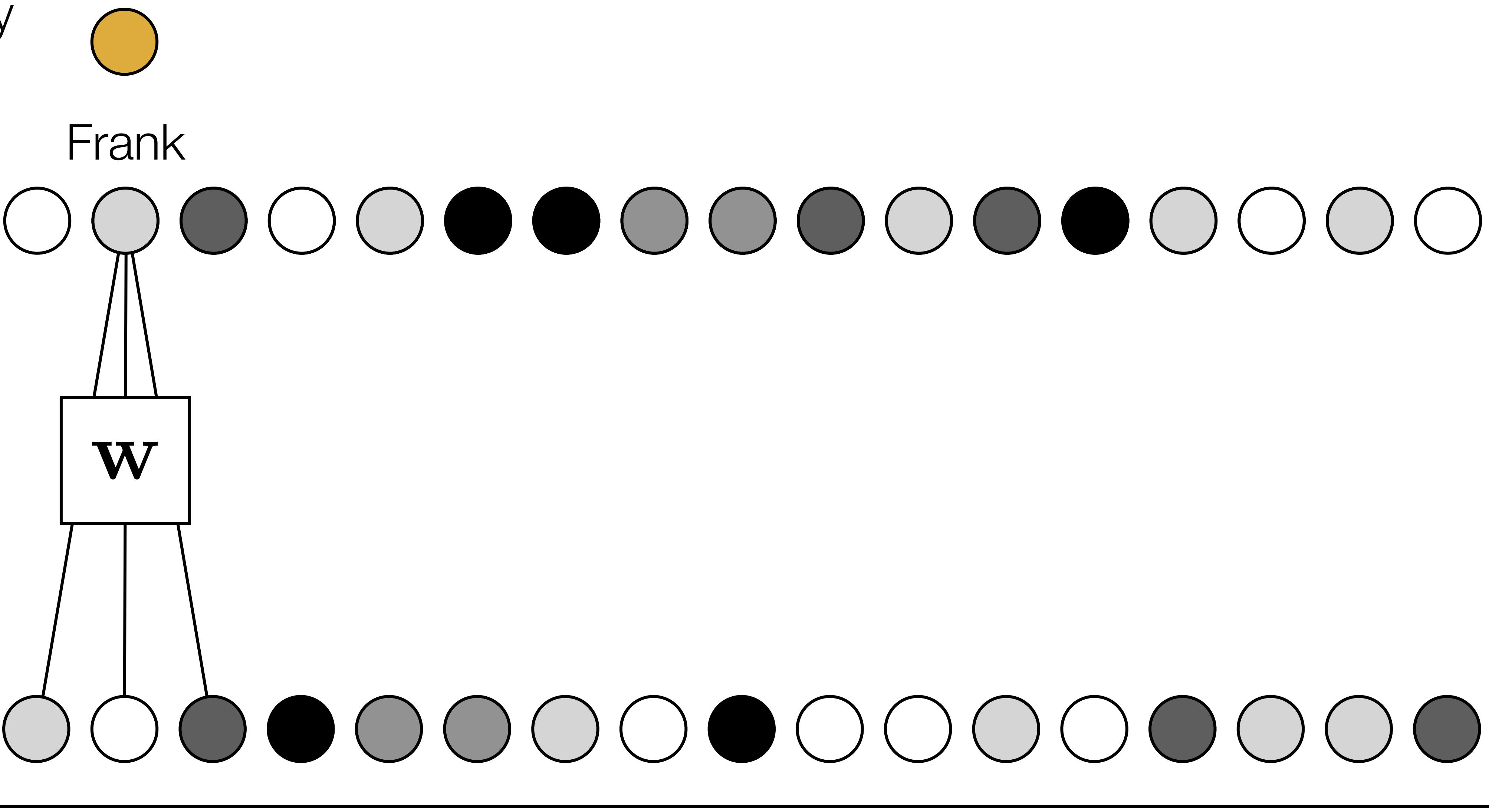
This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Tiger



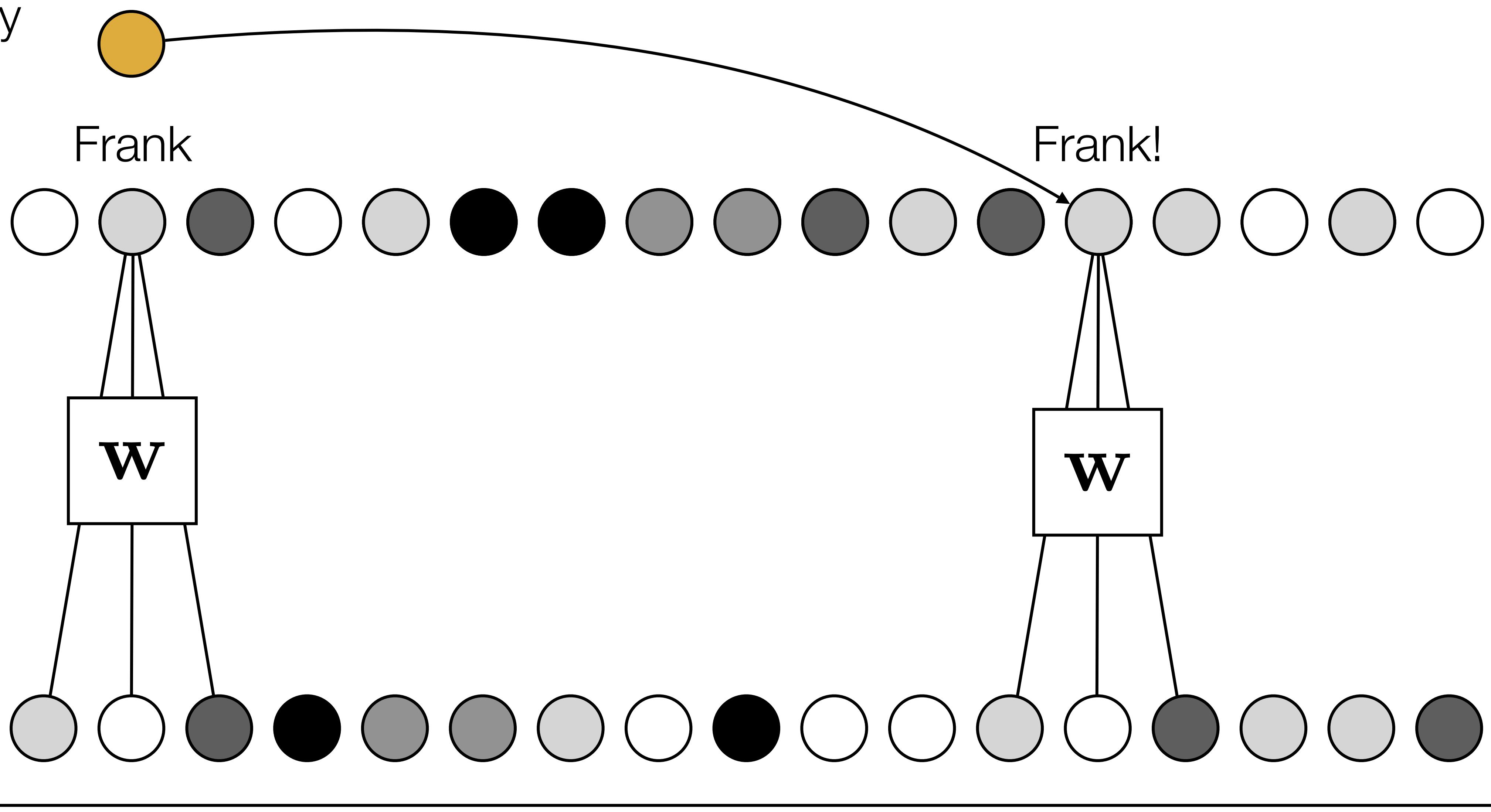
Memory
unit

Frank



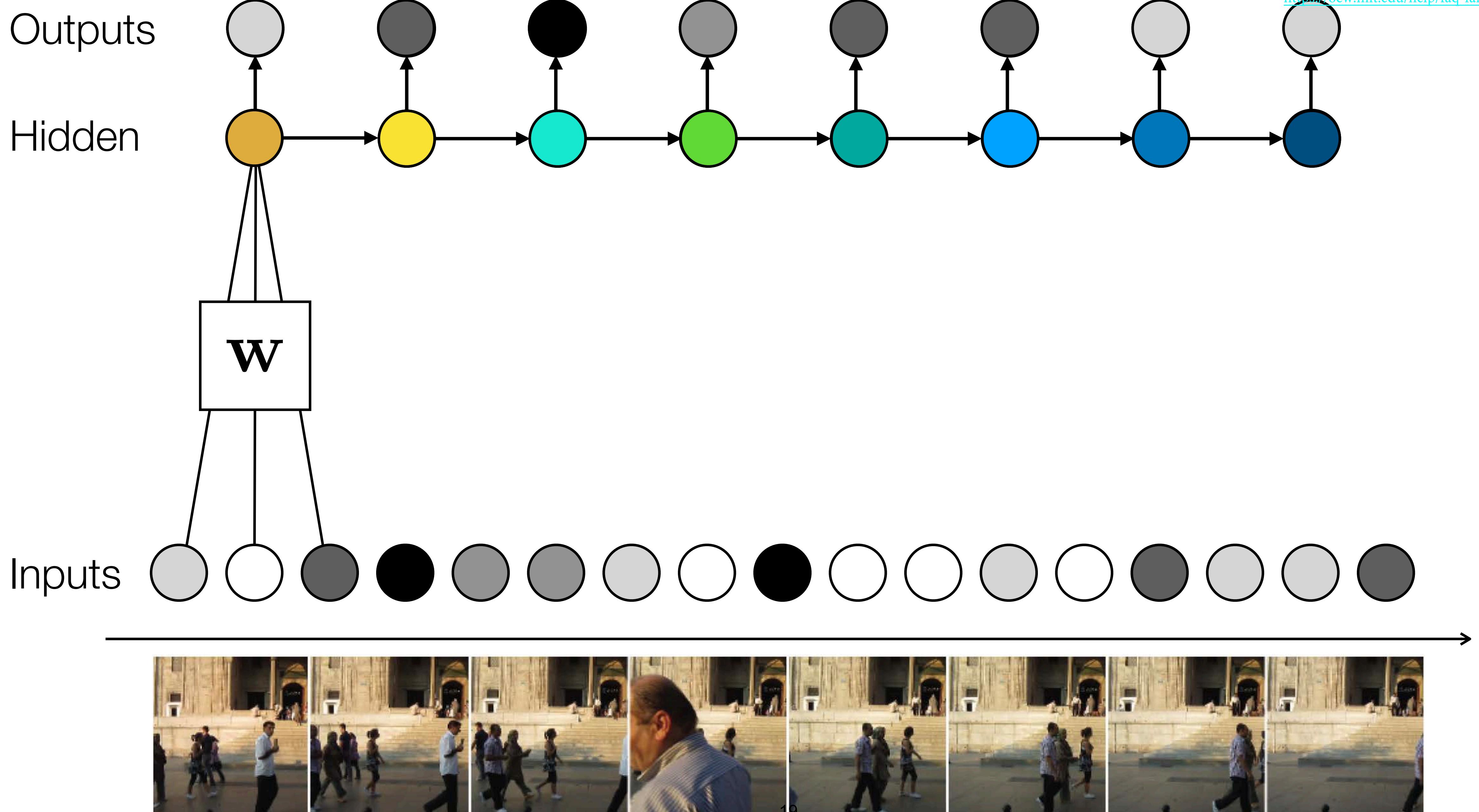
Images © source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information, see
<https://ocw.mit.edu/help/faq-fair-use/>

Memory
unit

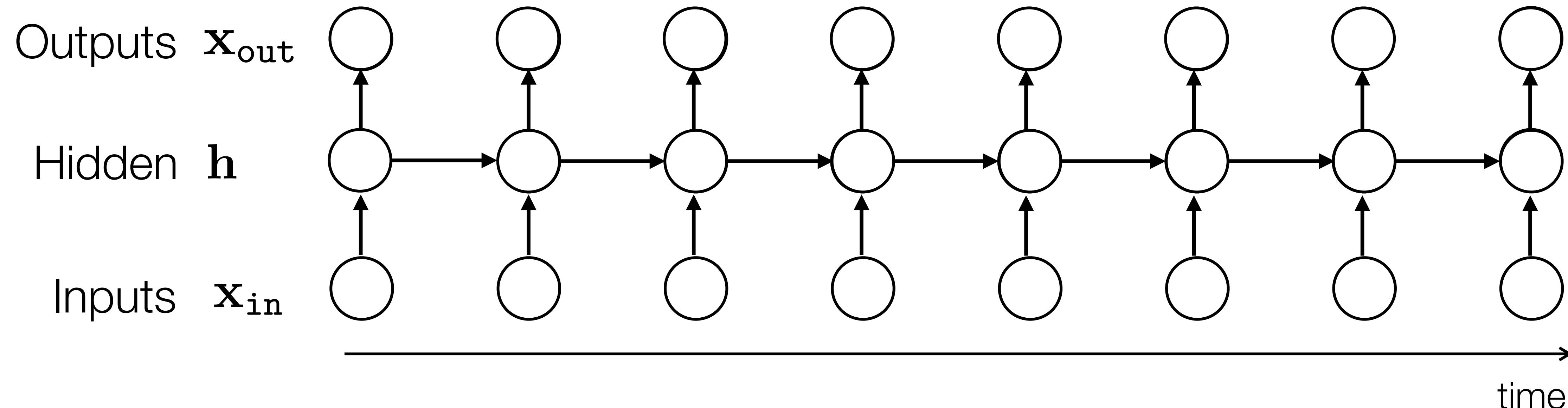


Images © source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information, see
<https://ocw.mit.edu/help/faq-fair-use/>

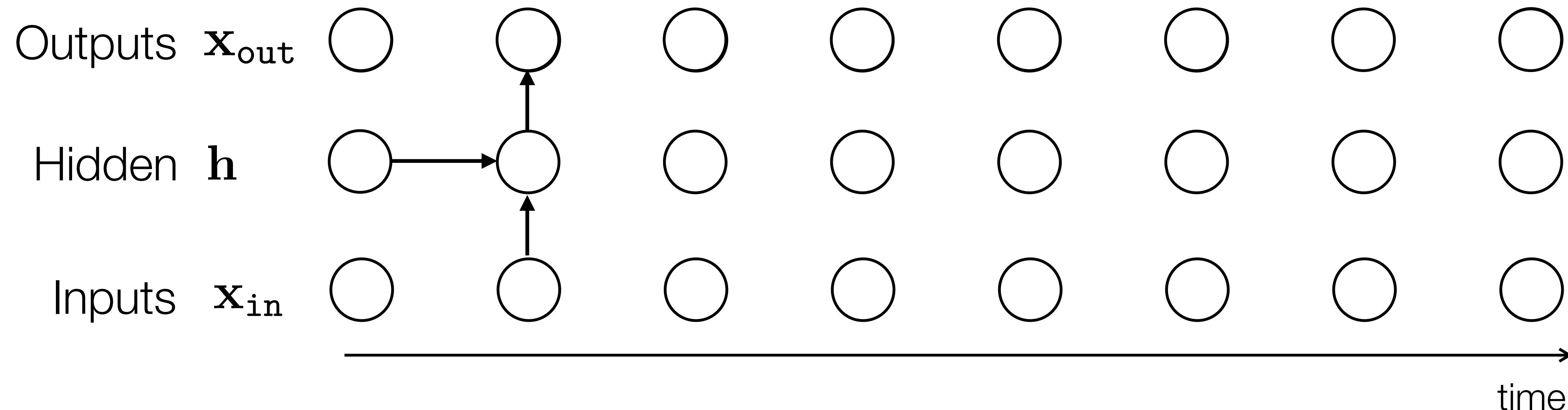
Recurrent Neural Networks (RNNs)



Recurrent Neural Networks (RNNs)



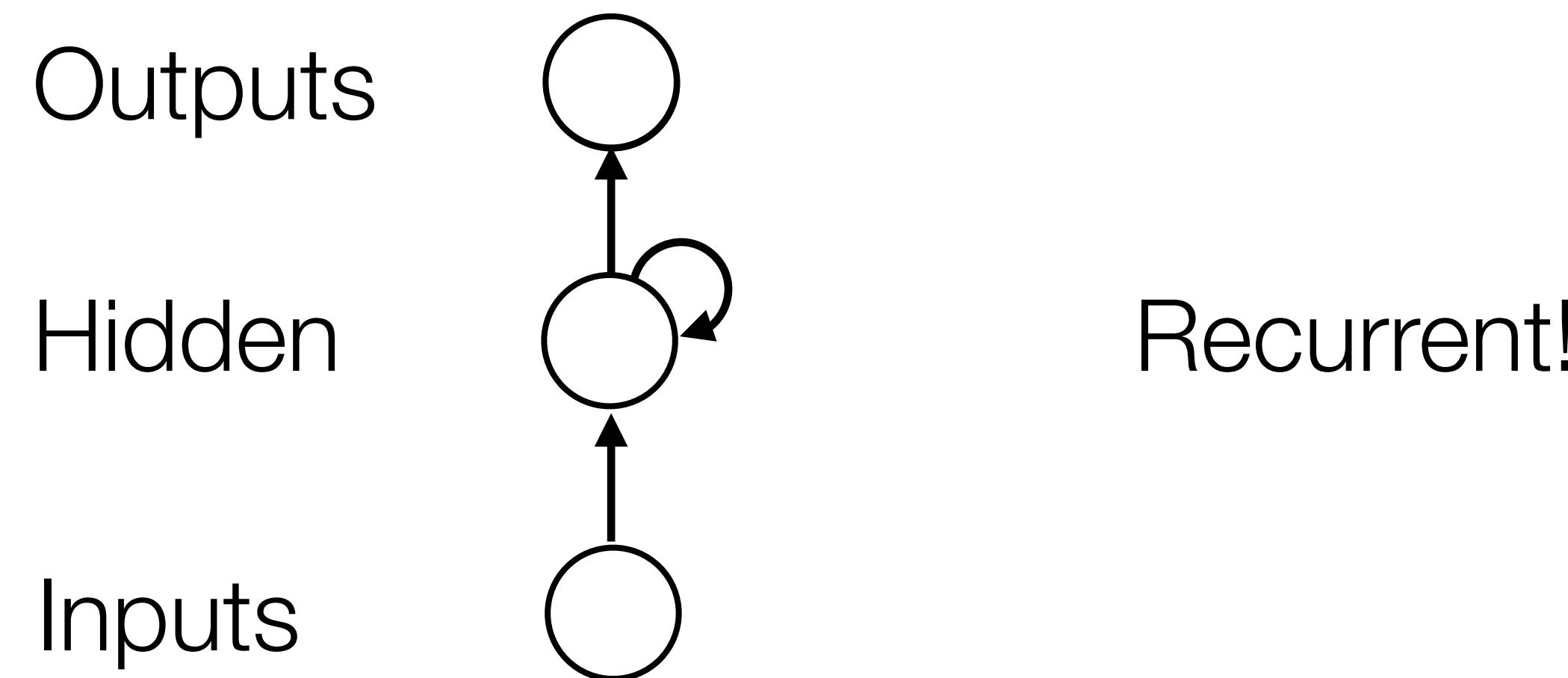
Recurrent Neural Networks (RNNs)



$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_{\text{in}}[t])$$

$$\mathbf{x}_{\text{out}}[t] = g(\mathbf{h}_t)$$

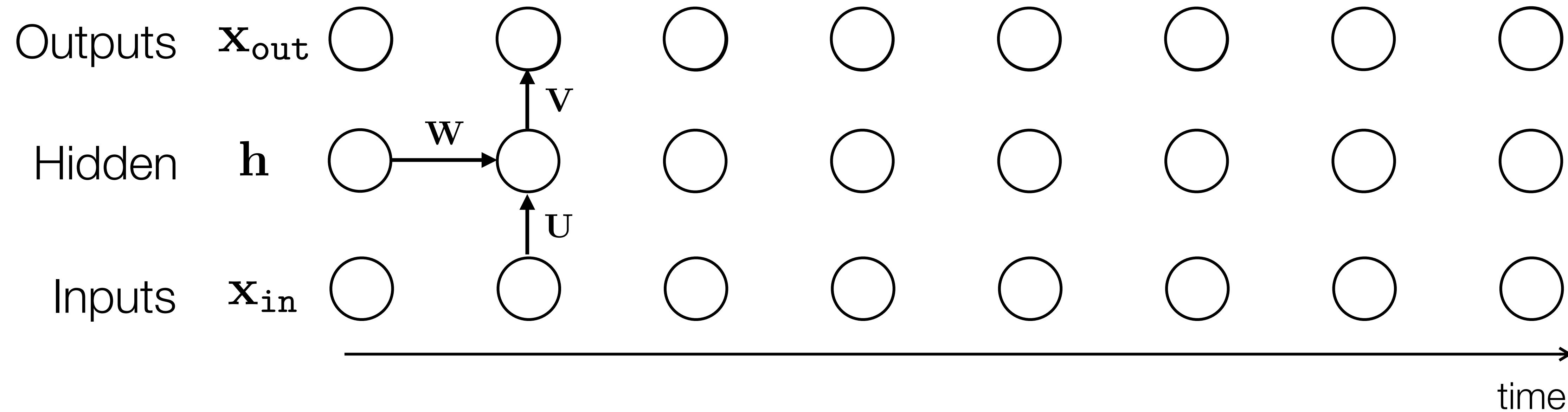
Recurrent Neural Networks (RNNs)



$$\mathbf{h}_t = f(\mathbf{h}_{t-1}, \mathbf{x}_{\text{in}}[t])$$

$$\mathbf{x}_{\text{out}}[t] = g(\mathbf{h}_t)$$

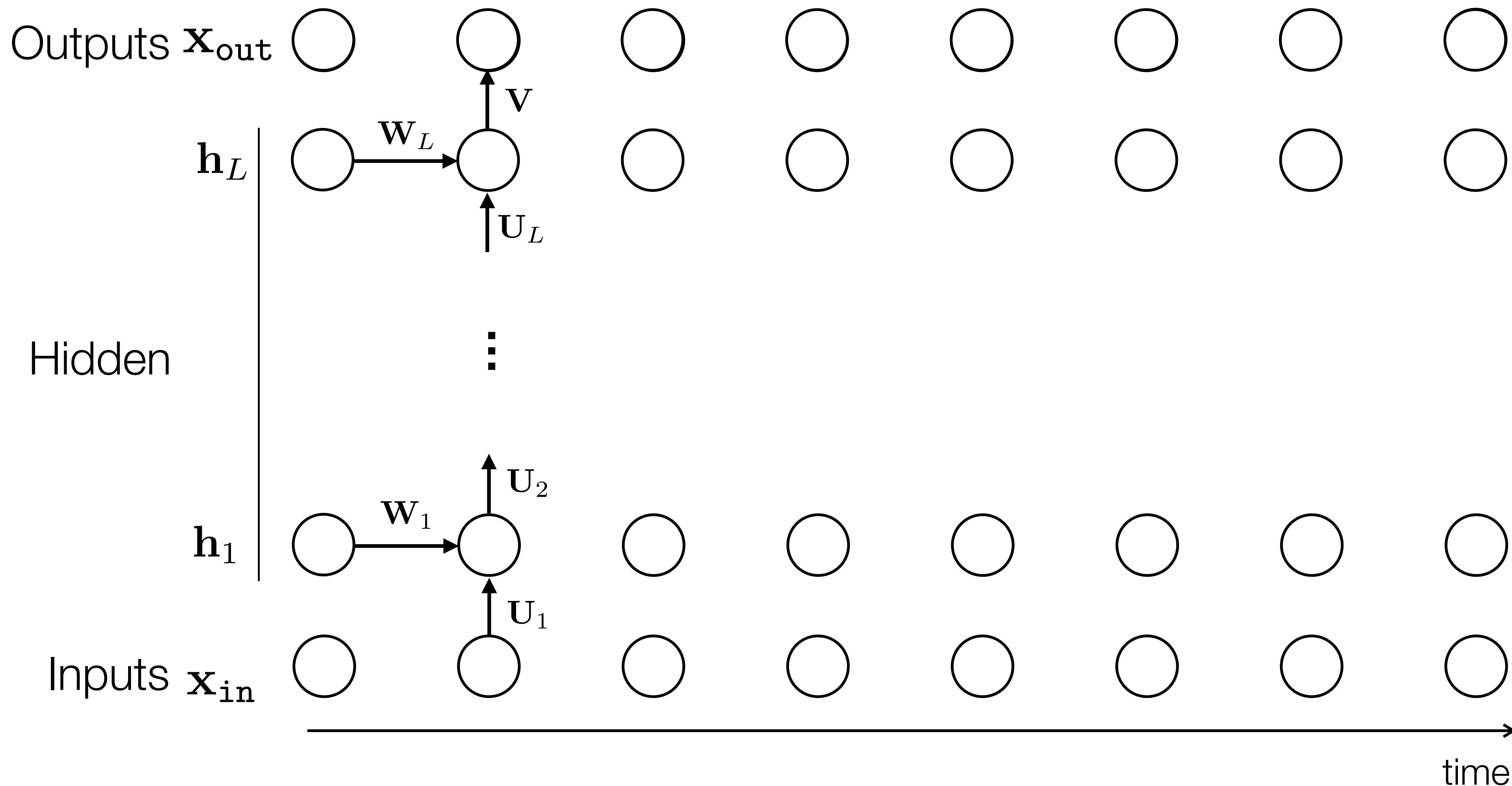
Recurrent Neural Networks (RNNs)



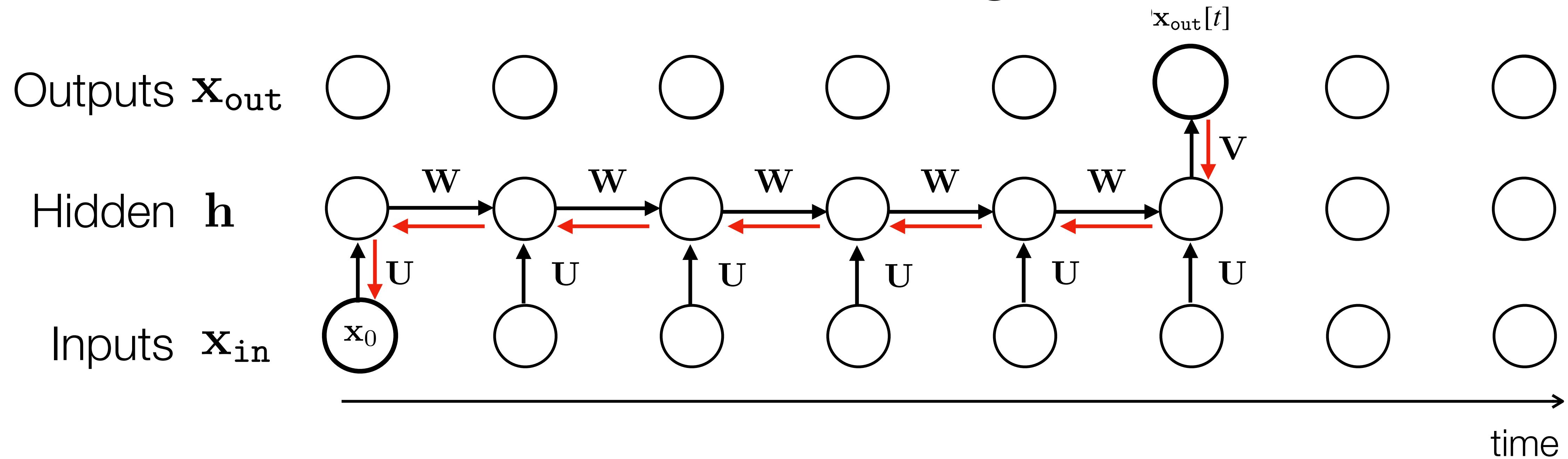
$$h_t = \sigma_1(\mathbf{W}h_{t-1} + \mathbf{U}x_{in}[t] + \mathbf{b})$$

$$x_{out}[t] = \sigma_2(\mathbf{V}h_t + \mathbf{c})$$

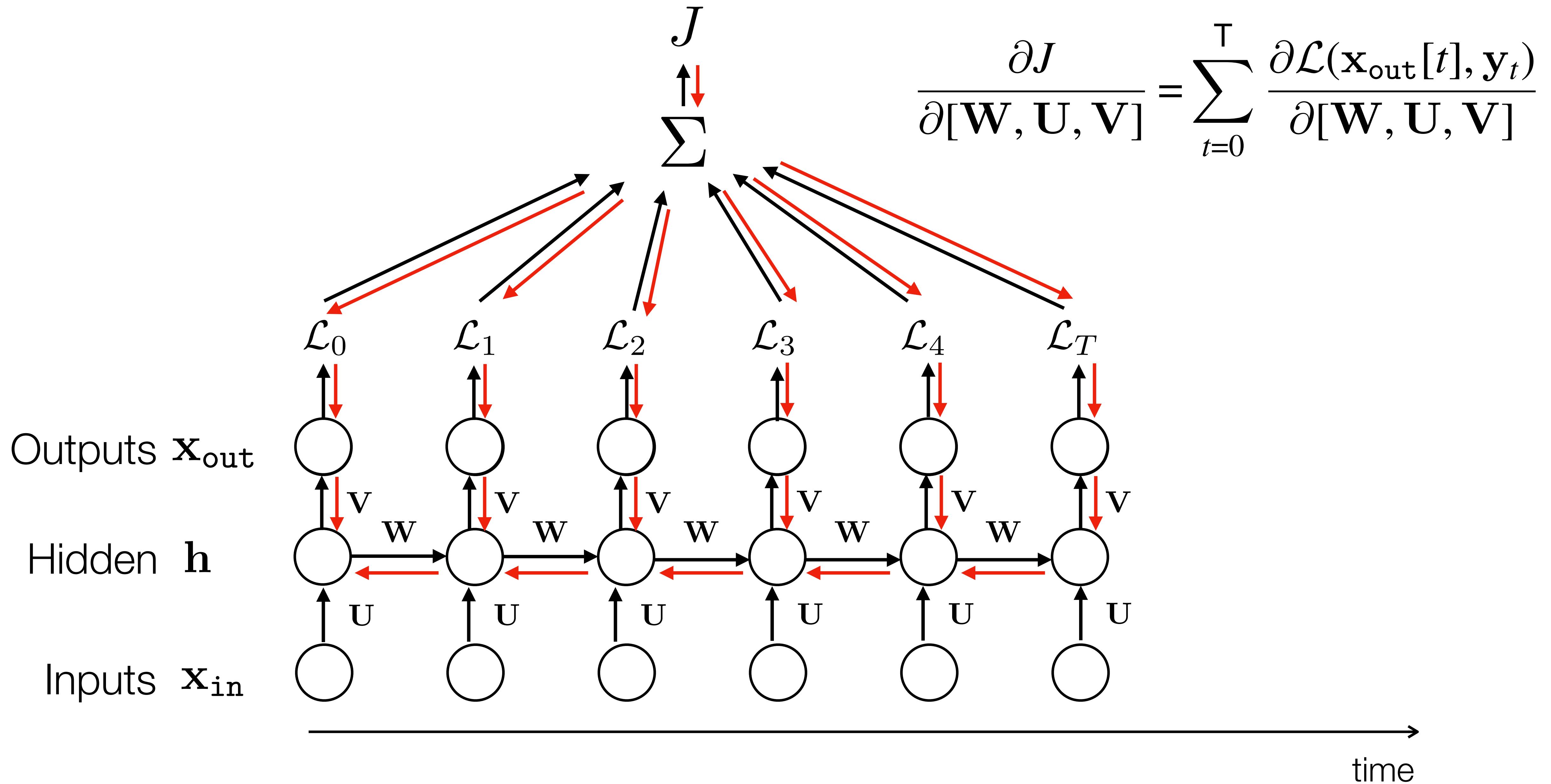
Deep Recurrent Neural Networks (RNNs)



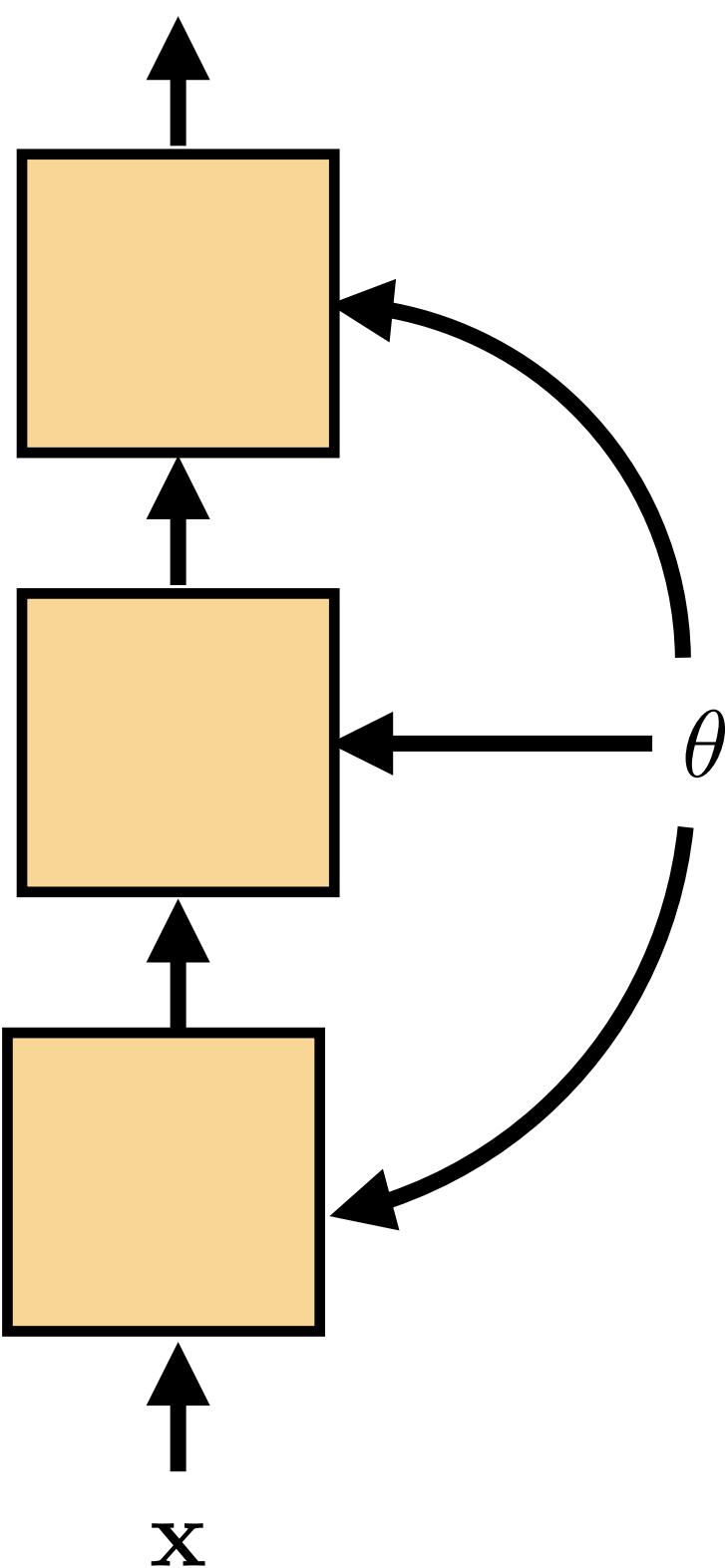
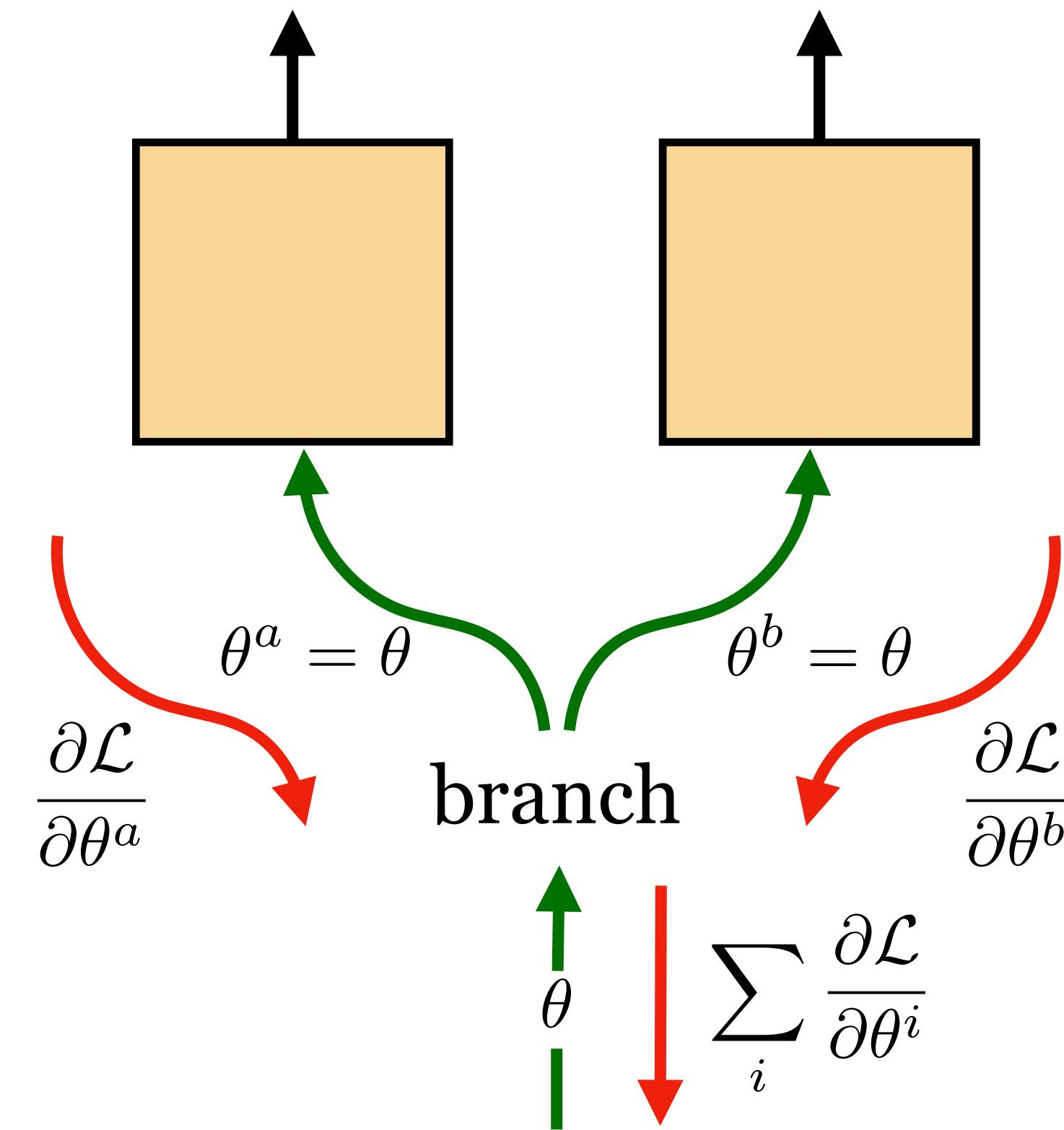
Backprop through time



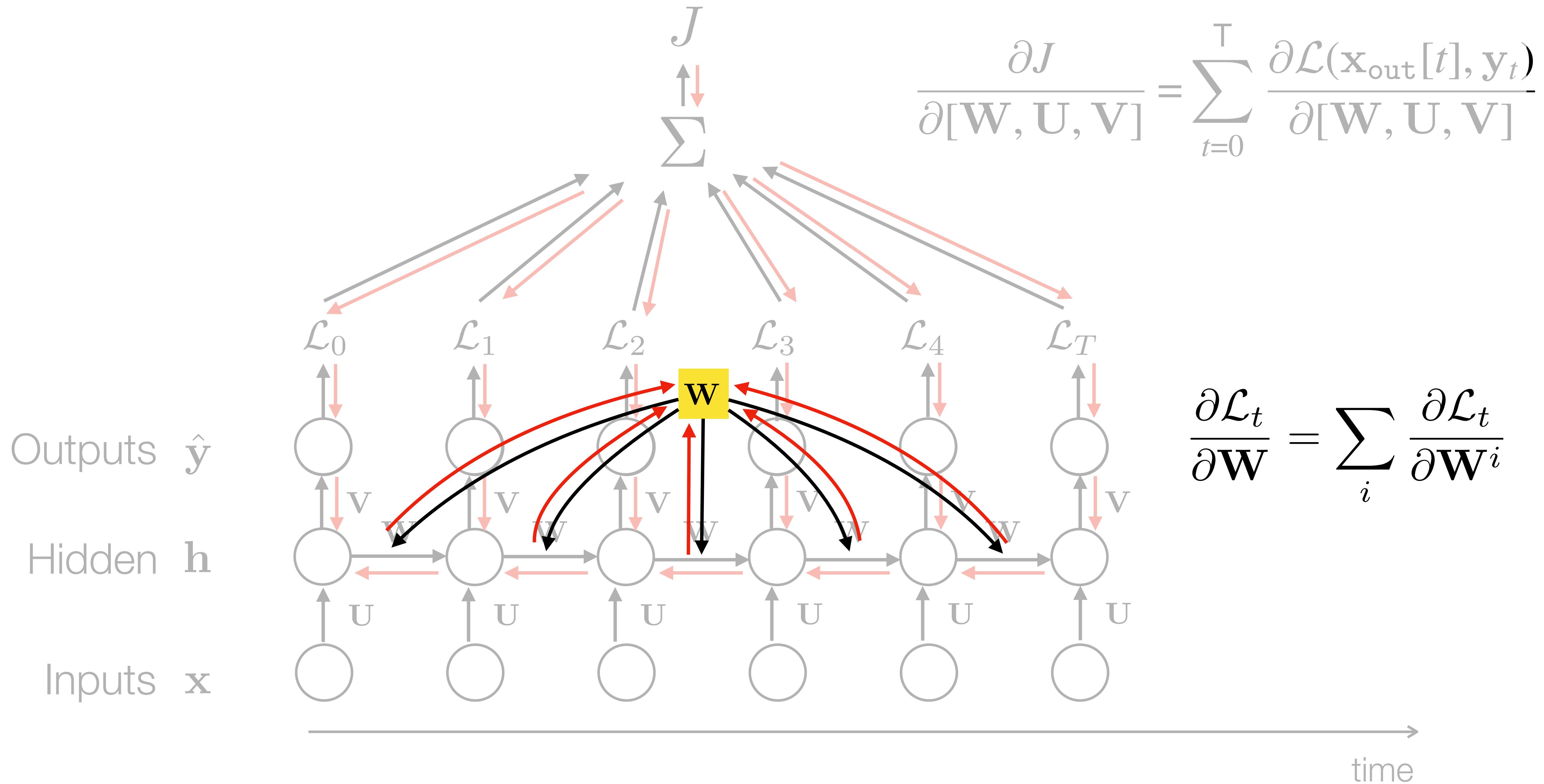
$$\frac{\partial \mathbf{x}_{\text{out}}[t]}{\partial \mathbf{x}_{\text{in}}[0]} = \frac{\partial \mathbf{x}_{\text{out}}[t]}{\partial \mathbf{h}_T} \frac{\partial \mathbf{h}_T}{\partial \mathbf{h}_{T-1}} \cdots \frac{\partial \mathbf{h}_1}{\partial \mathbf{h}_0} \frac{\partial \mathbf{h}_0}{\partial \mathbf{x}_{\text{in}}[0]}$$



Parameter sharing



Parameter sharing \rightarrow sum gradients

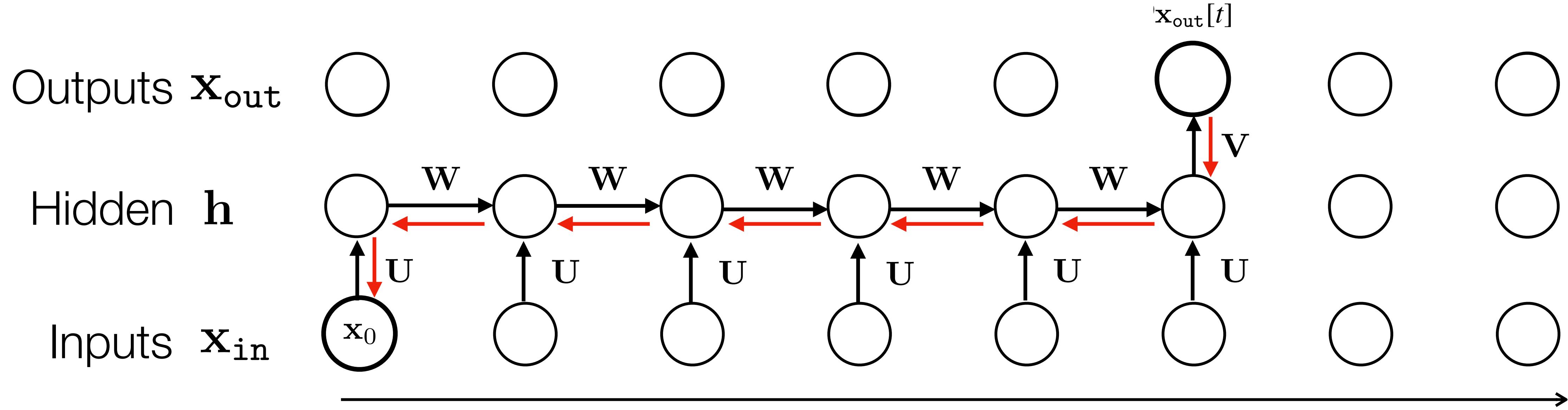


The problem of long-range dependences

Why not remember everything?

- Memory size grows with t
- This kind of memory is **nonparametric**: there is no finite set of parameters we can use to model it
- RNNs make a Markov assumption — the future hidden state only depends on the immediately preceding hidden state
- By putting the right info in to the hidden state, RNNs can model dependences that are arbitrarily far apart

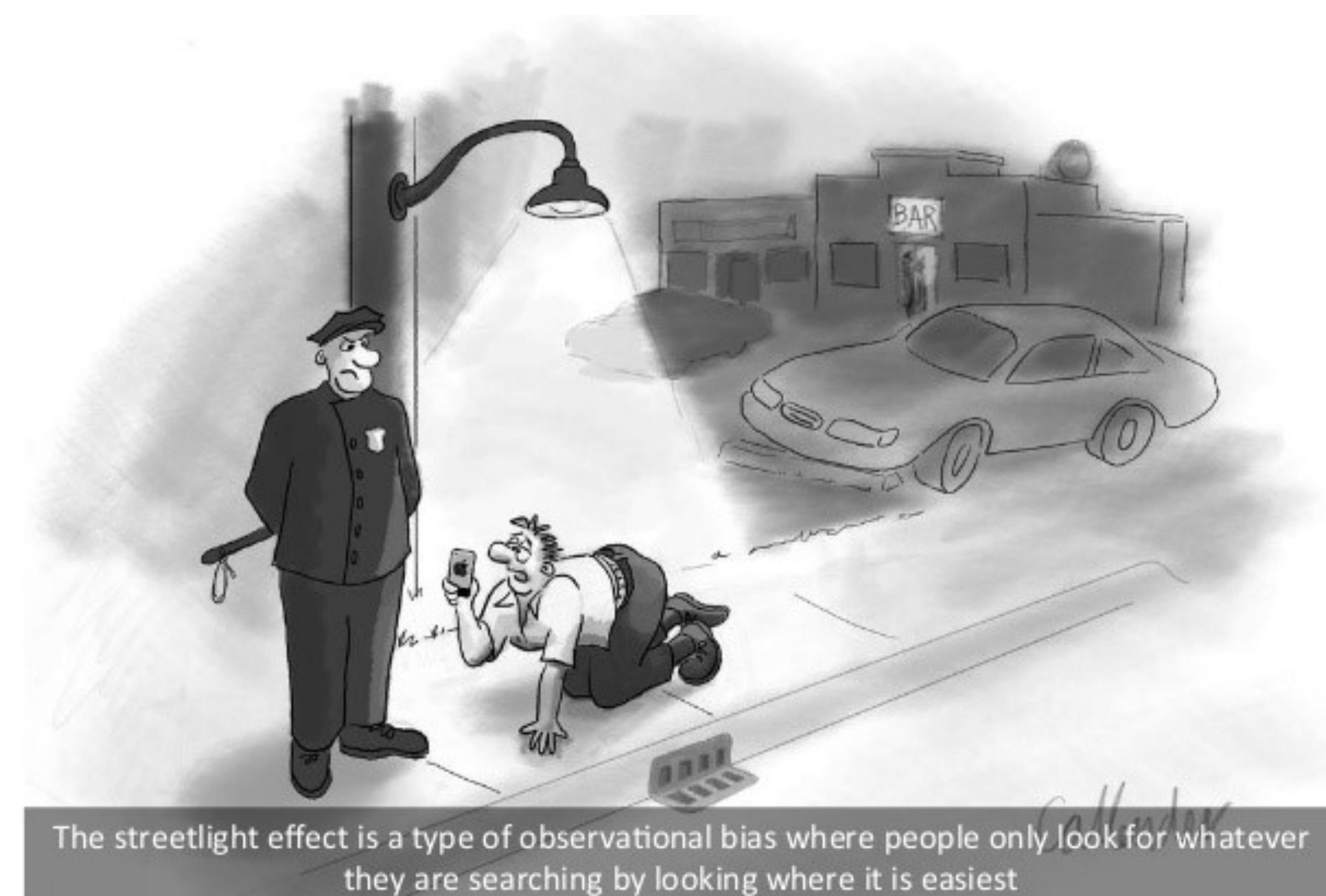
The problem of long-range dependences



$$\frac{\partial x_{out}[t]}{\partial x_{in}[0]} = \frac{\partial x_{out}[t]}{\partial h_T} \frac{\partial h_T}{\partial h_{T-1}} \dots \frac{\partial h_1}{\partial h_0} \frac{\partial h_0}{\partial x_{in}[0]}$$

- Capturing long-range dependences requires propagating information through a long chain of dependences.
- Old observations are forgotten
- Stochastic gradients become high variance (noisy), and gradients may **vanish** or **explode**

Optional reading: more detailed discussion of stability analysis in recursion from a control theory perspective from Bhiksha Raj @ CMU



"I'm searching for my keys."

"1-27. Drunk under the lamp post" by Peter Morville,
CC BY-NC 2.0

<https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Spring.2019/archive-f19/www-bak11-22-2019/document/lecture/lec13.recurrent2.pdf>

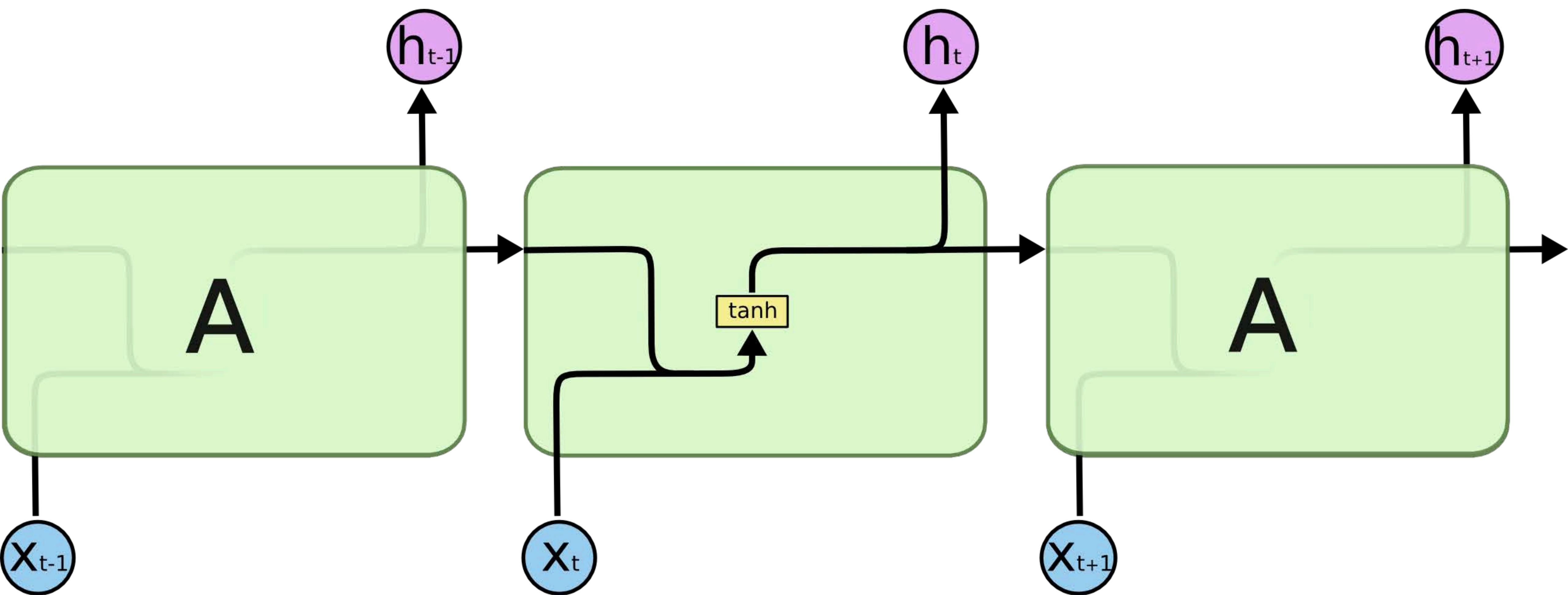
LSTMs

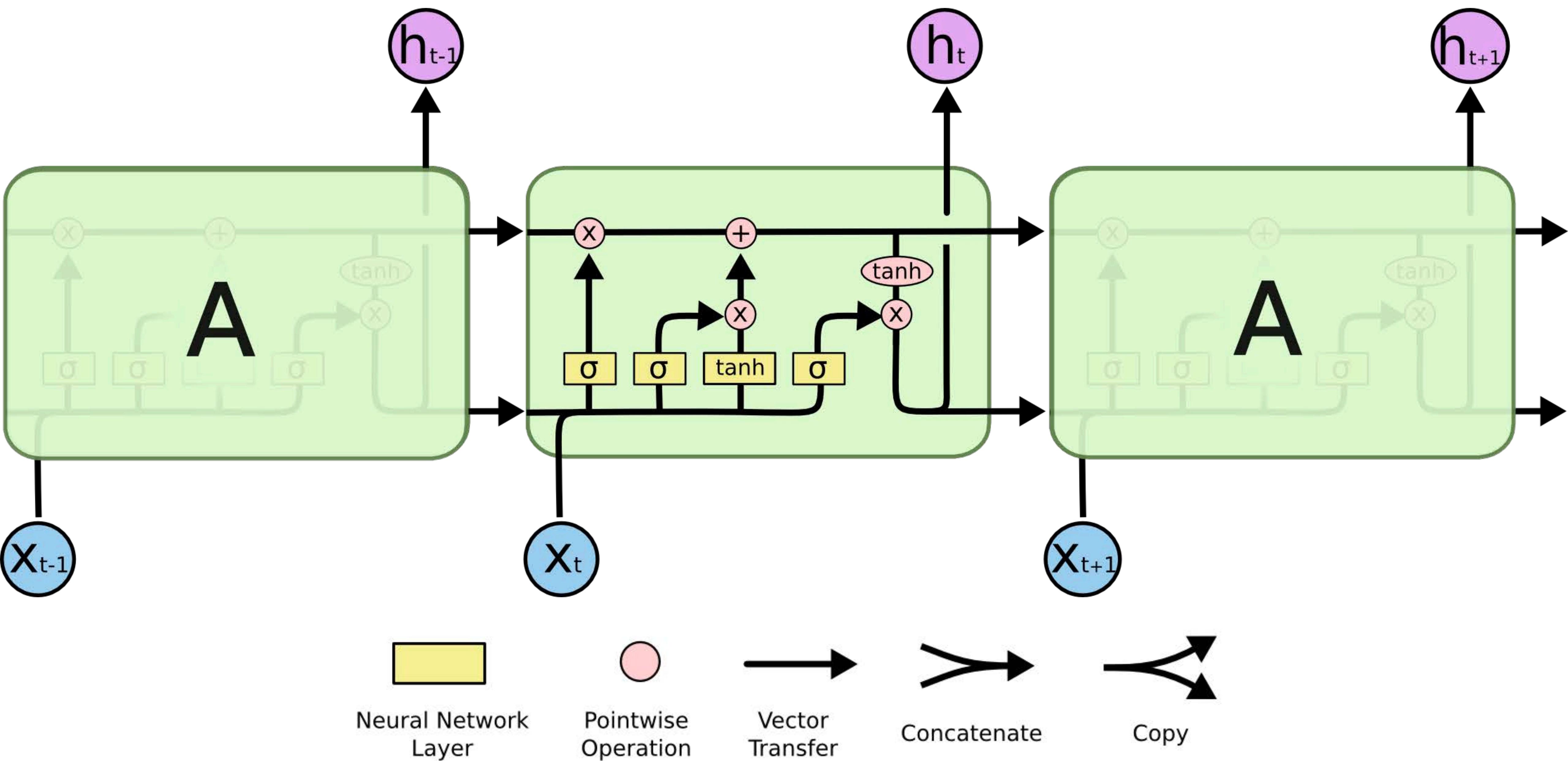
Long Short Term Memory

[Hochreiter & Schmidhuber, 1997]

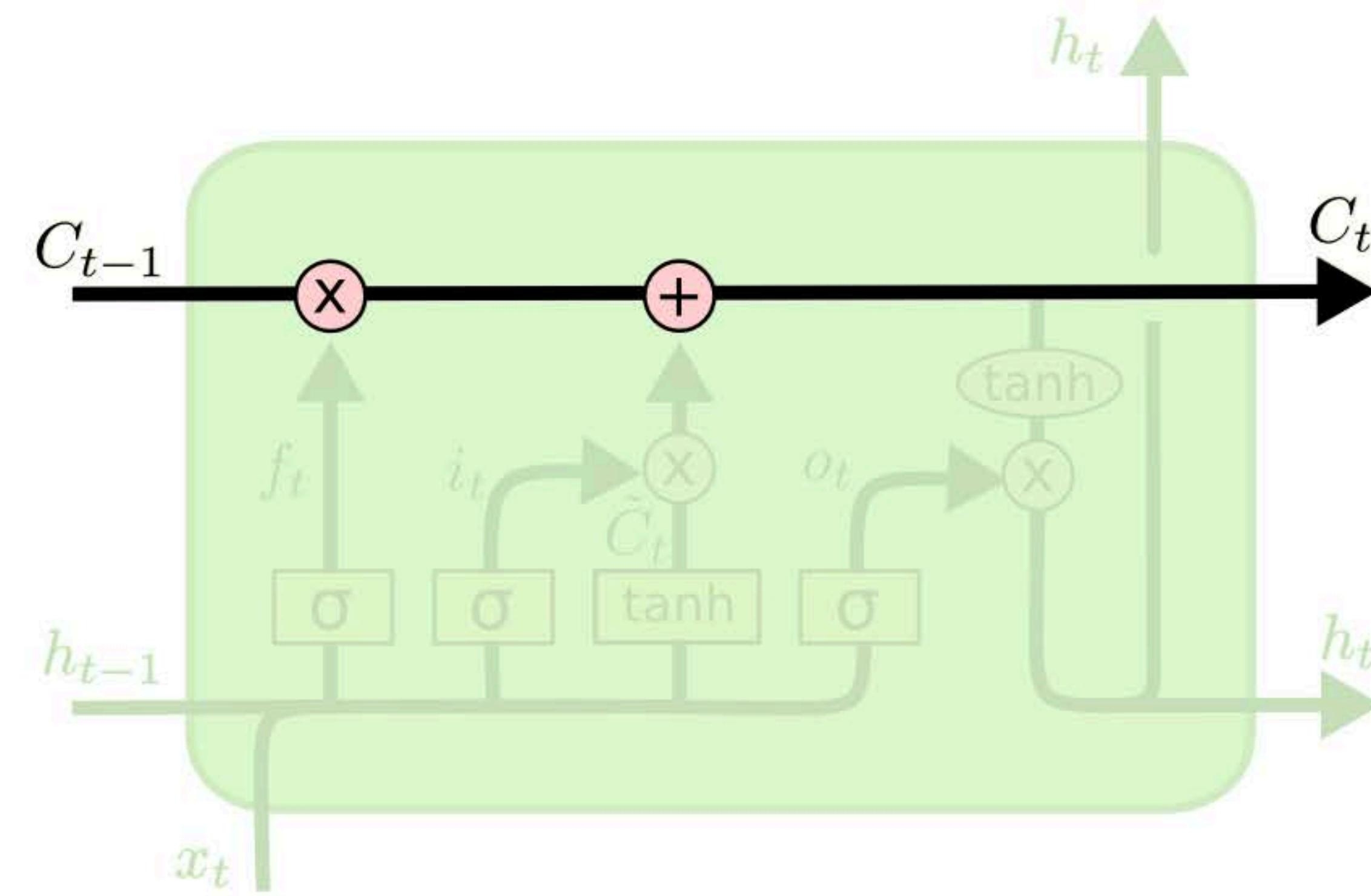
A special kind of RNN designed to avoid forgetting.

This way the default behavior is not to forget an old state. Instead of forgetting by default, the network has to *learn to forget*.

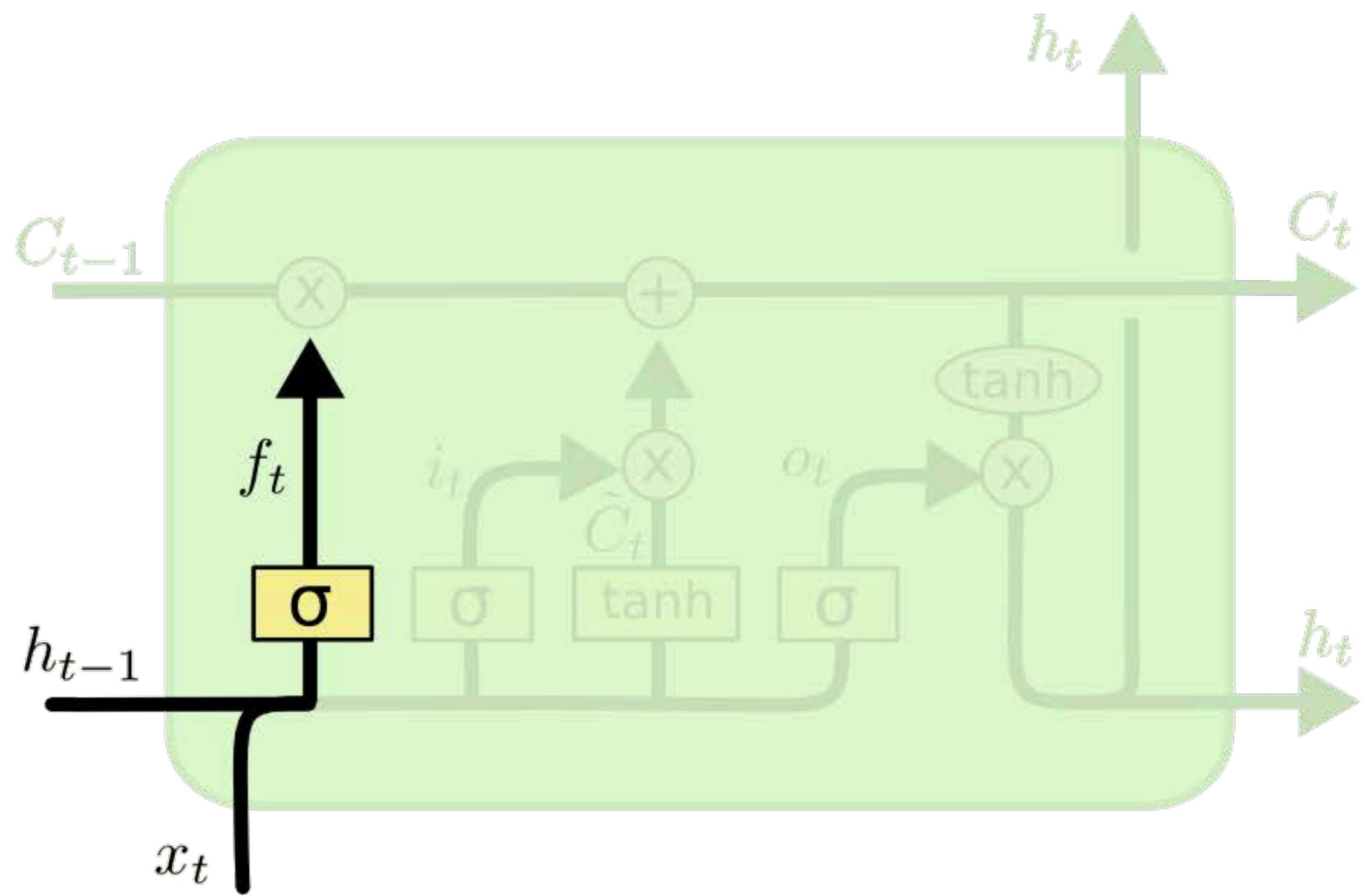
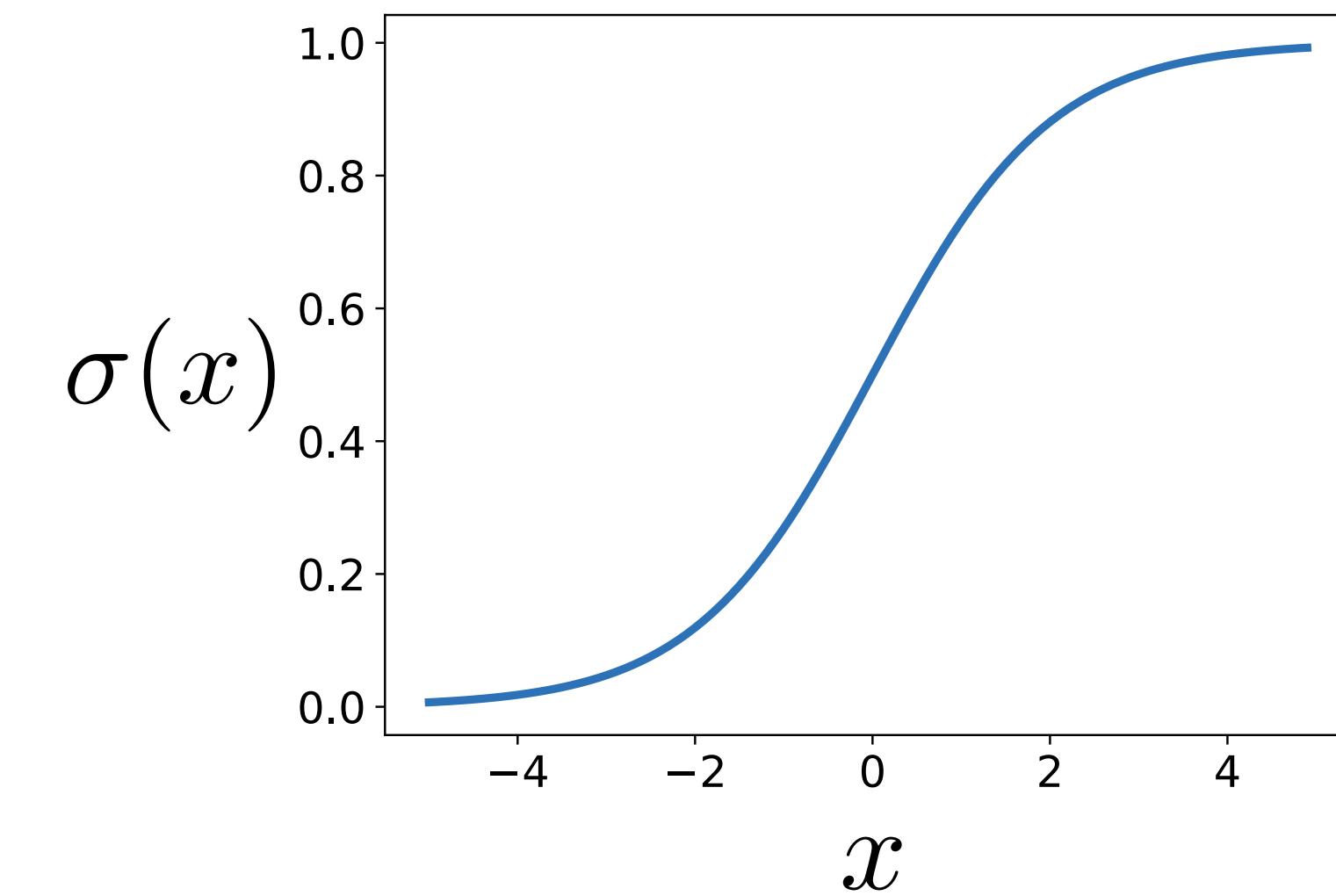




[Slide derived from Chris Olah: <http://colah.github.io/posts/2015-08-Understanding-LSTMs/>]



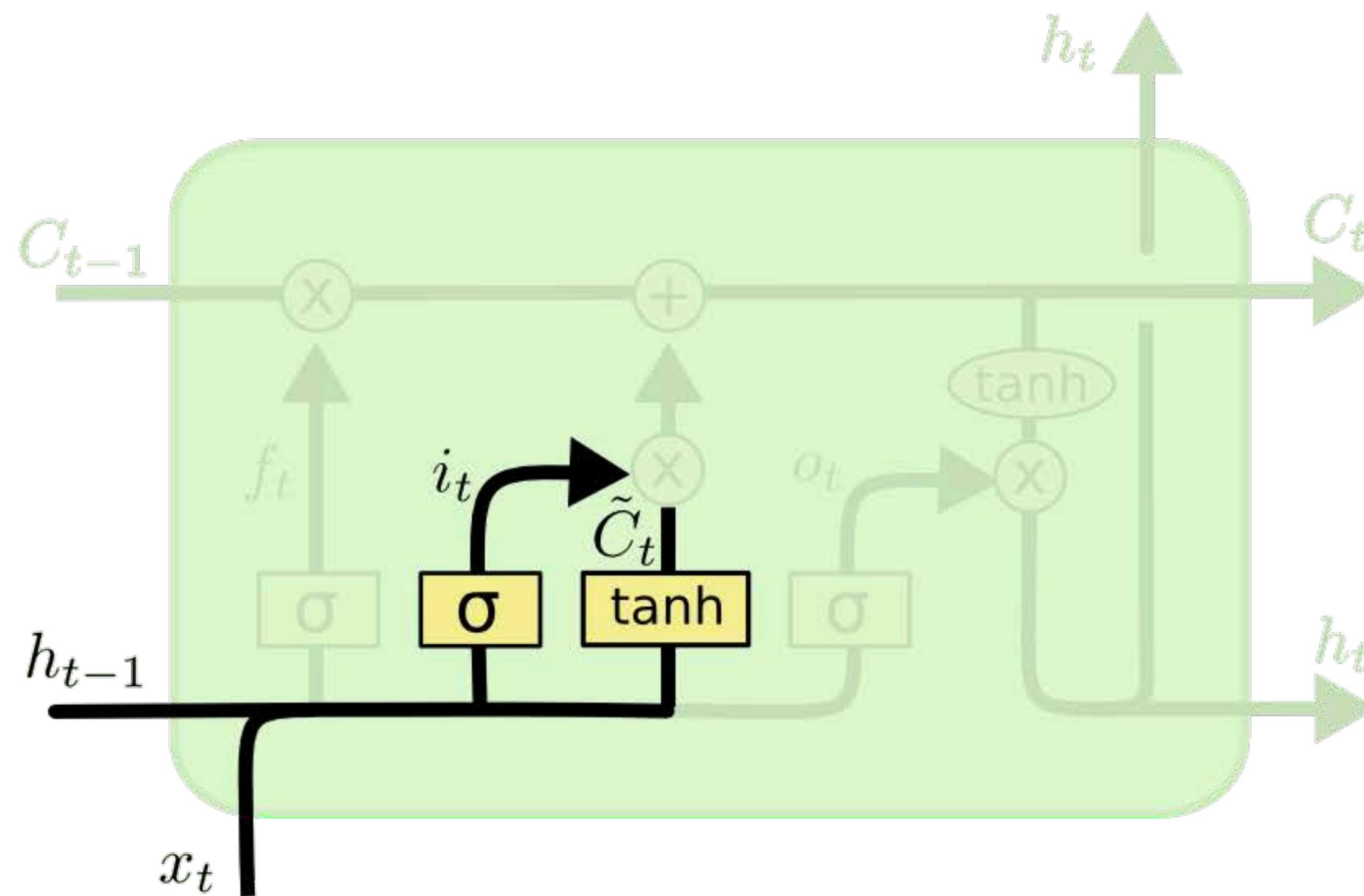
C_t = Cell state



$$f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)$$

Decide what information to throw away from the cell state.

Each element of cell state is multiplied by ~ 1 (remember) or ~ 0 (forget).



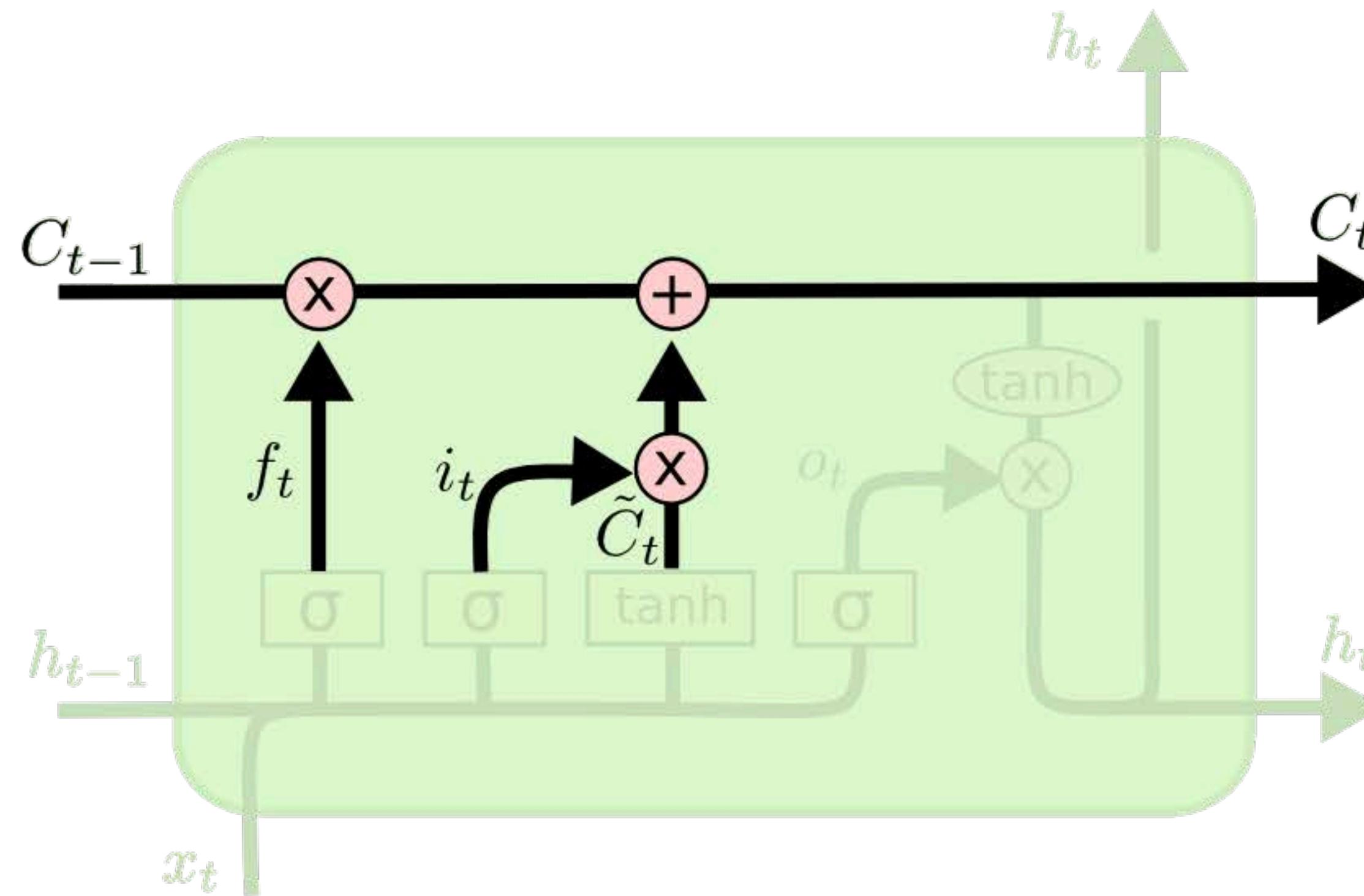
which indices to write to

$$i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh (W_C \cdot [h_{t-1}, x_t] + b_C)$$

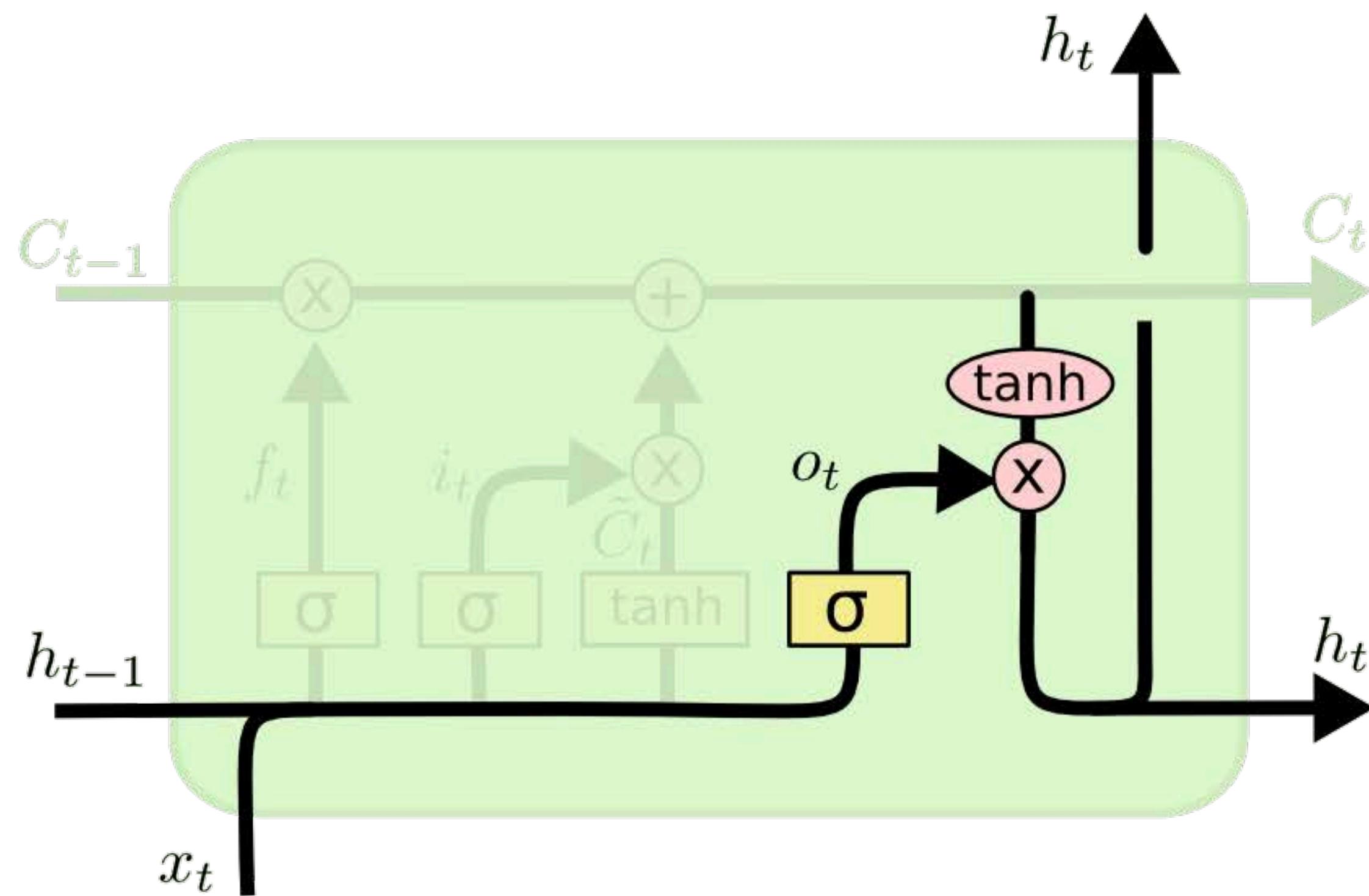
what to write to those indices

Decide what new information to add to the cell state.



$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Forget selected old information, write selected new information.



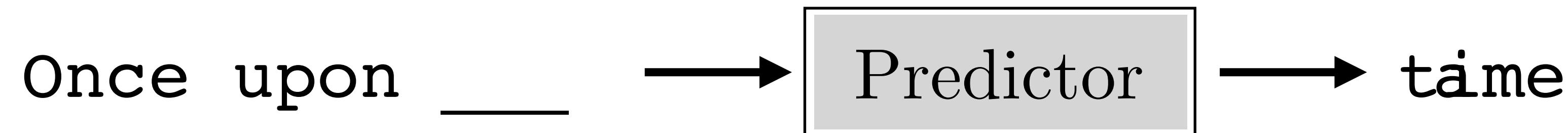
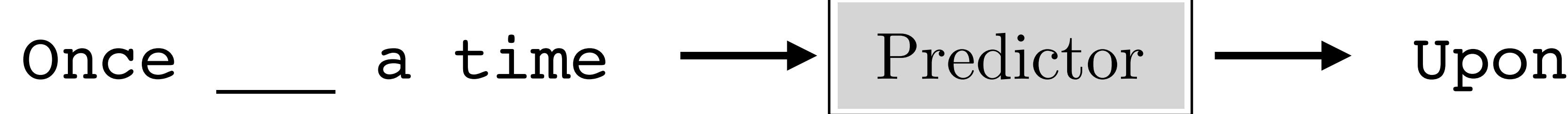
$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh (C_t)$$

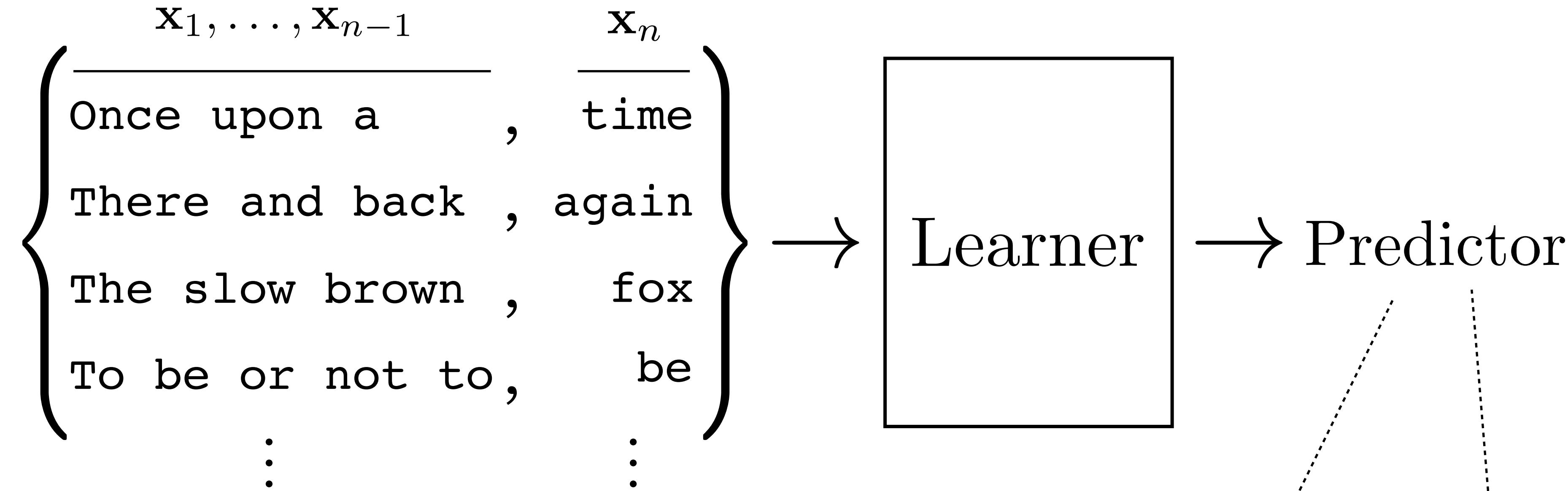
After having updated the cell state's information, decide what to output.

Sequence models

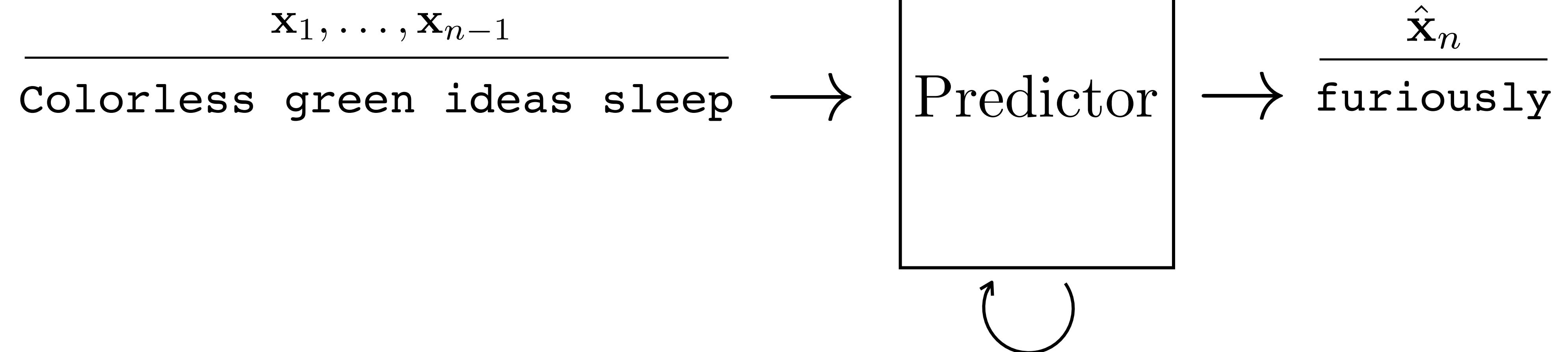
Autoregressive models



Training



Sampling



Autoregressive probability model

$$p(\mathbf{X}) = p(\mathbf{x}_n | \mathbf{x}_1, \dots, \mathbf{x}_{n-1}) p(\mathbf{x}_{n-1} | \mathbf{x}_1, \dots, \mathbf{x}_{n-2}) \dots p(\mathbf{x}_2 | \mathbf{x}_1) p(\mathbf{x}_1)$$

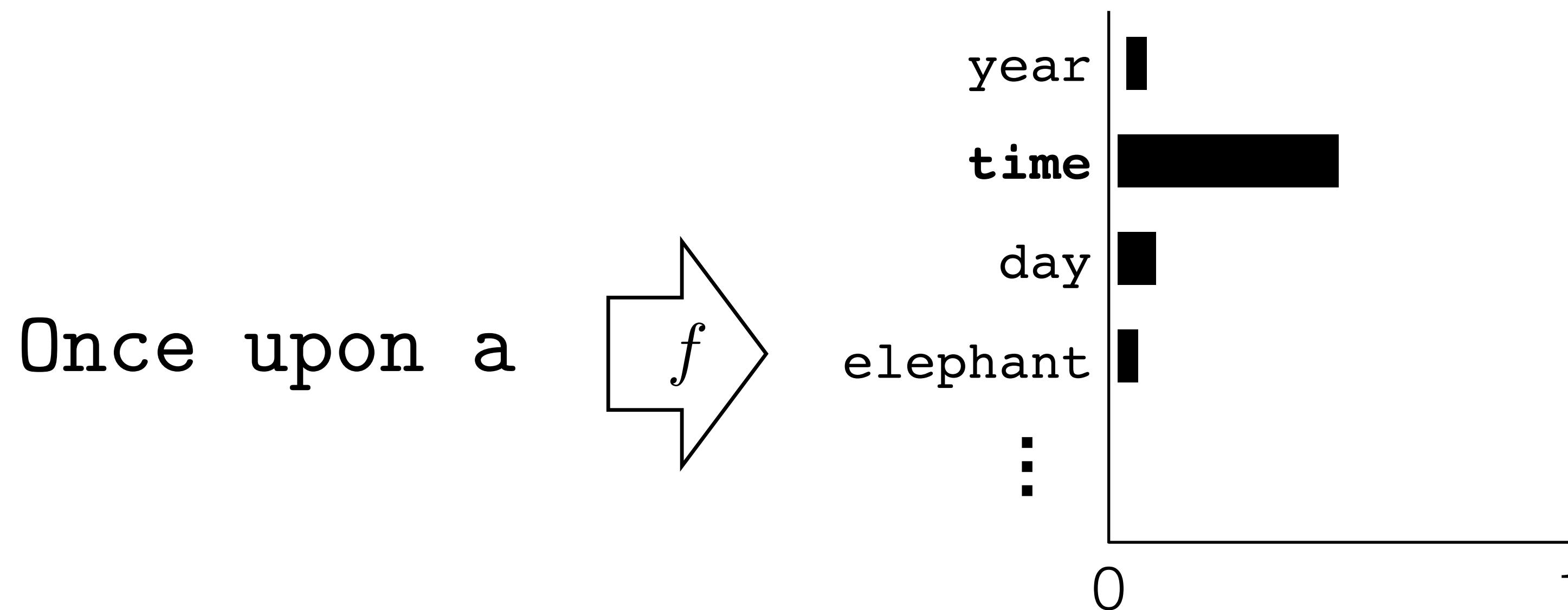
$$p(\mathbf{X}) = \prod_{i=1}^n p(\mathbf{x}_i | \mathbf{x}_1, \dots, \mathbf{x}_{i-1})$$

$p(\text{time} | \text{Once, upon, a})$
 $p(\text{a} | \text{Once, upon})$
 $p(\text{Once upon a time})$
 $p(\text{Once})$
 $p(\text{upon} | \text{Once})$

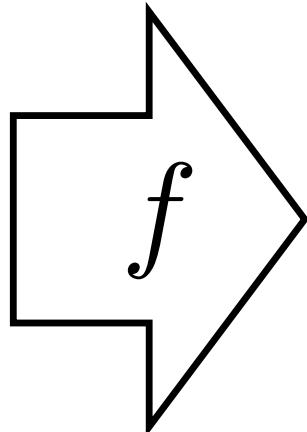
Modeling a sequence of words

How to model $p(\text{time}|\text{Once, upon, a})$?

Just treat it as a next word classifier!

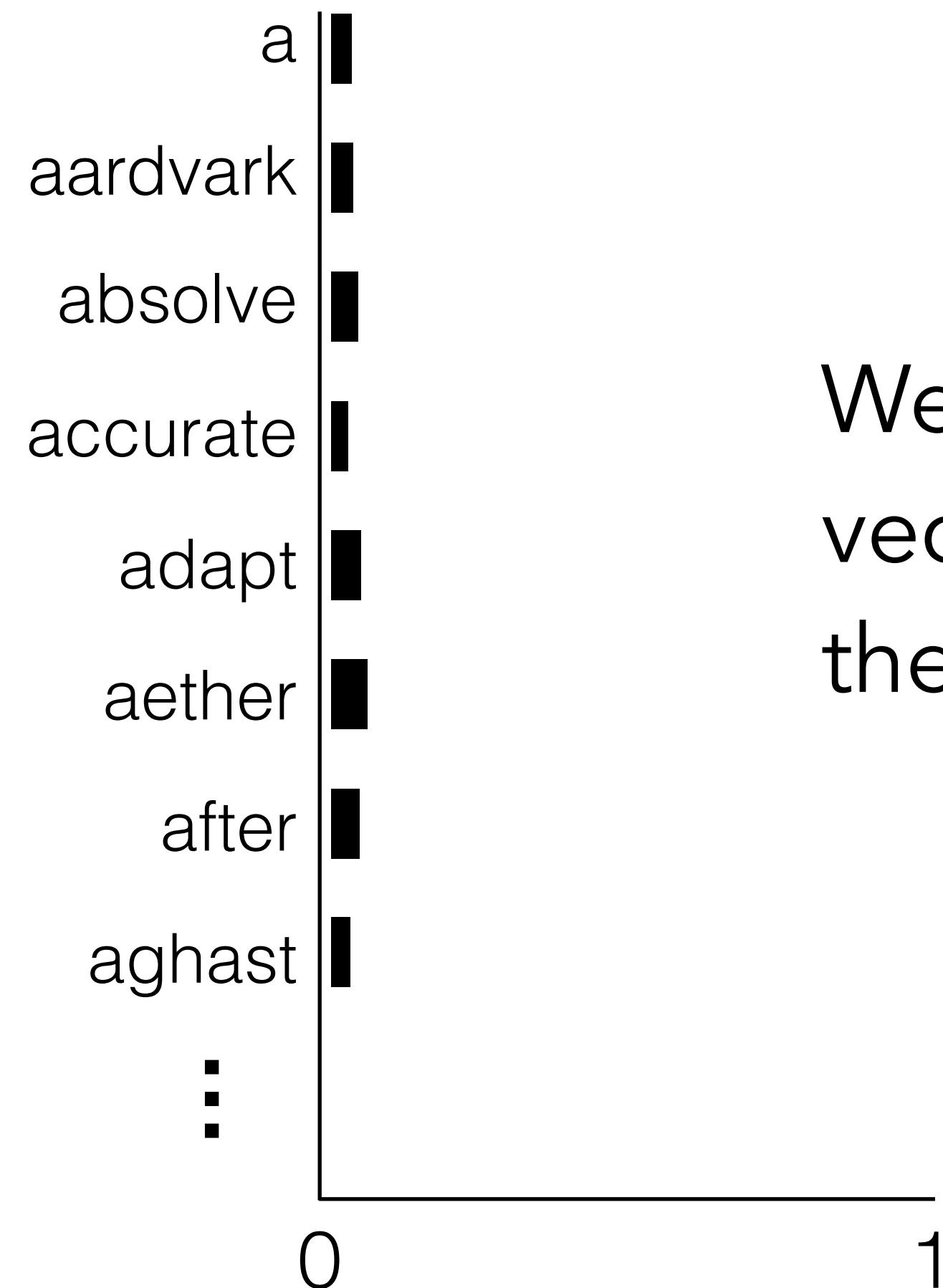


How to represent words as numbers?

Once upon a 

Prediction $\hat{\mathbf{y}}$

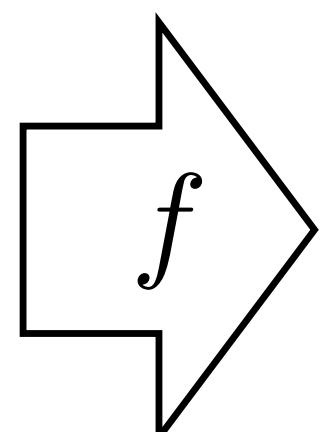
$$f_{\theta} : X \rightarrow \mathbb{R}^K$$



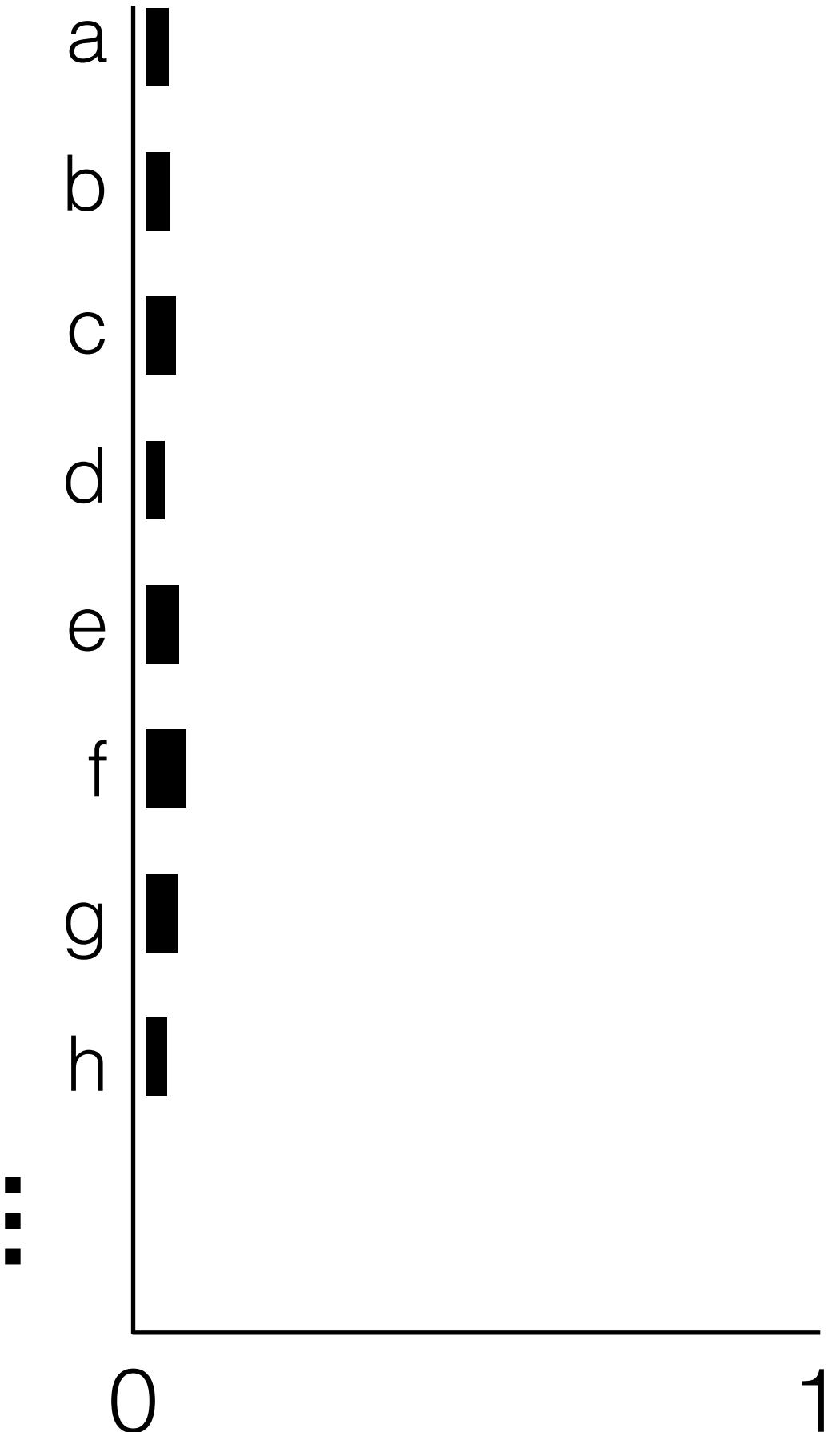
We can represent words as 1-hot-vectors of size K , where K is the size of the vocabulary (e.g., $K=100,000$).

How to represent words as numbers?

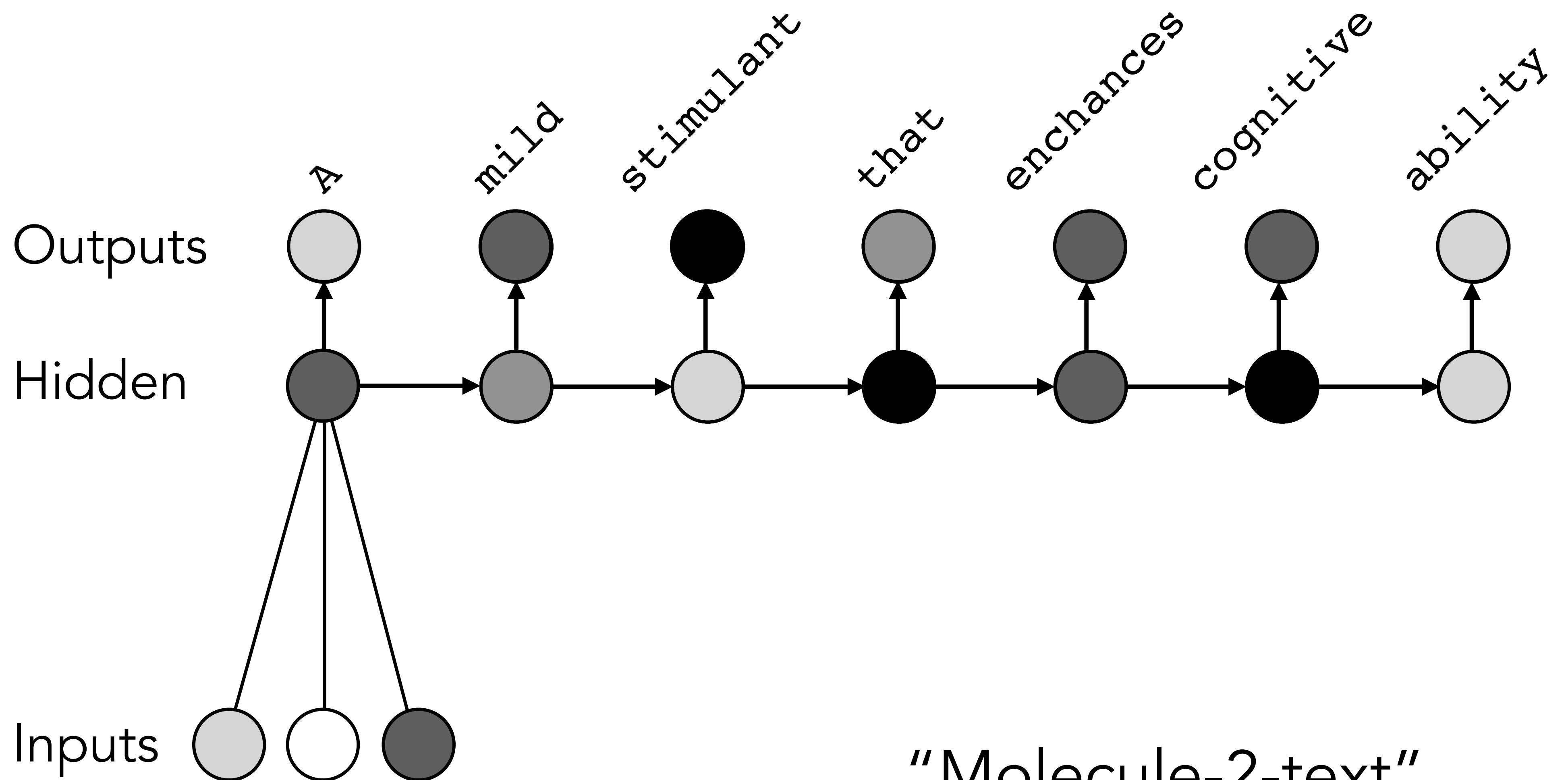
Once upon a



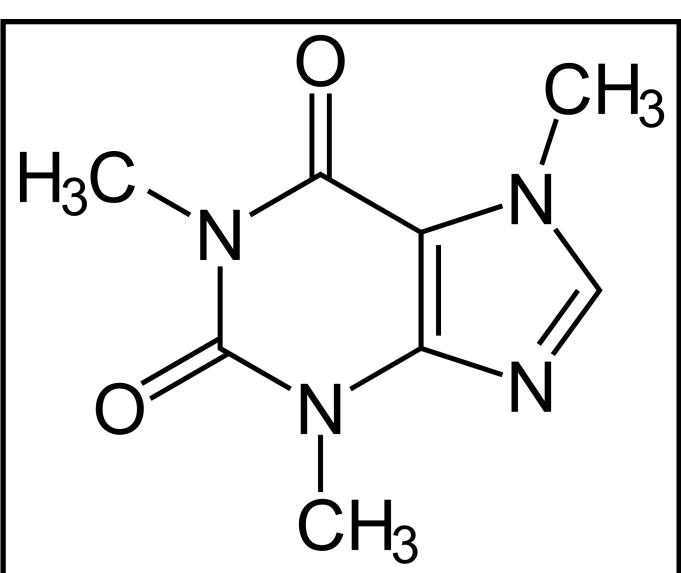
Prediction $\hat{\mathbf{y}}$
 $f_{\theta} : X \rightarrow \mathbb{R}^K$

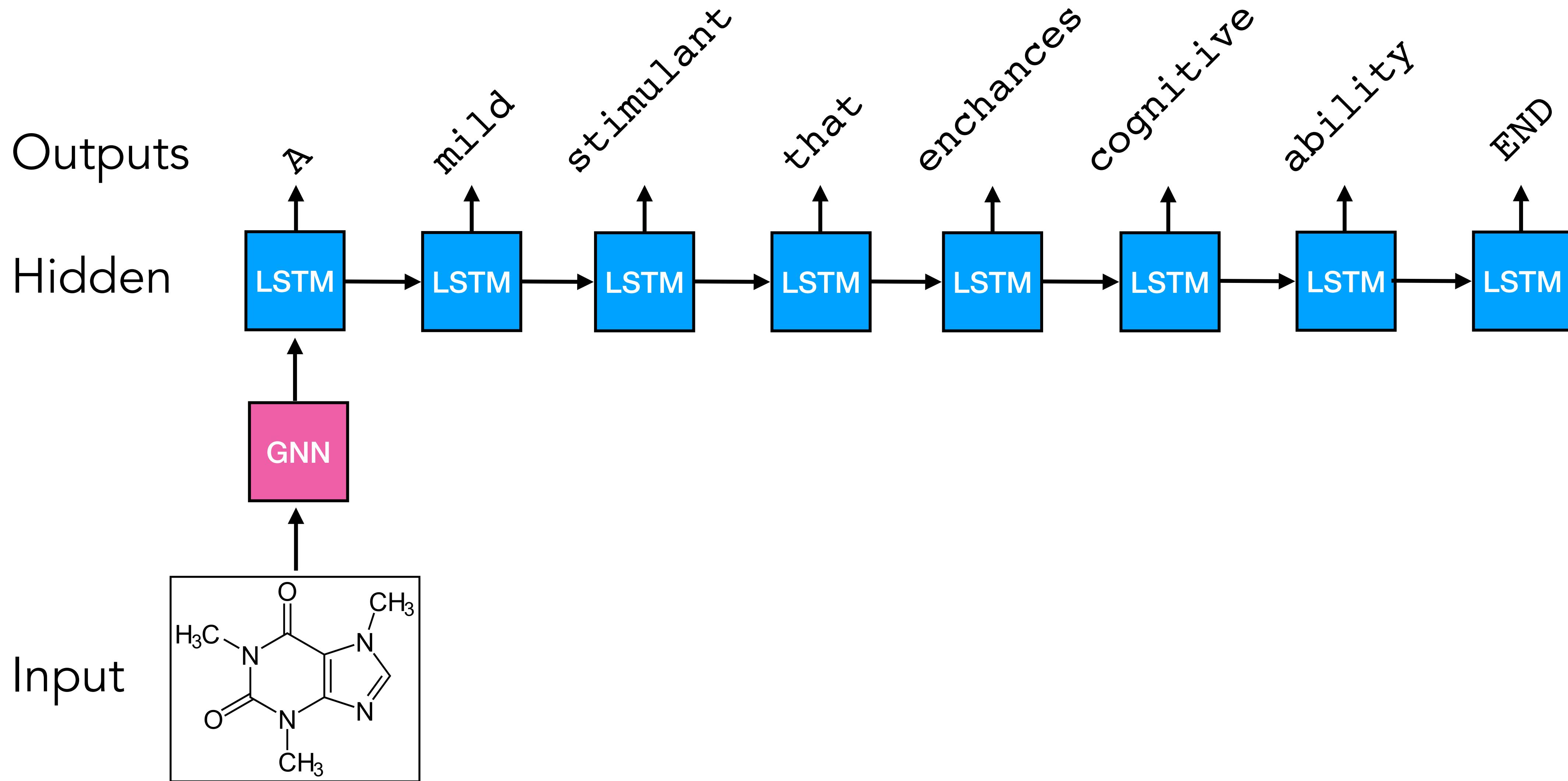


Or, represent each character as a class (e.g., $K=26$ for English letters), and represent words as a sequence of characters.

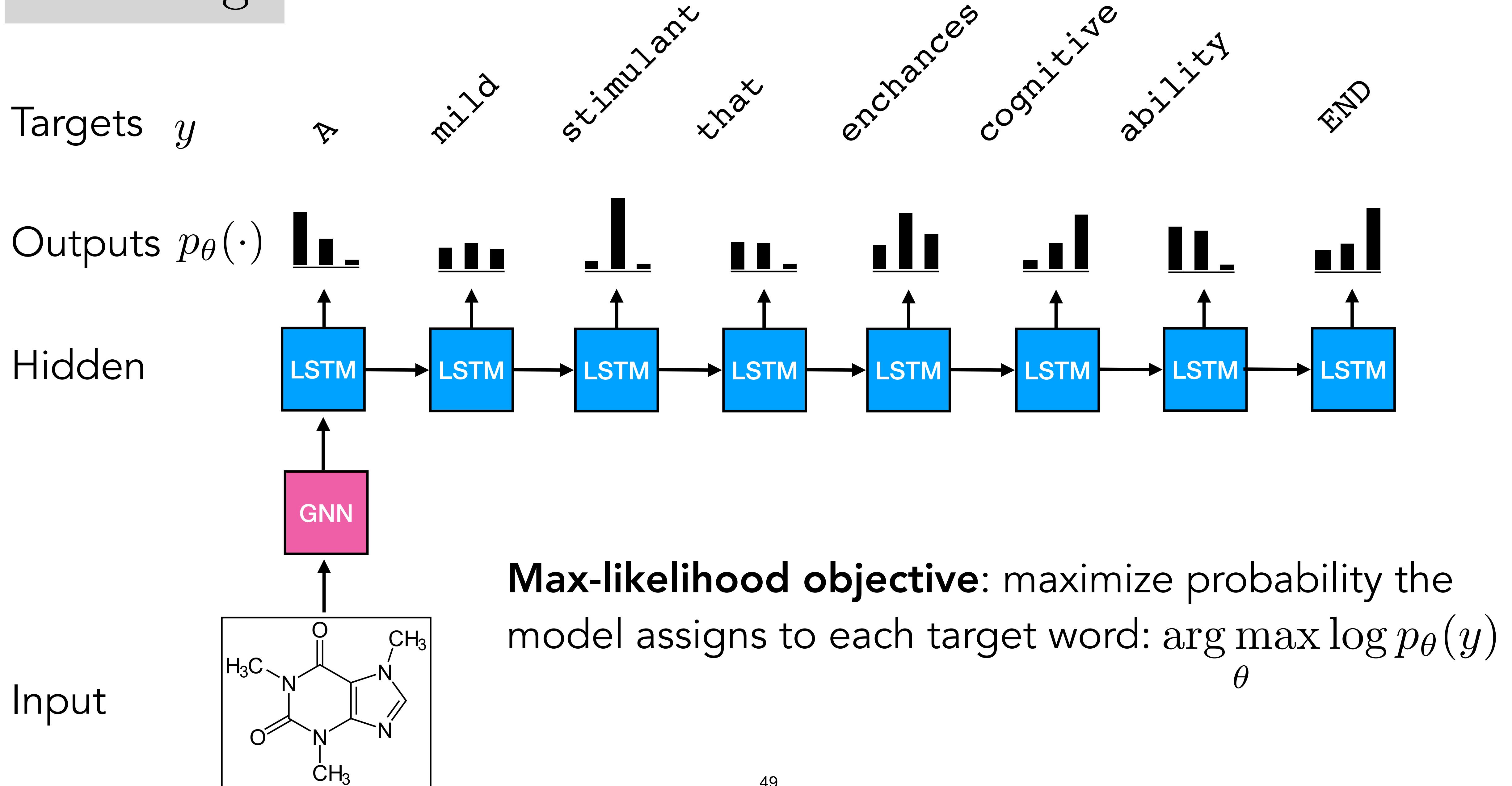


“Molecule-2-text”

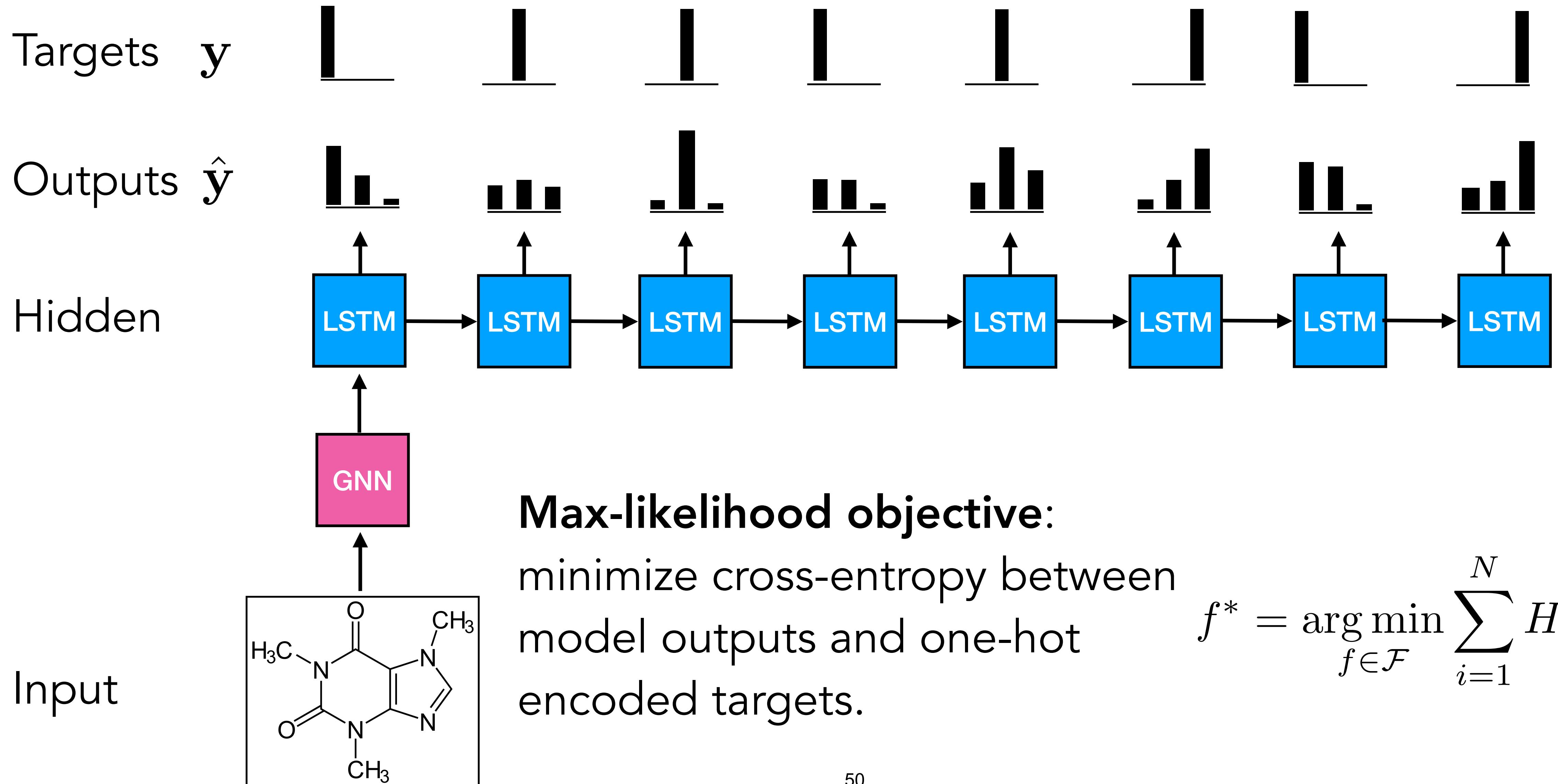




Training



Training



Max-likelihood objective:

minimize cross-entropy between
model outputs and one-hot
encoded targets.

$$f^* = \arg \min_{f \in \mathcal{F}} \sum_{i=1}^N H(\mathbf{y}_i, \hat{\mathbf{y}}_i)$$

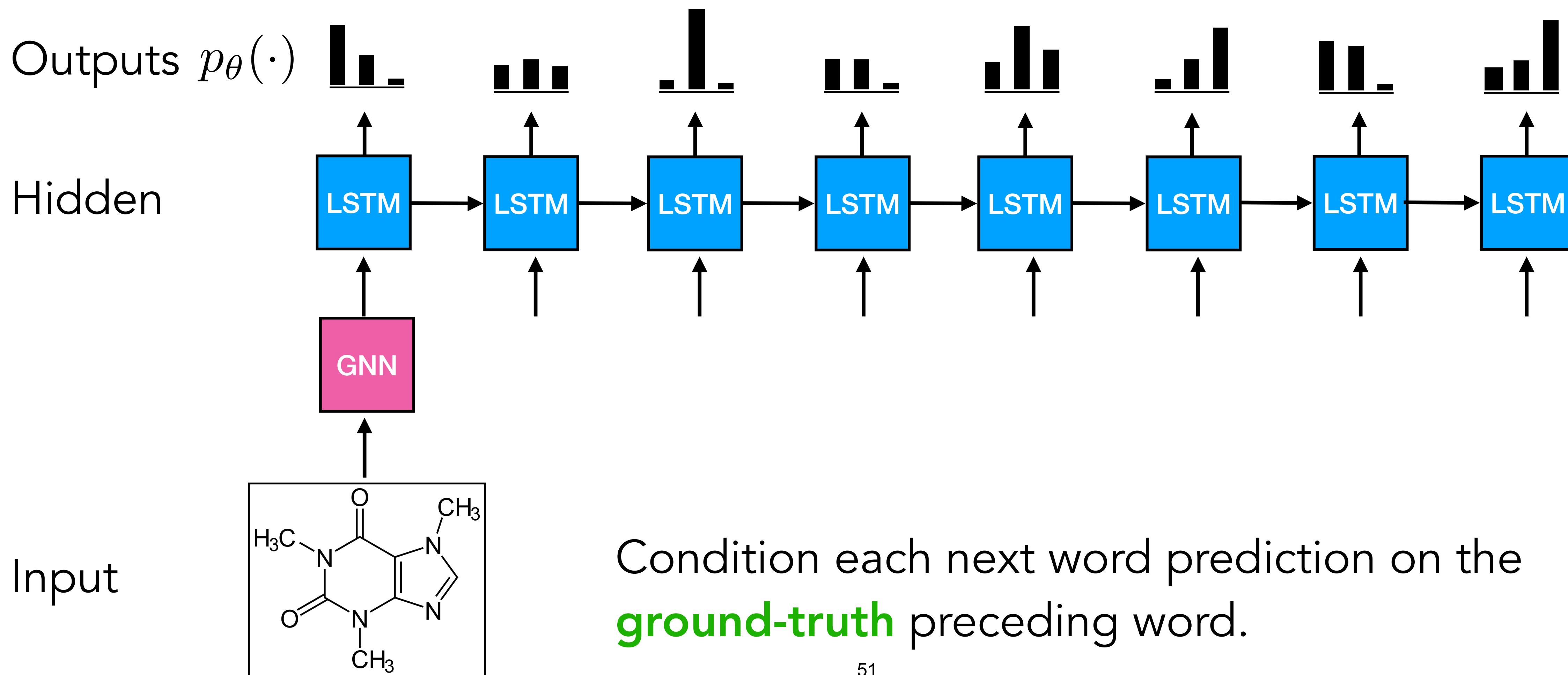
Training

Teacher forcing

Targets y

A mild stimulant that enhances cognitive ability END

Outputs $p_{\theta}(\cdot)$



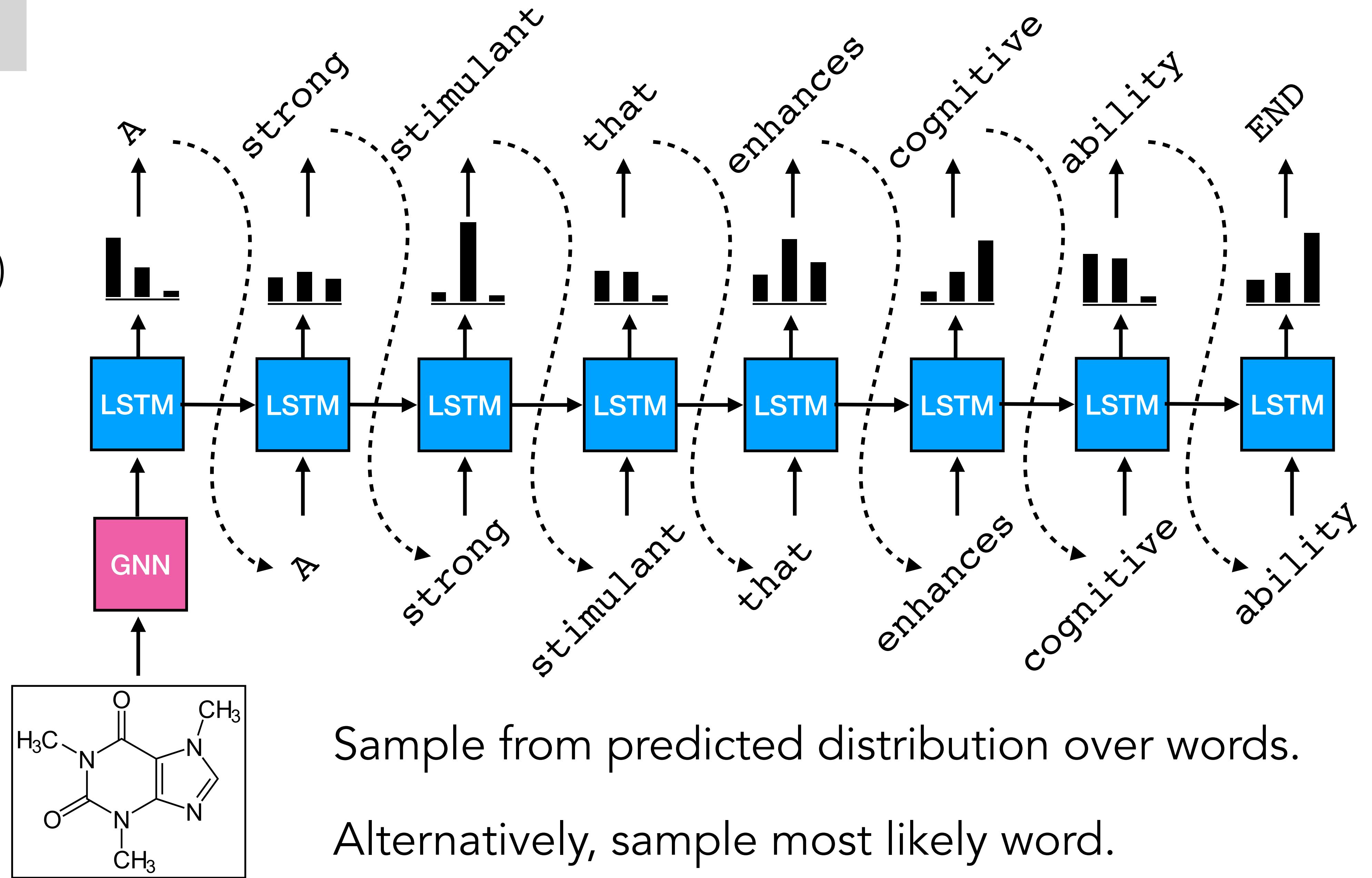
Testing

Samples

Outputs $p_\theta(\cdot)$

Hidden

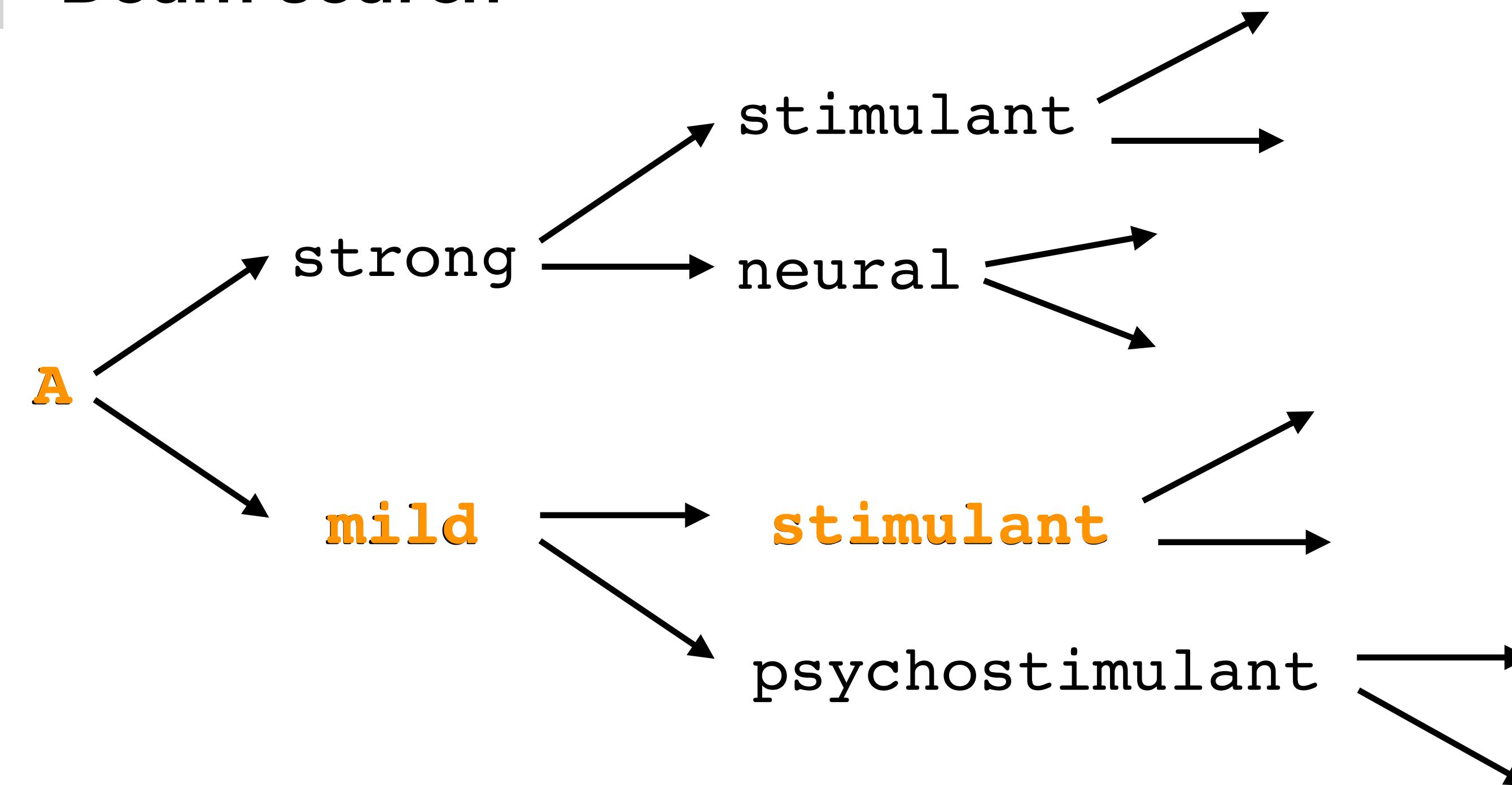
Input



Sample from predicted distribution over words.

Alternatively, sample most likely word.

Tree of samples



Sample multiple sequences (top-k greedy completions on each step), then pick the sequence with highest score.

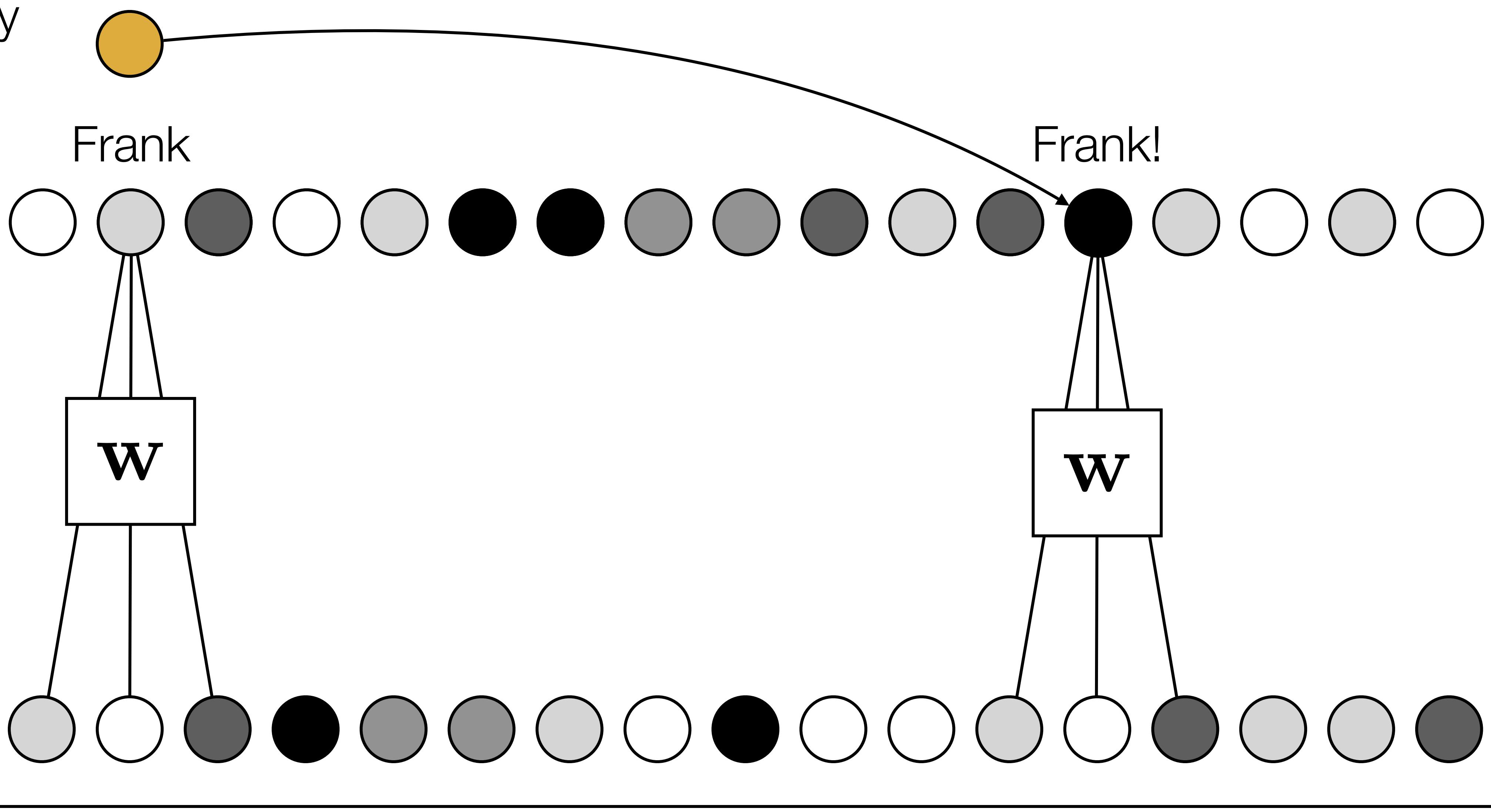
Score could be model's confidence: $p_\theta(\mathbf{y}_1, \dots, \mathbf{y}_T | \mathbf{x})$

The problem of long-range dependences

Why not remember everything?

- Memory size grows with t
- This kind of memory is **nonparametric**: there is no finite set of parameters we can use to model it
- RNNs make a Markov assumption — the future hidden state only depends on the immediately preceding hidden state
- By putting the right info in to the hidden state, RNNs can model dependencies that are arbitrarily far apart

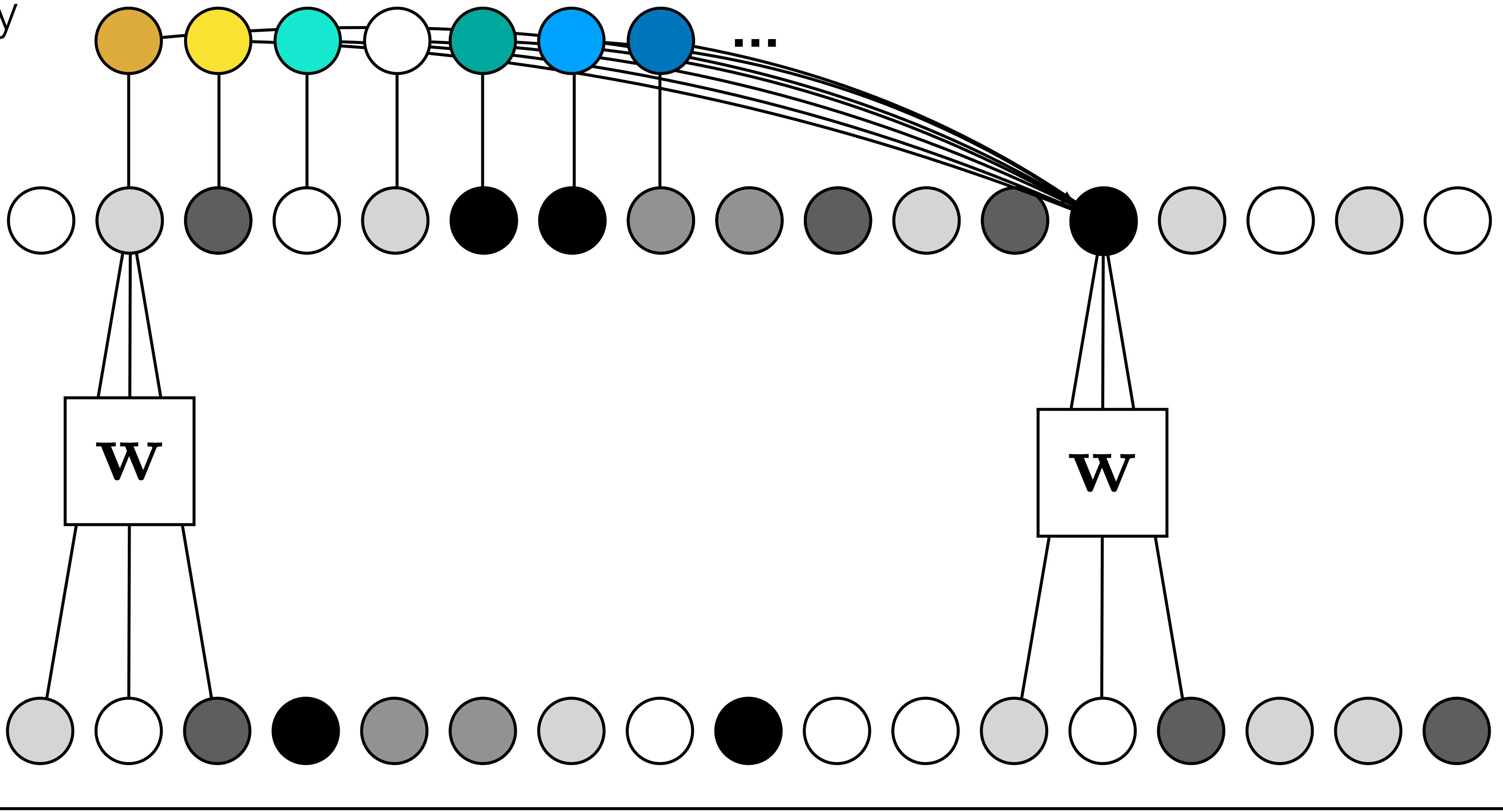
Memory
unit



time

Images © source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information, see
<https://ocw.mit.edu/help/faq-fair-use/>

Memory
units



time

Images © source unknown. All rights reserved.
This content is excluded from our Creative
Commons license. For more information, see
<https://ocw.mit.edu/help/faq-fair-use/>

The problem of long-range dependences

Other methods exist that do directly link old “memories” (observations or hidden states) to future predictions:

- Temporal convolutions
- Attention / Transformers (see <https://arxiv.org/abs/1706.03762>)
- Memory networks (see <https://arxiv.org/abs/1410.3916>)

Modeling arbitrarily long sequences

- **Recurrence** — recurrent weights are shared across time
- **Convolution** — conv weights are shared across time
- **Attention** — weights are dynamically determined as a function of the data (conv kernel with attention weights is shown on the right)

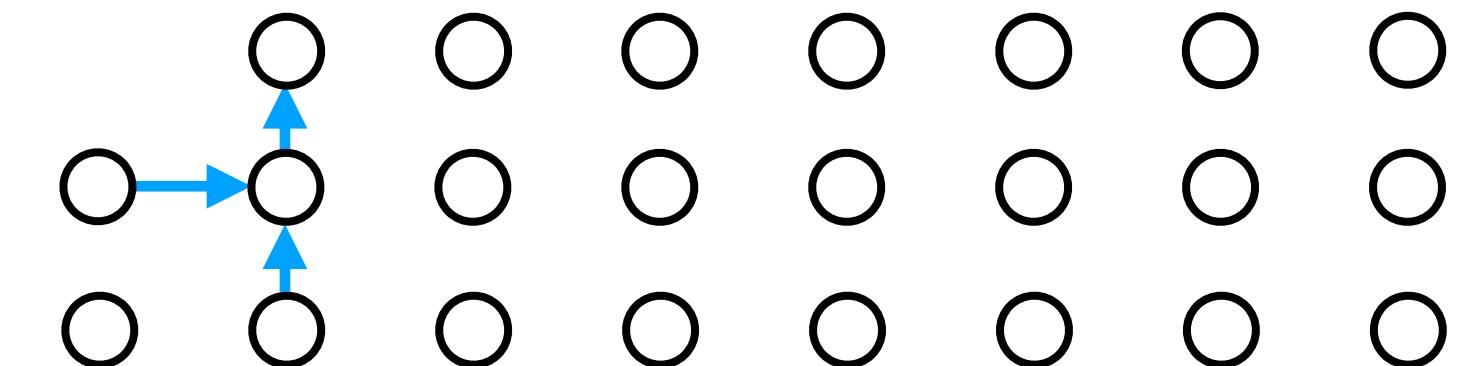
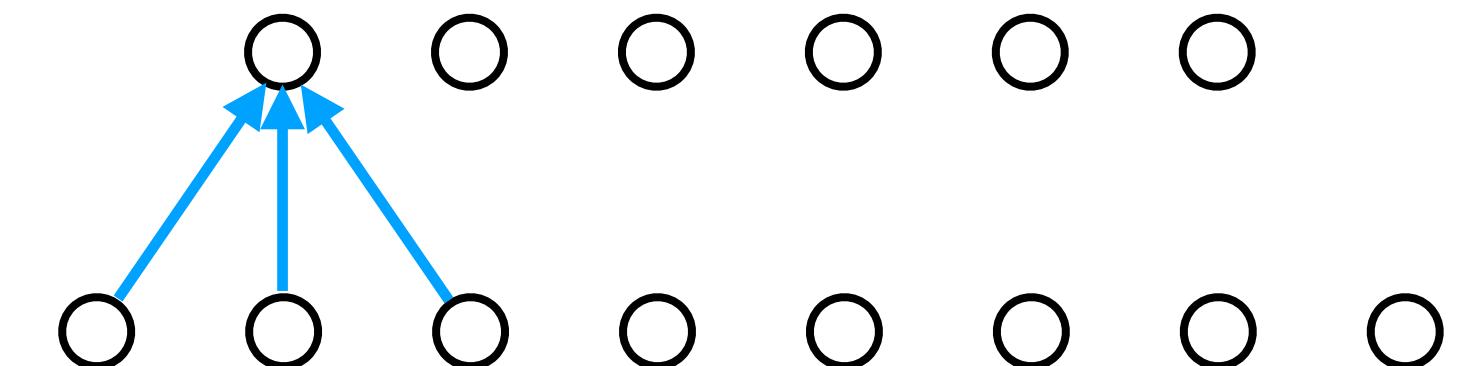
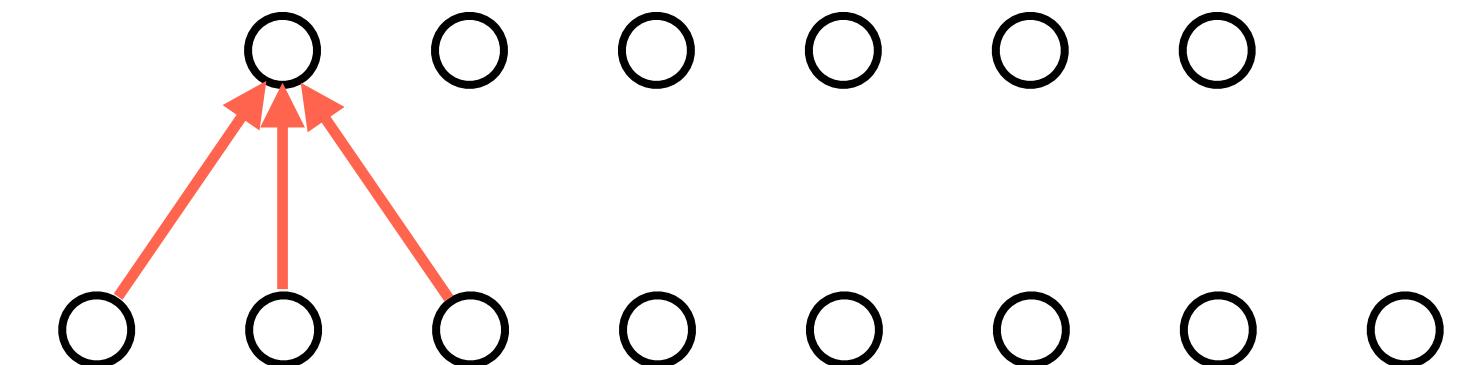


Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

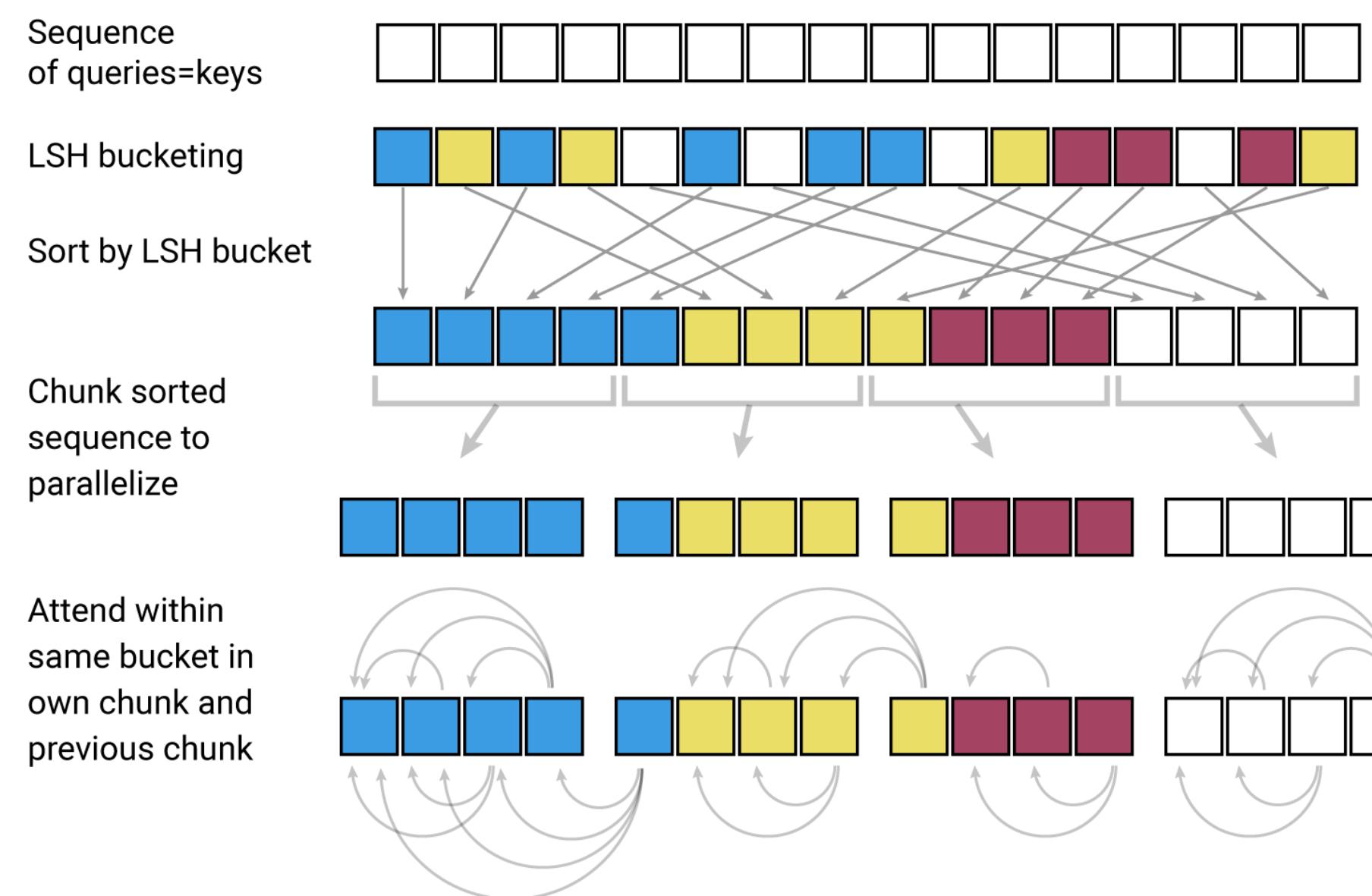
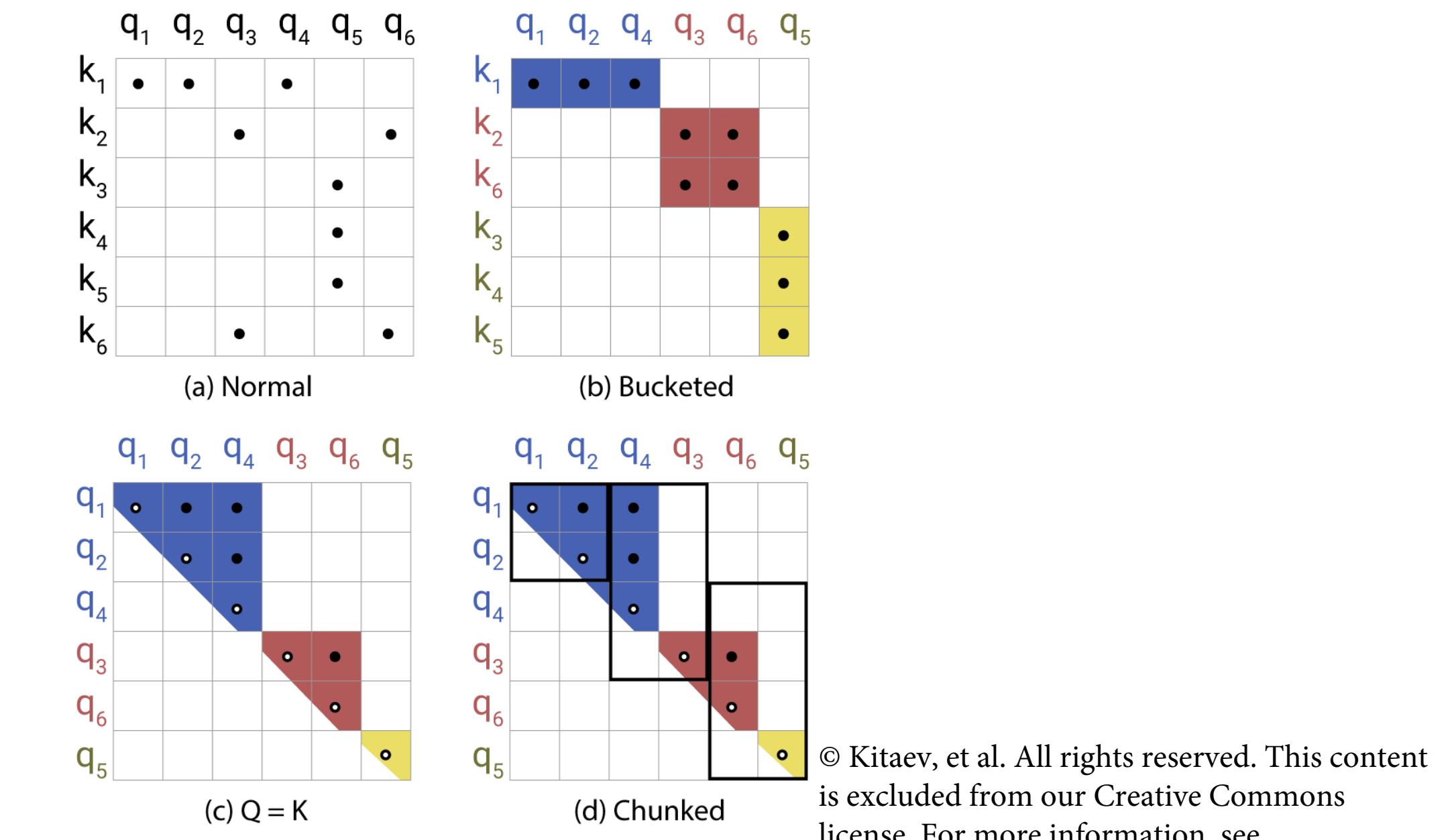
Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	$O(1)$	$O(1)$
Recurrent	$O(n \cdot d^2)$	$O(n)$	$O(n)$
Convolutional	$O(k \cdot n \cdot d^2)$	$O(1)$	$O(\log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	$O(1)$	$O(n/r)$

[“Attention is All you Need”, <https://arxiv.org/abs/1706.03762>]

Even-larger-context transformers

Efficiency from sparsification

- **Reformer** replaces quadratic dot product attention with a mechanism that uses local hashing to get to $O(n \log n)$ (<https://arxiv.org/abs/2001.04451>)
- **Performers** introduce the use of positive orthogonal random features within attention to get to $O(n)$ (<https://arxiv.org/pdf/2009.14794>)
- **Linformers** use low-rank matrix approximation to get $O(n)$ in time and space (<https://arxiv.org/pdf/2006.04768>)



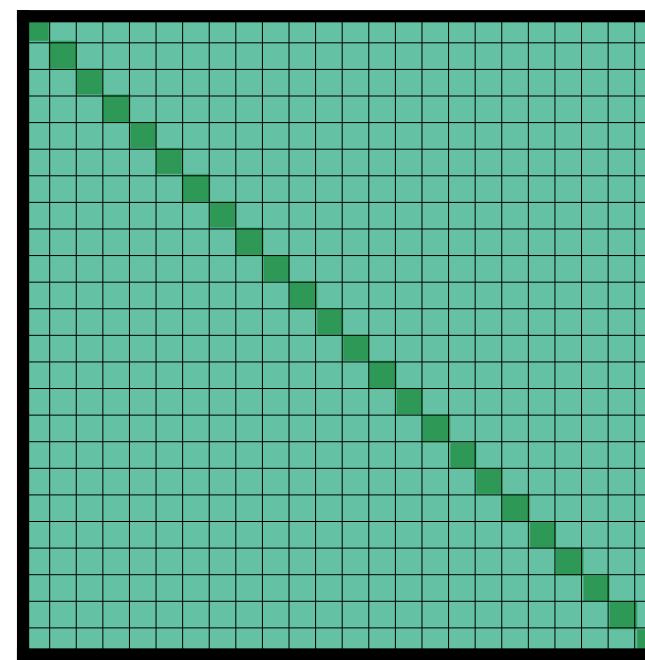
© Kitaev, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>

Even-larger-context transformers

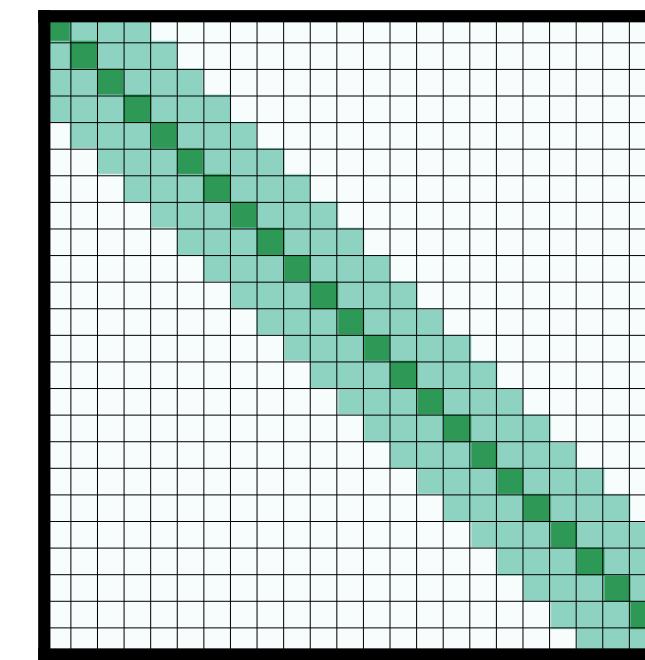
Local + global

- **Transformer XL** uses segment-level recurrence and fancy positional encoding to increase context (<https://arxiv.org/abs/1901.02860>)
- **Longformer** scales self-attention linearly with sequence length as opposed to quadratically, using deconstructed local + global attention (<https://arxiv.org/abs/2004.05150>)
- **Big Bird** uses a combo of random, dense sliding window, and global token attention to get sparsity, also $O(n)$ (<https://arxiv.org/pdf/2007.14062>)

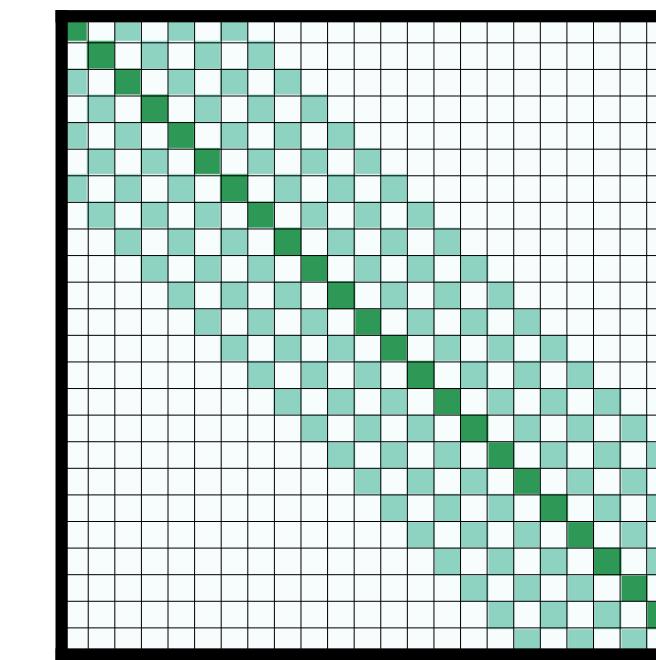
© Beltagy, et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <https://ocw.mit.edu/help/faq-fair-use/>



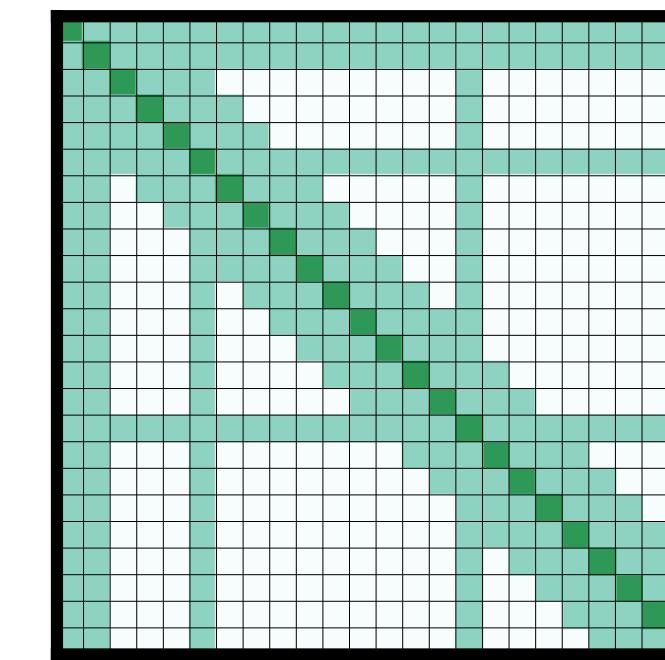
(a) Full n^2 attention



(b) Sliding window attention



(c) Dilated sliding window



(d) Global+sliding window

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

Even-larger-context transformers

Retrieval-enhanced

- **RETRO** enables retrieval from trillion-token databases based on local similarity, swapping model parameters for direct lookup (helps separate language modeling from fact lookup) (<https://arxiv.org/abs/2112.04426>)

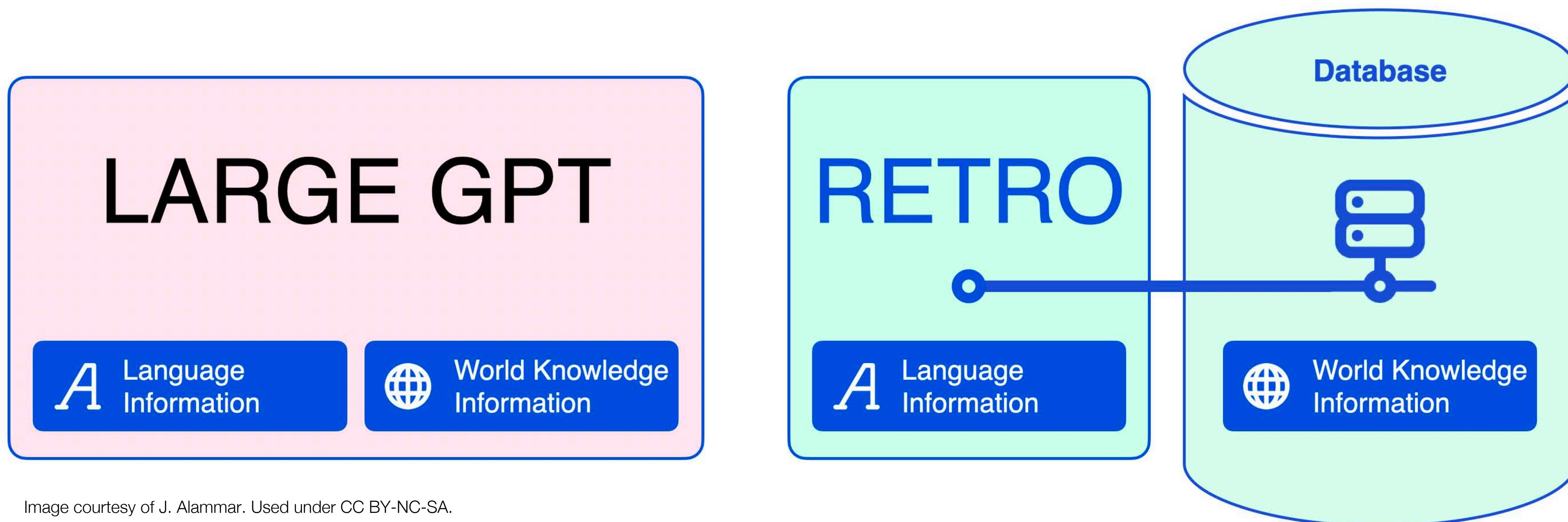
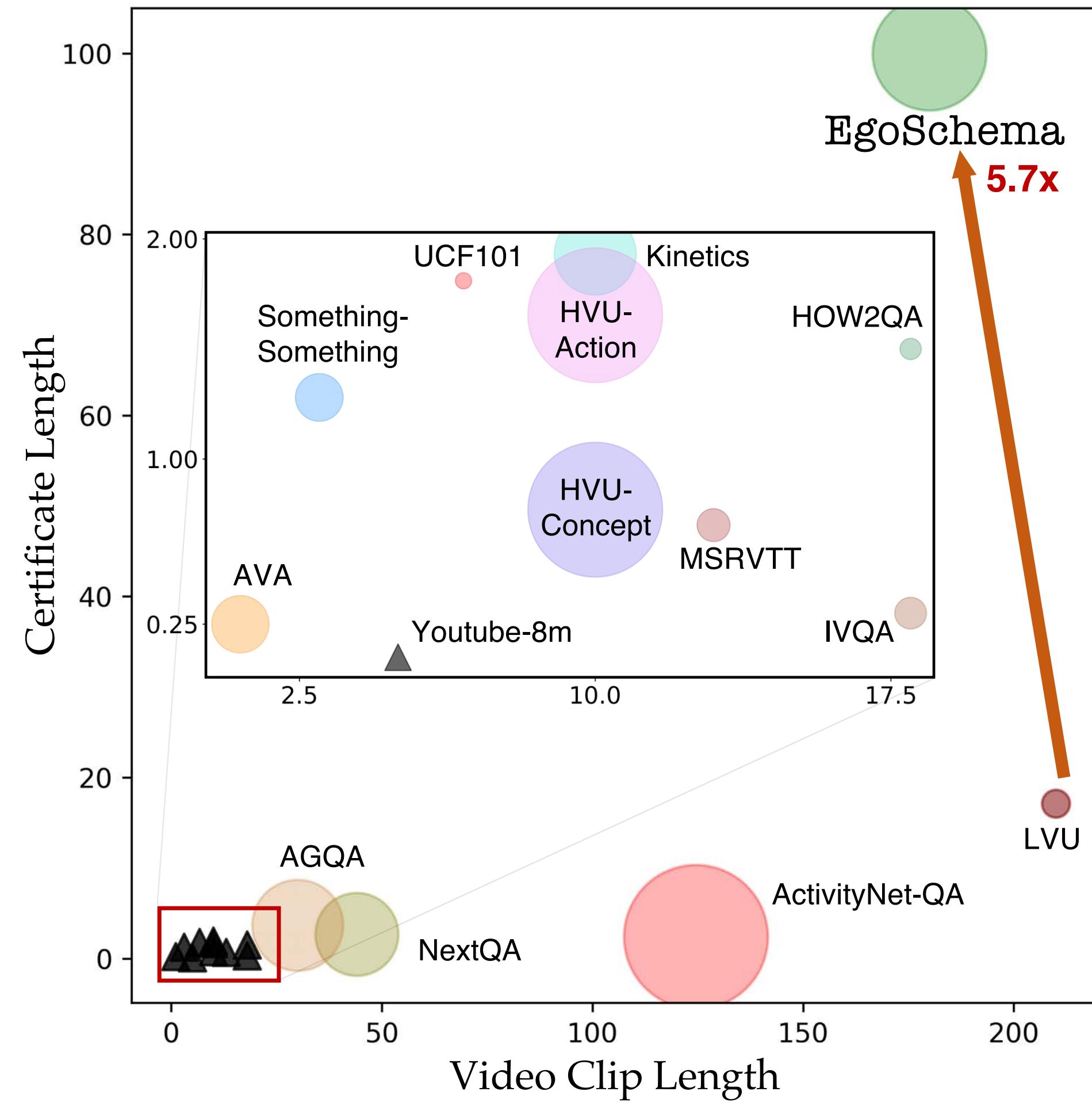


Image courtesy of J. Alammar. Used under CC BY-NC-SA.

How far back can we go with attention?

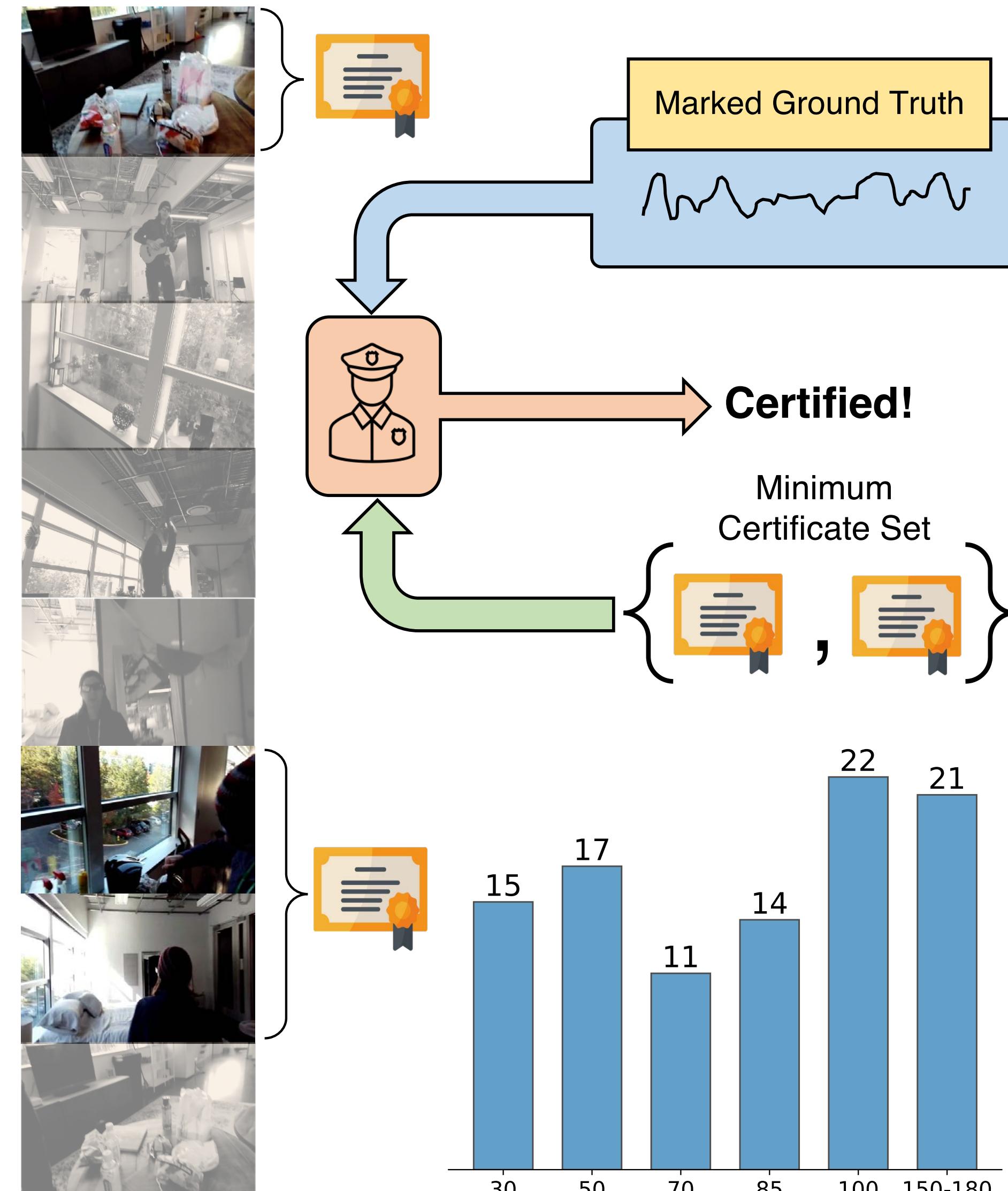
- BERT: 512 tokens
- GPT-2: 1024 tokens
- GPT-3: 2048 tokens
- GPT-4: 8,000 tokens, with a souped up 32K token version available
- Anthropic apparently has a model with a 100K token window (about 75K words)

When do we actually need long-term context?



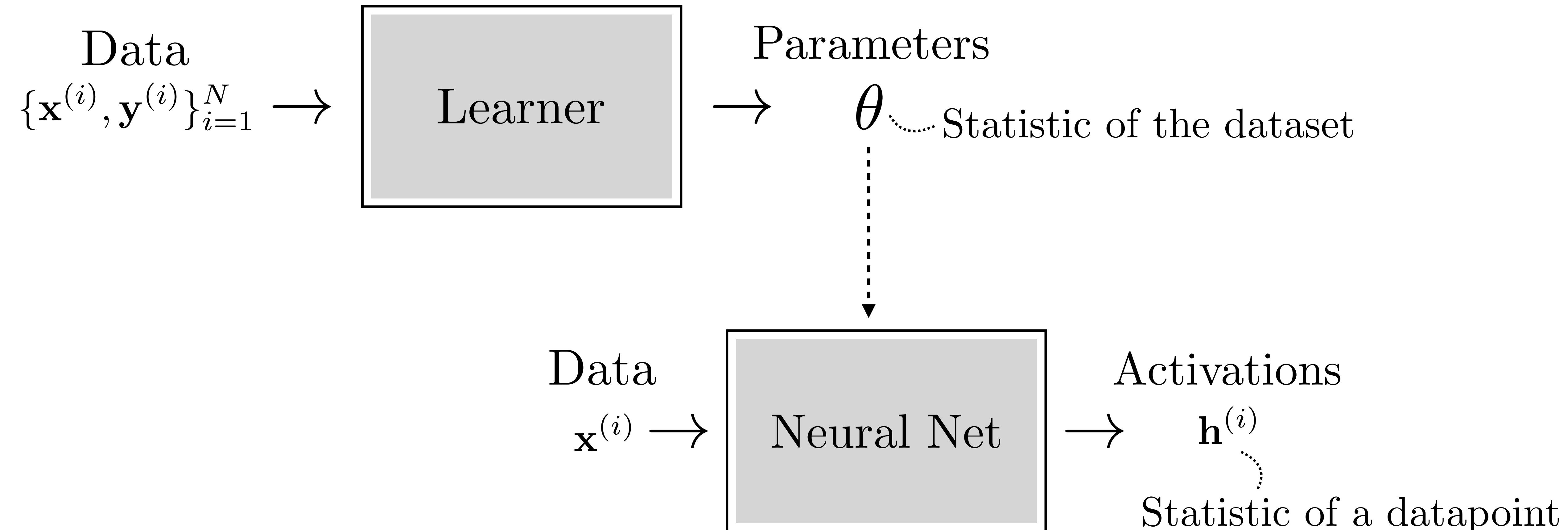
Courtesy of Mangalam, et al. Used under CC BY.

<https://arxiv.org/abs/2308.09126>



Memory fast and slow

parameters are “slow memory”



activations are “fast memory”

Fast weights? Slow activations?

- **Hypernets** are nets that output weights of another net — these weights are a “fast memory” of the input to the hypernet.
- **Code books** use tensors of activations that are learned (backprop to activations). These activations are “slow memory” of the dataset you are learning.

11. Memory and sequence modeling

- CNNs for sequences
- RNNs
- LSTMs
- Sequence models and long memory

9. Memory and sequence modeling

- CNNs for sequences
- RNNs
- LSTMs
- Sequence models

MIT OpenCourseWare

<https://ocw.mit.edu>

6.7960 Deep Learning

Fall 2024

For information about citing these materials or our Terms of Use, visit: <https://ocw.mit.edu/terms>