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What is "deep learning”?

1. Neural nets: A class of machine learning architectures that
use stacks of linear transtformations interleaved with
pointwise nonlinearities

2. Differentiable programming: A programming paradigm
where parameterize parts of the program and let gradient-
pased optimization tune the parameters



Course philosophy

® Breakthroughs in deep learning have been driven by a mixture of theory
and practice, and both dimensions are vital for future progress in the fielo

® This course provides:
® Theoretical grounding in important deep learning building blocks

® Practice implementing, understanding, and using those blocks



Al Assistants Policy

* Our policy for using ChatGPT and other Al assistants is identical to our policy for using

human assistants.

* This is a deep
pretty much al

earning class and you should try out all the latest Al assistants (they a
using deep learning). It's very important to play with them to learn w

they can do and what they can't do. That's a part of the content of this course.

* Just like you can come to office hours and ask a human questions (about the lecture

e

Nat

material, clarifications about pset questions, tips for getting started, etc), you are very

welcome to do the same with Al assistants.

* But: just like you are not allowed to ask an expert friend to do your homework for you,

you also should not ask an expert Al.

* |f it is ever unclear, just imagine the Al as a human and apply the same norm as you

would with a human.

* |f you work with any Al on a pset, briefly describe which Al and how you used it at the

top of the pset (a few sentences is enough).



Why are we here?

® What's the goal?
® Model complex phenomena in the real world
® What are complex phonemena?

® Natural language, Images, DNA, Ecosystems, Climate Change

® Why is this hard?

® See: complex

® Existence proof for deep learning as a solution: The human brain?
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1. Introduction to Deep Learning

e How did we get where we are today? (Briet History)
* \What we expect you have seen before (ok if you haven't!)

e \What we will cover in this class



A brief history of Neural Networks
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time



Perceptrons, 1958

Rosenblatt

Left © George Nagy. Right © American Psychological Association, Inc. All rights
reserved. This content 1s excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/fag-fair-use/




Perceptrons, 1958
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Perceptrons,

. 1953
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Minsky and Papert, Perceptrons, 1972

FEapandal oo

Perceptrons

Marvin 1L Misks
Spymowr A Paperi

FAVESEI DR+

FOR BUYING CPTIONS, START HERE

Select Shipping Destination -

Paperback | $35.00 Short | £24.95 |
ISBN: 9780262631112 | 308 pp. | 6 x
8.9 in | December 1987

Perceptrons, expanded edition

An Introduction to Computational Geometry

By Marvin Minsky and Seymour A. Papert

Overview

Perceptrons - the first systematic study of parallelism in computation - has remained a classical work on
threshold automata networks for nearly two decades. It marked a historical turn in artificial intelligence,
and it is required reading for anyone who wants to understand the connectionist counterrevolution that
is going on today.

Artificial-intelligence research, which for a time concentrated on the programming of ton Neumann
computers, is swinging back to the idea that intelligence might emerge from the activity of networks of
neurcnlike entities. Minsky and Papert's book was the first example of a mathematical analysis carried
far enough to show the exact limitations of a class of computing machines that could seriously be
considered as models of the brain. Now the new developments in mathematical tools, the recent interest
of physicists in the theory of disordered matter, the new insights into and psychological models of how
the brain works, and the evolution of fast computers that can simulate networks of automata have given
Perceptrons new importance.

Witnessing the swing of the intellectual pendulum, Minsky and Papert have added a new chapter in
which they discuss the current state of parallel computers, review developments since the appearance of
the 1972 edition, and identify new research directions related to connectionism. They note a central
theoretical challenge facing connectionism: the challenge to reach a deeper understanding of how
"objects” or "agents” with individuality can emerge in a network. Progress in this area would link
connectionism with what the authors have called "society theories of mind.”

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/
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Perceptrons,
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Parallel Distributed Processing (PDP), 1986
'PARALLEL DISTRIBUTED
F'F{OCESSING |

E..H'JJ Qrat & k. _,|| 15 _l"
| U_{_illu.l. 14+ D |-|h|_:_ e

DAVID €. RUMELHART. ‘JAMES L. MoCLELLAND, & ||
. 'AND THE PDP RESEARCH GROUP

© Massachusetts Institute of Technology. All rights
reserved. This content 1s excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/




XOR problem

Output —

PDP authors pointed to the backpropagation algorithm

as a breakthrough, allowing multi-layer neural networks to be
trained. Among the functions that a multi-layer network can
represent but a single-layer network cannot: the XOR function.
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Perceptrons, PDP book,
1958 1986

enthusiasm

Minsky and
1972

time
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| eCun conv nets, 1998

PROC. OF THE IEEE, NOVEMBER 1998 7
C3:f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
30532 6@28x28 i -
ayer
5@14};14 I I__ 50 y FE layer DUTF’UT
BN I
‘ ‘ Full cunrkectmn Gausman connections

Convolutions Subsampling Convolutions Subsamphng Full mnnentlnn

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

© IEEE. All rights reserved. This content is
excluded from our Creative Commons license. For

more information, see

https://ocw.mit.edu/help/fag-fair-use/ D e m O S :
http://yann.lecun.com/exdb/lenet/index.html
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Neural Information Processing Systems 2000

e Neural Information Processing Systems is the
premier conference on machine learning. Evolveo
from an interdisciplinary conference to a machine
learning conterence.

o -or the 2000 conference:

— title words predictive of paper acceptance: “Belief
Propagation” and “Gaussian”.

— title words predictive of paper rejection: "Neural”™ anad
“Network™.
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Perceptrons, PDP book,
1958 1986

enthusiasm

Minsky and Papert, Al winter,
1972 2000

time
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Krizhevsky, Sutskever, and Hinton, NeurlPS 2012

"Alexnet”

2048 2048 \dense
128
" 3 %
= dense dense
QI_ | 1000
192 192 128 Max o
Max 128 Max pooling 2048
pooling pooling

© Krizhevsky, Sutskever, and Hinton. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/
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Krizhevsky, Sutskever, and Hinton, NeurlPS 2012
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28 years 28 years
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Krizhevsky,
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What comes next?
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What comes next?

Krizhevsky,
Perceptrons, = PDP book, Sutskeyer,
1958 1986 Hinton, 2012
enthusiasm
Minsky and Papert, Al winter, 9 :
1972 2000 2028 7 time
28 years 28 years
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What is deep learning today?

e Autograd (pytorch, tensorflow)

* Billion+ data point datasets

e Parallel training on thousands of GPUs

* Billion+ parameter architectures

e Million+ dollar training costs

e Shockingly good results

e Massive isn't necessary - e.g. Stable Diffusion

 Open source community and modular reuse

24



Signposting for the rest of the lecture

What we expect you to What we will cover in
have seen before ) this class



What we expect you to have seen before

e Gradient descent

26



GGradient descent

N
& =argmin Y L(fe(x'"),y")
9e ; 0 y
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GGradient descent

0,

6" = arg min J (6)
0
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What we'll cover in this class

e Backprop and differentiable programming |

29



GGradient descent

N
& =argmin Y L(fe(x'"),y")
9e ; 0 y

\ /

Lecture 2: Backprop and Ditterentiable Programming

eL‘I'I — el. _ nt

00 |- g

learning rate
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What we expect you to have seen betfore

e Gradient descent
e MLPs, Nonlinearities (RelLu)
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Computation in a neural net

Input OQutput
representation representation

32



Computation in a neural net

Linear layer
Input Qutput
representation representation
Xi C O
@ Wij; O
C O
O- O
O @ Zj
O O
C O
C O
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Computation in a neural net

Linear layer
Input Qutput
representation representation

Xi C .
@ Wi weights
C /
Q
O 2j = ) Wi Xi+h
O i
(O kbias
C

1C
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Computation in a neural net

Linear layer

Input Qutput
representation representation

/ weights

@
@ - T |
< Zi = X Wj + Db
@
*1C kbias.
@
- 0= {W, b}
@
1 C kparameters; of the model
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Computation in a neural net

“Perceptron”

INnput
representation

Qutput
representation

led

Z g(z)

g(z)

K Pointwise

Non-linearity
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Computation in a neural net

1, if z>0
Input Output 9(z) = 0, otherwise
representation representation '
1.0 -
(O
‘ 0.8
« 8x g(z) 0.6
O w O 0.4
Z g(z) 0.2
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Computation in a neural net — nonlinearity

Tanh
Z _ A= Z
Input Qutput q(z) = eZ e_Z
representation representation e’ + e
C 1.0-
‘ 0.5
X 8x g(Z) 0.0
= O
—0.5
e Z 9(z)
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Computation in a neural net — nonlinearity

Tanh
* Bounded between [-1,+1] o _ a2
) =
92) e’ + e “

» Saturation for large +/- inputs

» (Gradients go to zero
» Outputs centered at O g(z) oo

* tanh(z) = 2 sigmoid(2z) —1

39



Computation in a neural net — nonlinearity

* Interpretation as firing rate of neuron

» Bounded between [0,1]

» Saturation for large +/- inputs

» Gradients go to zero

» Outputs centered at 0.5
(poor conditioning)

* Not used In practice

40

1.0

0.8

0.6

0.4 -

0.2-

0.0

g(z)

Sigmoid

1

1+ e h




Computation in a neural net — nonlinearity

* Unbounded output (on positive side) Rectified linear unit (ReLU)
* Efficient to iImplement: ? = {O’ ?f z< O g(z) = max(0 ,z)
Z 1, if z=0

* Also seems to help convergence (see
ox speedup vs tanh in [Krizhevsky et al.])

* Drawback: If strongly in negative 9(z) ,
region, unit is dead forever (N0 gradient). .
* Default choice: widely used In current R T

models. 7
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Stacking layers

Input Intermediate Qutput
representation representation representation
Z h = g(z)
O——C O
O—C O
OX K O
X O- O—- O y
O— Wy, W C
O OO O
O—C O
blj (O—C sz O
] 1C

Z, h = “hidden units”
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Stacking layers

Qutput
representation

Intermediate
representation

INnput
representation

g(W ,h + b;)

h = g(W1X+ b1)

., b}

.7 W le1l"

{W Tre-

0=
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Example: nonlinear classification with a deep net

z=W x+Db

T @@ -

:; @_>@/ zz= W-sh+ b
W ; W,

y =1(z3 > 0)

hg 23 Y




What we'll cover in this class

e Backprop and differentiable programming |

* \WWhy we can approximate

46



Representational power

» 1 layer? Linear decision surtace.

o 2+ layers? In theory, can represent any function.
Assuming non-trivial non-linearity.

Lecture 3: Approximation theory

I 7 L \_

» But issue is efficiency: very wide two layers vs narrow
deep model? In practice, more layers helps.
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What we'll cover in this class

e Backprop and differentiable programming |

* \WWhy we can approximate

e Architectures

48



Deep nets

&
4
&\

Architectures
|l ecture 4: CNNs

Lecture 5: GNNs
| ecture 2: Transformers
Lecture 11: RNNs

49
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What we'll cover in this class

e Backprop and differentiable programming |

* \WWhy we can approximate
* Architectures

* \When and why can we generalize

50



Why do deep nets generalize?

» Deep nets have so many parameters they could just act like look up tables,
regurgitating their training data

» Instead, they learn rules that generalize

« Defies classical theory!

A . B

under-fitting . over-fitting

- Test risk

under-parameterized over-parameterized

Test risk

'Mw 'Mm “classical” “modern”
E Q?.: regime interpolating regime
N
~ o ‘Training risk -~ [Training risk:
sweet spﬂt\: - _ T g k/il'lterpmlatiﬂn threshold
Capacity of Capacity of H

[Double-descent: Belkin, Hsu, Ma, Mandal, PNAS 2019]



The simplicity hypothesis

Classical theory:

Lecture 7: Generalization theory
Lecture 17: OOD generalization

LTSIy uricory.

deep nets learn simple tfunctions that generalize
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What we expect you to have seen betfore

e Gradient descent
e MLPs, Nonlinearities (RelLu)

e Softmax, cross-entropy loss
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Deep nets

M
- .
\OQ’ %{\*

\.:A (c . 1)
— “clown fish

© source unknown. All rights reserved. This
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hitps:focw mit eduhelpfag-fair-use f (X) — f 1 (f | — 1 ( L f 9 (f 1 (X ))))

54



Last layer

dolphin
cat
grizzly bear

angel fish

VH

00000000

chameleon
clown fish
iguana

elephant

Classifier layer

argmax

e

95

“clown fish”



| 0SS function

Network output Ground truth label
()| dolphin “clown fish”
Q cat
Q grizzly bear l
— |@)] ange!fish L oss — error
:: Q chameleon /
‘ clown fish
<:> iguana
Q elephant
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| 0SS function

Network output Ground truth label

()| dolphin “clown fish”

Q cat

Q grizzly bear l
— |@)] ange!fish Loss — small
:: Q chameleon /

‘ clown fish

<:> iguana

Q elephant
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| 0SS function

Network output Ground truth label
()| dolphin “‘grizzly bear”
Q cat
Q grizzly bear l
— |@)] ange!fish L oss — large
:: Q chameleon /
‘ clown fish
Q iguana
Q elephant
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Network output  Ground truth label

y y

Q dolphin Q

O ca O Probability of the observed

Q grizzly bear —— ‘ data under the model
s angel fish Q A K A

softmax — 8 e Q H(y,y)= - ZYk log Yk
k=1

‘ —— clown fish Q

Q iguana Q

Q elephant Q
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Prediction logy

fe . X
dolphin
cat
grizzly bear
angel fish
chameleon
clown fish
iguana

elephant

X RK

Ground truth label

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana

elephant

- 00 log prob
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Prediction logy

fe : X
dolphin
cat
grizzly bear
angel fish
chameleon
clown fish
iguana

elephant

X RK

O

Ground truth label

dolphin

cat

grizzly bear
angel fish
chameleon
clown fish
iguana

elephant

- 00 log prob
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y

O Prob

_H(y

Score —L(y,y)

K
V) = ZYk log yi
k=1

How much better you
could have done

TN

- Loss 0O



© source unknown. All rights reserved. This
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Prediction logy Ground truth label vy
fe : X X R \

dolphin (§ dolphin
cat ||l cat

grizzly bear | orizzly bear |
angel fish |} angel fish
chameleon || (+) chameleon
clown fish || clown fish
iguana || iguana
elephant | elephant

- 00 log prob O O Prob
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K
~H(y,§)= > yilogyi
k=1

- 00 - Loss 0O



Prediction logy Score —L(y,y)

Ground truth label vy

K
: K A .
fe.X X R -H(y,y) = E Yk l0gyi
, , k=1
dolphin |§ dolphin
cat |§ cat
grizzly bear | grizzIly bear
angel fish |fi angel fish
chameleon | IR () chameleon | m A
clown fish |l clown fish
iguana ||IIEGB iguana
elephant I elephant
© source unknown. All rights reserved. This : E
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/
- 00 log prob O O Prob 1 — 0 - Loss 0O
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y(1)
“clown fish”

© source unknown. All rights reserved. This
content is excluded from our Creative
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y (2)
‘grizzly bear”
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Deep learning

y(i) | earned

‘chameleon’

© source unknown. All rights reserved. This
content 1s excluded from our Creative ew
Commons license. For more information, see
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What we expect you to have seen before

e Gradient descent
e MLPs, Nonlinearities (RelLu)
e Softmax, cross-entropy loss

* Parallel processing, tensors

67



Batch (parallel) processing

© source unknown. All rights reserved. This

content is excluded from our Creative
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lensors
(multi-dimensional arrays)

Each layer is a representation of the data

Commons license. For more information, see
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Everything is a tensor

z=W x+ b;
D @_>@\@—>@ h=9(z1)
:; @_>@/ zz3 = Wr2h+ b
W, W

y =1(z3 > 0)

Tensor processing with batch size = 3:




What we'll cover in this class

e Backprop and differentiable programming |

* \WWhy we can approximate
e Architectures
* \When and why can we generalize

* How deep networks represent data
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T

(ViT block x3 )

Representation Learning

Lecture 11: Reconstruction-based
Lecture 12: Similarity-based
Lecture 13: Theory

(ViT block x3 )

© Torralba, Isola, and Freeman. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/fag-fair-use/
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What we'll cover in this class

e Backprop and differentiable programming |

* \WWhy we can approximate

* Architectures

* \When and why can we generalize

* How deep networks represent data

e Generative Models
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Generative Models

Generative Models

|l ecture 14: Basics
Lecture 15: Representations + Generation
Lecture 16: Conditional Models

© openai.com and stability.ai. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

openai.com . stability.al




What we'll cover in this class

e Backprop and differentiable programming |

* \WWhy we can approximate

e Architectures

* \When and why can we generalize

* How deep networks represent data
* Generative Models

* Reusing weights
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Reuse

Classification
units

Classification
units

PIT/AIT 277", 077 PIT/AIT 22775 oo

. :' - . A o
. s ® & . s ° pe
T . W= N Y . Yo—

Transfer Learning

Lecture 18: Models
Lecture 19: Data

OO0 OOOR

000 OOV

Left © Springer Science+Business Media, LLC, part of Springer Nature.
Right © Gandour, et al. |All rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://
ocw.mit.edu/help/fag-fair-use/ 77
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What we'll cover in this class

e Backprop and differentiable programming |

* \WWhy we can approximate

e Architectures

* \When and why can we generalize

* How deep networks represent data
e Generative models

* Reusing weights

e Scaling

/8



Scale

IR I PR | | - | ——— e |

Scale in Deep Learning

Lecture 6: Scaling Rules for Optimization
Lecture 22: Scaling laws
Lecture 23: Automatic gradient descent

JUL 1J 111OUOUODAl IU 1 UV DILHTTVUIL LIV DIIITVUI

Neurons Neurons Neurons Neurons
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1. Introduction to Deep Learning

e How did we get where we are today? (Briet History)
* \What we expect you have seen before (ok if you haven't!)

e \What we will cover in this class
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