
Lecture 1: Introduction to Deep Learning

6.S898 Deep Learning Fall 2022

Speaker: Sara Beery

https://phillipi.github.io/6.s898

© Krizhevsky, Sutskever, and Hinton. All rights reserved. This
content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/

1

What is “deep learning”?

1. Neural nets: A class of machine learning architectures that
use stacks of linear transformations interleaved with
pointwise nonlinearities

2. Differentiable programming: A programming paradigm
where parameterize parts of the program and let gradient-
based optimization tune the parameters

2

Course philosophy

• Breakthroughs in deep learning have been driven by a mixture of theory
and practice, and both dimensions are vital for future progress in the field

• This course provides:

• Theoretical grounding in important deep learning building blocks

• Practice implementing, understanding, and using those blocks

3

AI Assistants Policy
•Our policy for using ChatGPT and other AI assistants is identical to our policy for using

human assistants.
•This is a deep learning class and you should try out all the latest AI assistants (they are

pretty much all using deep learning). It's very important to play with them to learn what
they can do and what they can't do. That's a part of the content of this course.

•Just like you can come to office hours and ask a human questions (about the lecture
material, clarifications about pset questions, tips for getting started, etc), you are very
welcome to do the same with AI assistants.

•But: just like you are not allowed to ask an expert friend to do your homework for you,
you also should not ask an expert AI.

• If it is ever unclear, just imagine the AI as a human and apply the same norm as you
would with a human.

• If you work with any AI on a pset, briefly describe which AI and how you used it at the
top of the pset (a few sentences is enough).

4

Why are we here?
• What’s the goal?

• Model complex phenomena in the real world

• What are complex phonemena?

• Natural language, Images, DNA, Ecosystems, Climate Change

• Why is this hard?

• See: complex

• Existence proof for deep learning as a solution: The human brain?
5

1. Introduction to Deep Learning

• How did we get where we are today? (Brief History)

• What we expect you have seen before (ok if you haven’t!)

• What we will cover in this class

6

A brief history of Neural Networks

time

enthusiasm

7

Perceptrons, 1958

Rosenblatt
Left © George Nagy. Right © American Psychological Association, Inc. All rights
reserved. This content is excluded from our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/

8

Perceptrons, 1958

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

9

time

enthusiasm
Perceptrons,
1958

10

Minsky and Papert, Perceptrons, 1972

© source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

11

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

12

Parallel Distributed Processing (PDP), 1986

© Massachusetts Institute of Technology. All rights
reserved. This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

13

XOR problem

Inputs Output

0 0 0
1 0 1
0 1 1
1 1 0

PDP authors pointed to the backpropagation algorithm
as a breakthrough, allowing multi-layer neural networks to be
trained. Among the functions that a multi-layer network can
represent but a single-layer network cannot: the XOR function.

0 1

0
1

14

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

15

LeCun conv nets, 1998

http://yann.lecun.com/exdb/lenet/index.html
Demos:

© IEEE. All rights reserved. This content is
excluded from our Creative Commons license. For
more information, see
https://ocw.mit.edu/help/faq-fair-use/

16

Neural Information Processing Systems 2000

• Neural Information Processing Systems is the
premier conference on machine learning. Evolved
from an interdisciplinary conference to a machine
learning conference.

• For the 2000 conference:
– title words predictive of paper acceptance: “Belief

Propagation” and “Gaussian”.

– title words predictive of paper rejection: “Neural” and
“Network”.

17

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

18

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

“Alexnet”

© Krizhevsky, Sutskever, and Hinton. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

19

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

© Krizhevsky, Sutskever, and Hinton. All rights
reserved. This content is excluded from our
Creative Commons license. For more
information, see
https://ocw.mit.edu/help/faq-fair-use/

20

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

Krizhevsky,
Sutskever,
Hinton, 2012

28 years 28 years

21

time

enthusiasm
Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000

Krizhevsky,
Sutskever,
Hinton, 2012

28 years 28 years

What comes next?

2028 ?

22

What comes next?

Perceptrons,
1958

Minsky and Papert,
1972

PDP book,
1986

AI winter,
2000 time

enthusiasm

28 years 28 years

Krizhevsky,
Sutskever,
Hinton, 2012

2028 ?

23

What is deep learning today?

• Autograd (pytorch, tensorflow)

• Billion+ data point datasets

• Parallel training on thousands of GPUs

• Billion+ parameter architectures

• Million+ dollar training costs

• Shockingly good results

• Massive isn’t necessary - e.g. Stable Diffusion

• Open source community and modular reuse
24

Signposting for the rest of the lecture

What we expect you to
have seen before

What we will cover in
this class

25

What we expect you to have seen before

• Gradient descent

26

Gradient descent

J (θ)

θ� = argmin
θ

N

i=1

L (f θ(x (i)) , y (i))

27

2
1

0
-1

x
-2

Peaks

-3-3

-2
y

-1

0

1

2

Gradient descent

J (θ)

θ1 θ2

θ� = argmin
θ

J (θ)

x

28

What we’ll cover in this class

• Backprop and differentiable programming

29

learning rate

Gradient descent

One iteration of gradient descent:

θt+1 = θt − ηt
∂J (θ)
∂θ θ= θt

J (θ)

θ� = argmin
θ

N

i=1

L (f θ(x (i)) , y (i))

Lecture 2: Backprop and Differentiable Programming

30

What we expect you to have seen before

• Gradient descent

• MLPs, Nonlinearities (ReLu)

31

Input
representation

Output
representation

Computation in a neural net

32

Computation in a neural net

Input
representation

Output
representation

x i
wij

Linear layer

zj zj =
i

wij x i + bj

33

Computation in a neural net

Input
representation

Output
representation

x i
wij

Linear layer

weights

bias
bj

1

zj zj =
i

wij x i + bj

34

zj = x T w j + bj

Computation in a neural net

Input
representation

Output
representation

Linear layer

weights

bias

θ = {W , b}

w jx

bj
1 parameters of the model

zj

35

Input
representation

Output
representation

x w

1
b

g(z)

z

g(z) =
1, if z > 0
0, otherwise

Pointwise
Non-linearity

Computation in a neural net

“Perceptron”

z g(z)

36

Computation in a neural net

Input
representation

Output
representation

x w

1
b

g(z)

z

g(z) =
1, if z > 0
0, otherwise

z g(z)

or the input parameters will a �ect the output of the layer. From this perspective, anything
we can do with parameters, we can do with data instead, and vice versa, and that is the
basis for a lot of applications and tricks. For example, while normally we learn the values
of the parameters, we could instead hold the parameters fixed and learn the values of the
data that achieve some objective. In fact this is what is done in applications such as style
transfer, adversarial attacks, and network visualization, which we will see in more detail in

9.1.2 Deep nets can perform nonlinear classification

Let’s return to our binary classification problem from above, but now make the two classes
not linearly separable: Here there is no line that can separate the zeros from the ones.

− 1− 0.5 0 0.5 1
− 1

− 0.5
0

0.5
1

0 0
0

0
0

0

1
0

0
0

1 1
1

1

x1

x 2
9.1. DEEP NETS

More commonly we might have many hidden units in stack, which we call a
layer :

x

...

W 1

z

...

h

...

W 2

y

...

37

Computation in a neural net — nonlinearity

Input
representation

Output
representation

x w

1
b

z g(z)

Tanh

g(z)

z

g(z) =
ez − e− z

ez + e− z

3

More commonly we might have many hidden units in stack, which we call a hidden

How many layers does
this net have? Some texts
will say two [W 1 , W 2],
others three [x , { z , h} , y],
others four [x , h , z , y].
We must get comfortable
with the ambiguity. 38

Tanh
• Bounded between [-1,+1]

• Saturation for large +/- inputs

• Gradients go to zero

• Outputs centered at 0

• tanh(z) = 2 sigmoid(2z) 1

Computation in a neural net — nonlinearity

g(z)

z

g(z) =
ez − e− z

ez + e− z

39

Sigmoid• Interpretation as firing rate of neuron

• Bounded between [0,1]

• Saturation for large +/- inputs

• Gradients go to zero

• Outputs centered at 0.5
(poor conditioning)

• Not used in practice

Computation in a neural net — nonlinearity

g(z)

z

g(z) =
1

1 + e− h

40

Rectified linear unit (ReLU)• Unbounded output (on positive side)

• Efficient to implement:

• Also seems to help convergence (see
6x speedup vs tanh in [Krizhevsky et al.])

• Drawback: if strongly in negative
region, unit is dead forever (no gradient).

• Default choice: widely used in current
models.

Computation in a neural net — nonlinearity

g(z)

z

g(z) = max(0 , z)∂g
∂z

=
0, if z < 0
1, if z ≥ 0

41

Output
representation

1

yW 2 j

b2 j

= “hidden units”z , h

h = g(z)

Input
representation

Intermediate
representation

x

1

Stacking layers

W 1 j

b1 j

z

42

1

Input
representation

Intermediate
representation

x

1

Stacking layers

Output
representation

h

y

W 1 W 2

b2b1

h = g(W 1x + b1)

θ = {W 1 , . . . , W L , b1 , . . . , bL }

y = g(W 2h + b2)

43

44

Example: nonlinear classification with a deep netNonetheless, we will demonstrate a multilayer network that can solve this problem. The
trick is to just add more layers!

x 2

x 1

z2

z1

W 1

h2

h1

W 2

z3 y

Consider using the following settings for W 1 and W 2 :

W 1 =
1 − 1
2 1 , W 2 = 1 − 1 (9.10)

The full net then performs the following operation:

1 = − x 1 + x 2 , z2 = x 1 + 2 x 2 linear (9.11)

1 = max(z1 , 0) , h2 = max(z2 , 0) relu (9.12)

3 = h1 − h2 linear (9.13)
y = 1(z > 0) threshold (9.14)

W 1 W 2

The equation for this neural net is:

z = W 1x + b1

h = g(z)
y = W 2h + b2

The activation g could be the threshold function like in Eqn. 9.2, but more generally it
can be any pointwise nonlinearity, that is, g(h) = [˜g(h1) , . . . , g̃ (hN)] and g̃ is any nonlinear
function mapping R � R .

This kind of sequence – linear layer, pointwise nonlinearity, linear layer, pointwise non-
linearity, and so on – is the prototpyical moti�n deep neural networks.

9.1 Deep nets

Deep nets are neural nets that stack the above motif many times:

N
on

-li
ne

ar
ity

z3 = W 2h + b2
y = 1(z3 > 0)

45

(9.5)
)6.9(

(9.7)

could be the threshold function like in Eqn. 9.2, but more generally it
is any nonlinear

This kind of sequence – linear layer, pointwise nonlinearity, linear layer, pointwise non-

What we’ll cover in this class

• Backprop and differentiable programming

• Why we can approximate

46

• 1 layer? Linear decision surface.

• 2+ layers? In theory, can represent any function.
Assuming non-trivial non-linearity.

• But issue is efficiency: very wide two layers vs narrow
deep model? In practice, more layers helps.

Representational power

Lecture 3: Approximation theory

47

What we’ll cover in this class

• Backprop and differentiable programming

• Why we can approximate

• Architectures

48

“clown fish”

Lin
ea

r

Non
-lin

ea
rity

…

Clas
sify

Deep nets

f (x) = f L (f L − 1 (. . . f 2 (f 1 (x))))

Architectures
Lecture 4: CNNs
Lecture 5: GNNs
Lecture 9: Transformers
Lecture 11: RNNs

49

What we’ll cover in this class

• Backprop and differentiable programming

• Why we can approximate

• Architectures

• When and why can we generalize

50

Why do deep nets generalize?
• Deep nets have so many parameters they could just act like look up tables,

regurgitating their training data

• Instead, they learn rules that generalize

• Defies classical theory!

[Double-descent: Belkin, Hsu, Ma, Mandal, PNAS 2019]51

The simplicity hypothesis

Emerging theory:

 deep nets learn simple functions that generalize

Classical theory:

 big models learn complicated functions, and overfit the dataLecture 7: Generalization theory
Lecture 17: OOD generalization

52

y = 1(z3 > 0) threshold (9.14)

heron

Li
ne

ar
N

on
-li

ne
ar

ity

…

Each layer is a function. Therefore, a deep net is a composition of many functions:

f (x) = f L (f L − 1 (. . . f 2 (f 1 (x))))

These functions are parameterized by weights [W 1 , . . . , W L] and biases [b1 , . . . ,
layers we will see later have other parameters. Collectively, we will refer to the concatenation
of all the parameters in a deep net as θ.

Deep nets are powerful because they can perform nonlinear mappings. In fact, a deep
net with su�ciently many neurons can fit almost any desired function arbitrarily closely.
The universal approximation theorem [Cybenko1989] states that this is true even for
a network with just a single hidden layer. The caveat is that the number of neurons in
the hidden layers will have to be very large in order to fit complicated functions. Also,
technically, this theorem only holds for continuous functions on compact subsets of
example a neural net cannot fit non-computable functions.

What we expect you to have seen before

• Gradient descent

• MLPs, Nonlinearities (ReLu)

• Softmax, cross-entropy loss

4

of the signal being processed. The inputs
later layers of neurons are transformed representations. Often, we will not worry about
distinguishing between inputs, hidden units, and outputs, and simply refer to the data in a
network, layer by layer, as a sequence [

Parameters are the weights and biases mentioned above. These are the variables being
learned. Both data and parameters are tensors of variables.

Often we think of a layer as a function
explicit and think of each layer as a function:

That is, each layer takes the data from the previous layer, as well as parameters of the
current layer as input, and produces data of the next layer. Varying either the input data

53

heron

Each layer is a function. Therefore, a deep net is a composition of many functions:

)8.9(

, . . . , bL]. Some
layers we will see later have other parameters. Collectively, we will refer to the concatenation

Deep nets are powerful because they can perform nonlinear mappings. In fact, a deep
ciently many neurons can fit almost any desired function arbitrarily closely.

[Cybenko1989] states that this is true even for
a network with just a single hidden layer. The caveat is that the number of neurons in
the hidden layers will have to be very large in order to fit complicated functions. Also,
technically, this theorem only holds for continuous functions on compact subsets of R N – for

“clown fish”

Lin
ea

r

Non
-lin

ea
rity

…

Clas
sify

Deep nets

f (x) = f L (f L − 1 (. . . f 2 (f 1 (x))))

CHAPTER 9. NEURAL NETS

of the signal being processed. The inputs x are a “raw” representation of the signal whereas
later layers of neurons are transformed representations. Often, we will not worry about
distinguishing between inputs, hidden units, and outputs, and simply refer to the data in a
network, layer by layer, as a sequence [x 1 , . . . , x L].

Parameters are the weights and biases mentioned above. These are the variables being
learned. Both data and parameters are tensors of variables.

Often we think of a layer as a function x l+1 = f l (x l), but we can also make the parameters
explicit and think of each layer as a function:

x l+1 = f l (x l , θl)9.9()

That is, each layer takes the data from the previous layer, as well as parameters of the
current layer as input, and produces data of the next layer. Varying either the input data

© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

54

Last layer

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

“clown fish”argmax

Classifier layer

55

“clown fish”

Loss error

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function

56

“clown fish”

Loss small

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function

57

“grizzly bear”

Loss large

Network output

…

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

Ground truth label

Loss function

58

Network output

…

dolphin

cat

grizzly bear

angel fish

chameleon

clown fish

Ground truth label

…

iguana

elephant

ŷ y

H (y , ŷ) = −
K

k=1

yk log ŷk

Probability of the observed
data under the model

softmax

59

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

x

…

f

f θ : X � R K

Prediction Ground truth labellog ŷ

- 0 1log prob Prob∞ 0

© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

60

9.1.1 Data vs parameters

When working with deep nets it’s useful to distinguish data and parameters . The “data”
are the values that the nodes take on, [x , z1 , h1 , . . . , zL − 1 , hL − 1 , y]. It may seem strange at
first to call all these variables data, but the idea is that all these values are representations

Score

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

x

…

f

Prediction Ground truth label y

f θ : X � R K
−H (y , ŷ) =

K

k=1

yk log ŷk

− L (ŷ , y)

How much better you
could have done

log ŷ

- 0 1log prob - LossProb∞ 0 -∞ 0

current layer as input, and produces data of the next layer. Varying either the input data
or the input parameters will a
we can do with parameters, we can do with data instead, and vice versa, and that is the
basis for a lot of applications and tricks. For example, while normally we learn the values
of the parameters, we could instead hold the parameters fixed and learn the values of the
data that achieve some objective. In fact this is what is done in applications such as style
transfer, adversarial attacks, and network visualization, which we will see in more detail in
later chapters.

9.1.2 Deep nets can perform nonlinear classification

Let’s return to our binary classification problem from above, but now make the two classes
not linearly separable: Here there is no line that can separate the zeros from the ones.

© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

61

. The “data”
]. It may seem strange at

representations dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

x

f

Prediction Ground truth label y

f θ : X � R K

Score

−H (y , ŷ) =
K

k=1

yk log ŷk

− L (ŷ , y)log ŷ

- 0 1log prob - LossProb∞ 0 -∞ 0

current layer as input, and produces data of the next layer. Varying either the input data
or the input parameters will a �ect the output of the layer. From this perspective, anything
we can do with parameters, we can do with data instead, and vice versa, and that is the
basis for a lot of applications and tricks. For example, while normally we learn the values
of the parameters, we could instead hold the parameters fixed and learn the values of the
data that achieve some objective. In fact this is what is done in applications such as style
transfer, adversarial attacks, and network visualization, which we will see in more detail in

9.1.2 Deep nets can perform nonlinear classification

Let’s return to our binary classification problem from above, but now make the two classes
not linearly separable: Here there is no line that can separate the zeros from the ones.

− 1− 0.5 0 0.5 1
− 1

− 0.5
0

0.5
1

0 0
0

0
0

0

1
0

0
0

1 1
1

1

x1

x 2
9.1. DEEP NETS

More commonly we might have many hidden units in stack, which we call a
layer :

x

...

W

z

...

h

...

W

y

...© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

62

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

dolphin

cat

grizzly bear

angel fish

chameleon

iguana

elephant

clown fish

…

x

f

Prediction Ground truth label y

f θ : X � R K

Score

−H (y , ŷ) =
K

k=1

yk log ŷk

− L (ŷ , y)log ŷ

- 0 1log prob - LossProb∞ 0 -∞ 0

3

More commonly we might have many hidden units in stack, which we call a hidden

How many layers does
this net have? Some texts
will say two [W 1 , W 2],
others three [x , { z , h} , y],
others four [x , h , z , y].
We must get comfortable
with the ambiguity.

© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

63

“clown fish”

Loss

Learned
Deep learning

θ1 θ2 θ3 θ4 θ5 θ6

θ� = argmin
θ

N

i=1

L (f θ(x (i)) , y (i))

L (f θ(x (1)) , y (1))

x (1)

y (1)

© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

64

“grizzly bear”

Loss

Learned
Deep learning

θ1 θ2 θ3 θ4 θ5 θ6

θ� = argmin
θ

N

i=1

L (f θ(x (i)) , y (i))

L (f θ(x (2)) , y (2))

y (2)

x (2)

© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

65

“chameleon”

Loss

Learned
Deep learning

θ1 θ2 θ3 θ4 θ5 θ6

θ� = argmin
θ

N

i=1

L (f θ(x (i)) , y (i))

y (i)

x (i)

L (f θ(x (i)) , y (i))

© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

66

What we expect you to have seen before

• Gradient descent

• MLPs, Nonlinearities (ReLu)

• Softmax, cross-entropy loss

• Parallel processing, tensors

67

Batch (parallel) processing

Loss

Loss

Loss

…

Σ

Images

Fe
at

ur
es

© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/ 68

Tensors
(multi-dimensional arrays)

…

Fu
rry

?
Is

a fi
sh

?
Size # S

trip
es

…

Each layer is a representation of the data

Nonetheless, we will demonstrate a multilayer network that can solve this problem. The
trick is to just add more layers!

Consider using the following settings for

The full net then performs the following operation:

z1
h1

z3

8

{ x (i)
batch ,

and Y �
The weights and biases of the net are also usually represented as tensors. The weights

and biases of a linear layer will be tensors of shape
As an example, we below visualize all the tensors associated a batch of 3 datapoints being

processed by the MLP in Fig. 9.1:

© source unknown. All rights reserved. This
content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

69

1

Nonetheless, we will demonstrate a multilayer network that can solve this problem. The
trick is to just add more layers!

x 2

x 1

z2

z1

W 1

h2

h1

W 2

z3 y

Consider using the following settings for W 1 and W 2 :

W 1 =
1 − 1
2 1 , W 2 = 1 − 1 (9.10)

The full net then performs the following operation:

1 = − x 1 + x 2 , z2 = x 1 + 2 x 2 linear (9.11)

1 = max(z1 , 0) , h2 = max(z2 , 0) relu (9.12)

3 = h1 − h2 linear (9.13)

CHAPTER 9. NEURAL NETS

, y (i)
batch }

N batch
i=1 , and the batch represented as a tensor has shape X � R N batch

� R N batch × K .
The weights and biases of the net are also usually represented as tensors. The weights

and biases of a linear layer will be tensors of shape W � R C +1 × C and b � R C

As an example, we below visualize all the tensors associated a batch of 3 datapoints being
processed by the MLP in Fig. 9.1:

X

W 1

Z 1 H 1

W 2

Z 2 Y

Tensor processing with batch size = 3:

N
ba

tc
h x 1 x 2 z1 z2 h1 h2 z3 y

W 1 W 2

The equation for this neural net is:

z = W 1x + b1

h = g(z)
y = W 2h + b2

The activation g could be the threshold function like in Eqn. 9.2, but more generally it
can be any pointwise nonlinearity, that is, g(h) = [˜g(h1) , . . . , g̃ (hN)] and g̃ is any nonlinear
function mapping R � R .

This kind of sequence – linear layer, pointwise nonlinearity, linear layer, pointwise non-
linearity, and so on – is the prototpyical moti�n deep neural networks.

9.1 Deep nets

Deep nets are neural nets that stack the above motif many times:

N
on

-li
ne

ar
ity

z3 = W 2h + b2
y = 1(z3 > 0)

Everything is a tensor

70

CHAPTER 9. NEURAL NETS

batch × H × W × C

The weights and biases of the net are also usually represented as tensors. The weights
+1 .

As an example, we below visualize all the tensors associated a batch of 3 datapoints being

with the ambiguity.

(9.5)
)6.9(

(9.7)

could be the threshold function like in Eqn. 9.2, but more generally it
is any nonlinear

This kind of sequence – linear layer, pointwise nonlinearity, linear layer, pointwise non-

What we’ll cover in this class

• Backprop and differentiable programming

• Why we can approximate

• Architectures

• When and why can we generalize

• How deep networks represent data

71

Serre, 2014 Donahue, 2013

Left and clown fish © source unknown. Middle © Springer Science
+Business Media, LLC, part of Springer Nature. Right © Donahue, et al. |
All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

72

ViT block x3

ViT block x3

ViT block x3

ViT block x3

Representation Learning
Lecture 11: Reconstruction-based
Lecture 12: Similarity-based
Lecture 13: Theory

© Torralba, Isola, and Freeman. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair-use/

73

What we’ll cover in this class

• Backprop and differentiable programming

• Why we can approximate

• Architectures

• When and why can we generalize

• How deep networks represent data

• Generative Models

74

Generative Models

stability.aiopenai.com

Generative Models
Lecture 14: Basics
Lecture 15: Representations + Generation
Lecture 16: Conditional Models

© openai.com and stability.ai. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

75

What we’ll cover in this class

• Backprop and differentiable programming

• Why we can approximate

• Architectures

• When and why can we generalize

• How deep networks represent data

• Generative Models

• Reusing weights

76

ywhere the capital letters are the batches of datapoints and activations corresponding to
the lowercase names of datapoints and hidden units in Fig. 9.1.

Serre, 2014 Gandour, 2018

Useful?

Reuse

Transfer Learning
Lecture 18: Models
Lecture 19: Data

 Left © Springer Science+Business Media, LLC, part of Springer Nature.
Right © Gandour, et al. |All rights reserved. This content is excluded
from our Creative Commons license. For more information, see https://
ocw.mit.edu/help/faq-fair-use/ 77

y = 1(z3 > 0) threshold (9.14)where the capital letters are the batches of datapoints and activations corresponding to
the lowercase names of datapoints and hidden units in Fig. 9.1. heron

Li
ne

ar
N

on
-li

ne
ar

ity

…

Each layer is a function. Therefore, a deep net is a composition of many functions:

f (x) = f L (f L − 1 (. . . f 2 (f 1 (x))))

These functions are parameterized by weights [W 1 , . . . , W L] and biases [b1 , . . . ,
layers we will see later have other parameters. Collectively, we will refer to the concatenation
of all the parameters in a deep net as θ.

Deep nets are powerful because they can perform nonlinear mappings. In fact, a deep
net with su�ciently many neurons can fit almost any desired function arbitrarily closely.
The universal approximation theorem [Cybenko1989] states that this is true even for
a network with just a single hidden layer. The caveat is that the number of neurons in
the hidden layers will have to be very large in order to fit complicated functions. Also,
technically, this theorem only holds for continuous functions on compact subsets of
example a neural net cannot fit non-computable functions.

What we’ll cover in this class

• Backprop and differentiable programming

• Why we can approximate

• Architectures

• When and why can we generalize

• How deep networks represent data

• Generative models

• Reusing weights

• Scaling
78

where the capital letters are the batches of datapoints and activations corresponding to
heron

Each layer is a function. Therefore, a deep net is a composition of many functions:

)8.9(

, . . . , bL]. Some
layers we will see later have other parameters. Collectively, we will refer to the concatenation

Deep nets are powerful because they can perform nonlinear mappings. In fact, a deep
ciently many neurons can fit almost any desired function arbitrarily closely.

[Cybenko1989] states that this is true even for
a network with just a single hidden layer. The caveat is that the number of neurons in
the hidden layers will have to be very large in order to fit complicated functions. Also,
technically, this theorem only holds for continuous functions on compact subsets of R N – for

302
Neurons

15 Thousand
Neurons

100 Billion
Neurons

250 Billion
Neurons

Scale

Scale in Deep Learning
Lecture 6: Scaling Rules for Optimization
Lecture 22: Scaling laws
Lecture 23: Automatic gradient descent

79

1. Introduction to Deep Learning

• How did we get where we are today? (Brief History)

• What we expect you have seen before (ok if you haven’t!)

• What we will cover in this class

80

MIT OpenCourseWare
https://ocw.mit.edu

6.7960 Deep Learning
Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

81

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover-slides.pdf
	cover_h.pdf
	Blank Page

