6.7960 Deep Learning
Homework 3 Fall 2024

Instructions: There are a total of 35 points for this homework. Each question is marked with
its corresponding points. Some questions are not graded, including all bonus questions.
But you are encouraged to think about and attempt them.

Submission: This assignment is coding heavy and will take some time. All of the
code for this homework (Problems 2, 3, and 4) will be in the following colab notebook
here. For this assignment, do not include your code inline. Instead, export the notebook
as a pdf (with the outputs) and attach the PDF to your submission. However, written
answers should be included as usual. Please complete the page assignment to each section
within the course site, otherwise we will apply a 3% penalty to the homework. This can be
done after you upload your submission PDF.

Notation: We will use this set of math notation specified on course website. For example,
cis a scalar, b is a vector and W is a matrix. You are encouraged (although not enforced) to
follow this notation in your typeset submission, or to the best of your ability with a
handwritten response (bolding may be difficult :))

Note on use of Al Assistants: This assignment is particularly coding heavy. We understand
that Al assistants can complete many coding based problems. Therefore, we would like to
provide a reminder of our Al assistant policy. You may not simply ask an Al assistant to
complete you code for you. This includes Google Colab autocomplete, which should not
be used for completing assignments. Our full Al assistant policy can be found here.

Note on Colab Autocomplete Usage: Please disable Colab’s code autocomplete for this
problem set. Navigate to Tools/Settings/Editor, and toggle off the option labeled ”Auto-
matically trigger code completions.” For more details, refer to the instructions here.

Problem 1: RNNs versus transformers (8 pt)

Recurrent neural networks, also known as RNNSs, are a type of neural network used for
sequence modelling. In this question, we will think conceptually about how an RNN
processes information, and compare this to transformers.

Consider the simple RNN architecture shown in Figure 1. The inputs x;, X2, ...xy are vectors
in R%», the hidden states hy, hy, ..., hy are vectors in Ré%idden and the outputs yi,ya, ..., yr
are vectors in R%. The hidden states and outputs are given by recurrence relations:

hy = ¢ (Wrhy_1 + Wox; + by); (1)
yvi = ¢,(W,h, +by). (2)

The functions ¢;(-) and ¢, (-) are arbitrary element-wise non-linearities. The RNN has three
weight matrices W;,, W, and W, and two bias vectors b;, and b,.

https://colab.research.google.com/drive/1kL7LrOyT2YiGsSQF5n_mWoxGNpAyDNcT?usp=drive_link
https://phillipi.github.io/6.7960/#AI_policy
https://stackoverflow.com/questions/63696360/google-colab-how-to-turn-off-suggestion-window

6.7960 Deep Learning
Homework 3 Fall 2024

9 9 9 g

Rl S S

Figure 1: A simple RNN architecture. At time ¢, an RNN computes a hidden state h, based
on the current input x; and prior hidden state h,_;. The RNN also spits out an output y;.

For simplicity, in this question we will set the initial hidden state hy = 0, we will set the
non-linearity ¢, to the identity ¢;,(h) = h and we will set the biases b, = 0 and b, = 0.
Under this simplification, after one time step T=1: h; = W,x; and y; = ¢,(W,W,x;).

(a) (Ipt) Derive formulae for hidden state h, and output y, in terms of the weight
matrices W,, W,, W}, and inputs x;, Xs.

(b) (1pt) Derive formulae for hidden state h; and output y; in terms of the weight
matrices W, W,, W;, and inputs x;, X3, X3.

(c) (Apt) Derive formulae for hidden state h; and output y; in terms of the weight
matrices W,, W,, W}, and inputs x, ..., X7

(d) (@pt) Suppose the sequence length 7" is very long. What do you notice about the
contribution of the first input x; to the last output y of the RNN?

Another way of handling sequential data is to use a self-attention layer, a la transformers.
Given a sequence of inputs x;, Xo, ..., X7. A self-attention layer computes:

1
aij = —=(Qx) (Kx;) fori=1,..Tandj=1..T; ()

outputs: yi = Z 7

pair-wise inner products:
fort=1,..,T, 4)

where Q, K and V are the query, key and value matrices and d is the embedding dimension.

(e) (3pt) For the first two questions, your answer only needs to indicate the asymptotic scaling
with sequence length T'. Use big-O notation, and ignore any other factors.

¢ For RNNs, how many floating point operations are needed for a forward pass?

2

6.7960 Deep Learning
Homework 3 Fall 2024

¢ For a self-attention layer, how many floating point operations are needed for a
forward pass?

* With sufficient parallel hardware, will performing a forward pass on a trans-
former or RNN be faster? Why is this the case?

Hint: Think about different ways to arrange the computation of Equations 3 and 4.

(f) (1pt) If you wanted to train and deploy a neural network that operates on very long
sequences T — oo, would you rather use an RNN or a transformer? Why?

Hint: There are different possible answers here, and we are just looking for some
short sensible commentary that reflects on memory and time complexity mentioned
in previous problems.

Problem 2: Implementing a Transformer (11 pt)

In this problem, you'll implement a Transformer (from scratch!). We’ll first focus on writing
a self-attention module. In the next two problems we’ll explore how to use transformers
for two entirely different domains: image classification and language. Throughout this
problem, let B be the batch size and 7" be the sequence length.

These problems will be implemented using the following colab notebook here. These
problems are coding heavy and will take some amount of time. For the submission,
download the entire colab notebook as a PDF document and attach this PDF to your
solution at the end. No need to copy and paste the code in-line. However, if we ask for a
non-coding response, answer the question here.

(a) (4pt) Our first task is to implement single-headed self-attention. Take a look at the
class AttentionHead. For an input z € R7*¢, we want to setup three linear layers
Wo, Wk, Wy, € R4, Use these to create your queries, keys, and values.

Q=xWyp K=xWg V=xW,

Then compute your attention weights

A = softmax(QK" /\/dy)

Here A;; indicates the weight of token j when computing the new representation for
token ¢. Finally use your attention weights to compute your output as a weighted
combination of the values:

Out = AV

https://colab.research.google.com/drive/1kL7LrOyT2YiGsSQF5n_mWoxGNpAyDNcT?usp=drive_link

6.7960 Deep Learning
Homework 3 Fall 2024

Deliverable Implement AttentionHead. Notice that the forward function takes an
argument called attn_mask € {0, 1}7*7. If attn_mask; ; = 0 token i should not attend
on token j (e.g., A;; = 0). Modify your code accordingly.

Hint: If you want token ¢ not to attend on token j what value should you set in the
input of the softmax?)

(b) (3pt) We now implement multi-headed attention.

Take a look at the class MultiHeadedAttention. Our output should separately com-
pute the attention outputs for each of the heads, then concatenate the outputs together
and project them into the output dimension. Specifically for parameter matrix Wo
(what size should Wy be?)

MultiHead (z) = Concat(head;(z), ..., head, (z)) Wy

Deliverable ImplementMultiHeadedAttention.!

(c) (3pt) Now let’s put it all together!

Take a look at the feed-forward-network module FFN and the residual model AttentionResidual.
We’ve already implemented this bit for you (you're welcome!). The FFN performs
normalization along with linear layers interspersed by GELUs ? (similar to the MLPs

you've seen in previous PSETs). AttentionResidual then sends the input through

both multiheaded attention and the FFN, adding a residual after each step.

Deliverable Implement Transformer, which passes the input through successive
AttentionResidual layers.

Make sure you can pass the given test cases (they just check output sizes). In particular,
test case 3 checks whether you've dealt with attn_mask correctly. The provided
attention mask indicates that each token should only attend to itself and the token
before it. Your returned A should reflect this attention pattern.

(d) (pt) Transformers are typically designed to handle discrete token sequences, like
words in a sentence. However, in many domains like audio and images, the input is
continuous rather than discrete.

Deliverable Please restrict your answer to 2-3 sentences in 1 paragraph. Explain
how the transformer architecture can be adapted to handle continuous inputs, such
as audio and images. Think about how tokenization, embedding, and positional

!Note, in most industrial settings, rather than looping over the heads sequentially, all the heads are
computed at the same time in a vectorized fashion. This provides a speedup by letting you compute the
heads in parallel, but don’t worry about this here.

2a Gaussian Error Linear Unit (GELU) functions here as a smoother version of a ReLU.

6.7960 Deep Learning
Homework 3 Fall 2024

encodings need to be adjusted to effectively apply self-attention to these types of
inputs. Consider how you would divide continuous data into meaningful “tokens”
and how the transformer can capture local and global relationships within this data.

Problem 3: Vision Transformers (6 pt)

So far, the best performing model we’ve seen for image classification has been CNNs.
Recently, transformer architectures have been shown to have similar to better performance.
One such model called Vision Transformer (ViT) splits up images into regularly sized
patches (Dosovitskiy et al. [2020]). The patches are treated as a sequence and attention
weights are learned as in a standard transformer model.

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder

]
I
|
|
|
|
I
| o
o | 7
- 6) node | |[EE
|
|
I
|
|

* Extra learnable
[Linear Projection of Flattened Patches] L 4 |

[class] embedding

SEE N N I
S 7 T i

mEn—
e Embedded
1 Patches

© Dosovitskiy, et al. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair-use/

Figure 2: ViT Architecture, Figure from Dosovitskiy et al. [2020]

In detail the ViT has a few steps (see Figure 2).

¢ First we embed the patches using into a sequences of embeddings.

¢ We add a positional encoding to the embedding which captures the position of each
patch in the image.

* We prepend an extra learned class embedding to our sequence and pass the entire
sequence through a transformer.

https://ocw.mit.edu/help/faq-fair-use/

6.7960 Deep Learning
Homework 3 Fall 2024

* We extract the final representation of the class embedding and learn a linear layer
(MLP Head) to predict the probability of each class.

* We supervise the class with cross entropy loss.

Now that we’ve implemented a transformer, we can use it to implement a ViT! Make sure
you've already done the previous section.

(a) (2pt) We first implement our patch embedding. Take a look at the class PatchEmbed.
For a given image, we want to split the image into square patches. Each patch should
then be flattened and linearly projected with some weight.

For example, suppose we want embeddings of size 128. If your image is size (3, 32, 32)
and your patches are 4 x 4, you should end up with 64 patches. Flattened, each patch
contains 3 x 4 x 4 = 48 elements. We want to learn a linear projection from those
48 elements to our output dimension 128. We’'ll then end up with a sequence of 64
inputs of 128 elements each to pass into our transformer!

Deliverable Implement PatchEmbed.

Hint: Splitting up the patches manually and then using nn.Linear will be painful.
Instead, look at nn.Conv2d. How can you use this to implement the patch embedding?

(b) (1pt) Read through the VisionTransformer (implemented for you). Take a look at
the positional embedding. Positional embeddings encode the position of each element
in the sequence. In this case, the positional embeddings for every position in the
sequence is learned. However, this creates a strict limit on how many tokens can be
passed to the transformer (if you only had 64 position embeddings, the positional
embedding of the 65th token is undefined!)

Suppose you wanted to implement a transformer that can take arbitrarily long inputs
(ignore any memory or time constraints). Describe a way to implement the positional
embedding such that there is no maximum sequence size.

(c) (1pt) Train the Vision Transformer on CIFAR-10! We’ve implemented the training
loop for you. Run the cells to train a model and report your validation accuracy here
(it should be greater than 50%). This should take about 5 minutes.

(d) (1pt) The attention maps for transformers tell us which patch relied on which other
patch. Let’s take a look at the attention heatmap of the class token (averaged over all
heads and layers). At a high level this can give us a sense of which parts of the image
the model is relying on. We provide code to visualize this heatmap for 10 validation
images.

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

6.7960 Deep Learning
Homework 3 Fall 2024

Include the images with their heatmaps here. What do you observe about the
heatmaps?

(e) (1pt) Previously, we have seen convolutional neural networks (CNNs) used for image
classification. Answer the following questions with regards to the capabilities of
CNNs and ViTs. We expect no more than a few sentences for each question.

* CNNs have inductive biases that emphasize local spatial patterns by design,
while ViTs rely on global attention with limited biases. How does this difference
affect their abilities, particularly on small vs. large datasets?

* CNNis capture spatial information due to their network structure, while ViTs
generally rely on learned positional encodings. How do these approaches impact
each model’s ability to generalize to images of different sizes?

Problem 4: DialogueGPT (10 pt)

Now let’s use our Transformer to train a language model! We’re going to train a language
model on some Shakespeare. Run the cell to download input.txt which contains some
Shakespeare text. Each element in all_dialogues will be one example in our dataset.

(a) (2pt) Our first step is to build a tokenizer, which splits line of dialogue into individual
tokens and assigns each token to an ID. We're going to use NLTK’s word_tokenize,
which splits words and punctuation into their own tokens.

Take a look at MyTokenizer. This tokenizer has three special tokens: start (which will
start every example), pad (used to pad examples to the same length), and unk (used
when encountering a word not in our vocabulary). We’ve initialized the tokenizer for
you.

Deliverable Implement the following functions in MyTokenizer:

* encode: convert a string to a series of token ids and prepend the token id for the
start token. Use word_tokenize to split the string.

* decode: convert an array of token ids back into tokens. Join them with a space.
Make sure that your tokenizer fulfills the test case.

(b) Read over and make sure you understand how we create the DialogueDataset and
data loader. The data loader pads the list of tokens such that they are all the same
length. It outputs a dictionary with two elements:

* input_ids contains the input ids for each element in the batch (padded to the
right to the max length)

6.7960 Deep Learning
Homework 3 Fall 2024

* input_mask indicates which tokens are pad tokens (and should thus be ignored).

Deliverable You don’t need to do anything for this question.

(c) (2pt) Time to implement DialogueGPT! Review the lecture on language models if you
haven’t already.

Deliverable Fill out TODOs in the __init__and forward methods. The forward call
should:

* Given the token ids, retrieve the corresponding token embeddings. Add to this
a learned positional embedding.

* Generate a causal attention mask. Remember that for GPT, every token only
depends on itself and the tokens before it

¢ Pass the embeddings and the attention mask to the transformer and the language
model head. Output logits of size (1" x V') where T is the number of tokens and
V is the vocabulary size. This step is implemented for you

(d) (2pt) Let’s implement the loss. Remember that a language model is trained to predict
the next token given a prefix of tokens.

Suppose our vocab size is V' and we have 7' tokens in our training example (including
the start token). Then our model will output logits O € R"*"). Our loss for this
example will be 7' — 1 individual classification losses, where using logit vector O[] we
will predict the token id for token ¢ + 1 via cross entropy loss. This means we will not
supervise the start token, nor will we use the last logit vector O[—1]. An illustration
of this is shown below.

Input: "<START> To be or not to be" *)[DialogueGPT]—)H

Supervise: To be or not

Figure 3: Illustration of GPT Loss

Deliverable Implement DialoguelLoss. Remember to take into account the inp_mask
to ignore supervising tokens that correspond to padding.

(e) (Ipt) Go back to DialogueGPT read the generate function, which we have imple-
mented for you. The generate function takes in a prefix of token ids and auto-
regressively generates num_tokens more tokens, by greedily picking the most likely
next token and adding it back to the input.

6.7960 Deep Learning
Homework 3 Fall 2024

Generating 7' tokens is often much slower than training on an input with 7" tokens.
Comment on why this is the case.

(f) (Ipt) Now its time to train DialogueGPT! Run the cells to train the model. This step
will take you around 30 minutes, so budget accordingly. Note: if you're having
trouble debugging, try overfitting to just a few examples (e.g., make your training
dataset size 10 or so).

The training code generates some text after every epoch. What do you notice about
the generations as the epochs progress?

(g) (Apt) Generate 50 tokens of input text. Our language model is pretty small and hasn’t
been trained for very long, but you should still get something approximating english.
Paste the output of your model here.

(h) (0.5pt) As you can see above, GPT-like models often struggle with generating long,
coherent outputs and tend to produce repetitive or degenerate sequences when
generating many tokens. One common solution to this issue is to use decoding
strategies such as nucleus sampling instead of greedy decoding.

Deliverable Please restrict your answer to 2-3 sentences in 1 paragraph. Explain
how nucleus sampling works and why it may produce more diverse and coherent
outputs compared to greedy decoding. What trade-offs does it introduce in terms of
generation speed and output quality?

Hint: Nucleus sampling, also known as top-p sampling, involves selecting from a
subset of tokens whose cumulative probability exceeds a threshold (often denoted as
p). Instead of always selecting the token with the highest probability (as in greedy de-
coding), the model samples from a dynamically sized pool of likely tokens Holtzman
et al. [2020].

(i) (0.5pt) As you can see from the forward pass of DialogueGPT, generating a sequence
of tokens requires multiple forward passes through the model, where each new token
depends on all previously generated tokens. This can become computationally ex-
pensive, especially for long sequences, because the model needs to compute attention
over the entire sequence at each step.

One common solution to make this process more efficient is key-value (KV) caching,
which allows us to store and reuse previously computed values, reducing the need to
recompute them for every new token.

Deliverable Please restrict your answer to 2-3 sentences in 1 paragraph. On a
high-level, explain in simple terms why KV caching is useful in DialogueGPT when
generating long sequences. How does it help reduce the amount of work the model

6.7960 Deep Learning
Homework 3 Fall 2024

needs to do at each step? Why is this important for making the generation faster,
especially for longer sequences?

Hint: Without KV caching, the model would have to recompute the attention for all
tokens, not just the new one. KV caching avoids this extra computation. Reusing
key-value pairs improves efficiency by storing past hidden states and retrieving them
when needed, which greatly accelerates the generation process, particularly for long
conversations or sequences. This method is especially critical in transformer models,
where self-attention requires computing interactions between all tokens Brown [2020].

References

Tom B Brown. Language models are few-shot learners. NeurIPS, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. CoRR, abs/2010.11929, 2020. URL https://arxiv.org/
abs/2010.11929.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. ICLR, 2020.

10

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

MIT OpenCourseWare
https://ocw.mit.edu

6.7960 Deep Learning
Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover2.pdf
	Blank Page

