
Homework 1
6.S898 Deep Learning

Fall 2024

Instructions: There are a total of 29 points for this homework. Each question is marked
with the number of points it’s worth. Some questions are not graded, including all bonus
questions. You may either hand-draw or computer-generate plots as you find appropriate,
but just make sure the important trends are clear.

Notation: We will use this math notation from the course webpage. For example, c is a
scalar, b is a vector and W is a matrix. You are encouraged (though not forced) to follow
this notation in a typeset submission, or to the best of your ability in a handwritten
response—bolding vectors may be difficult :).

Math primer: A few questions use terms like “convexity”, “discontinuity” and “differ-
entiability”. To solve the problems, only an informal understanding of these concepts is
needed. For example, ReLU(x) is continuous because it can be drawn without lifting your
pen from the paper. ReLU(x) is not differentiable everywhere since it has a “kink” at x = 0.

Approximation (14pt)

For this section, we consider functions represented by ReLU networks with a single real-
valued input and a single real-valued output, unless otherwise specified. Let l denote the
number of layers. For example, a network with l = 2 layers is written:

f(x;W1,W2,b1,b2) = W2 ReLU(W1x+ b1) + b2,

where input x and output f(x;W1,W2,b1,b2) are scalars, unless otherwise specified (and
l is the number of weight matrices).

1. (1pt) Consider a two-layer ReLU network with width k (i.e., k hidden neurons) with
weight matrices W1, W2 and bias vectors b1,b2. W1 is a matrix in Rk×1—write down
the shapes of W2,b1 and b2.

2. (1pt) Write out the expression for a ReLU network with l = 3 layers.

3. (1pt) Answer yes or no: For a ReLU network with l ≥ 2 layers, in general, is the
network output convex with respect to the input x? Is it concave?
Convex: (yes/no)
Concave: (yes/no)

4. (5pt) Consider a ReLU network with l layers, each of width k.

(a) (1pt) How many discontinuities can the output have with respect to the input?

1

Homework 1
6.S898 Deep Learning

Fall 2024

(b) (1pt) Choose one. As a function of the input, the output is always:
(A) linear, (B) piecewise-linear, or (C) polynomial.

(c) (2pt) In general, is the function differentiable at every input? If yes, why? If no:

i. What’s the smallest number of input points at which the function can be
non-differentiable?

ii. For l = 2 layers, what’s the largest number of input points at which the
function can be non-differentiable?

iii. For a general number of layers l, what’s the largest number of input points
at which the function can be non-differentiable? Choose one:
(A) Constant in l (B) Linear in l (C) polynomial in l (D) exponential in l.

Hint:

• It is hard to derive an exact answer, so focus on asymptotics.

• How are non-differentiable points related to linear regions?

• Each neuron is a separating hyperplane of the previous layer output.

• Assume that each linear region of the previous layer is divided (into
two) by some hyperplane in the current layer. How does adding a layer
affect the number of linear regions?

iv. Recall from lecture that a 2-layer network (l = 2) with sufficient width k is a
universal approximator. Based on your answer to the previous questions,
can deeper ReLU networks (l > 2) be more efficient (in terms of total number
of neurons / hidden units) in approximating some functions?

(d) (1pt) In general, is the function differentiable at every input if a tanh nonlinearity
is used instead of ReLU? If yes, why? If no, re-do the sub-points of part (c).

5. (2pt) For a 2-layer ReLU network with width 2 and no biases (i.e., b1 and b2 are all
zeros), we aim to find W1 and W2 so that the corresponding network has different
smoothness properties. For each case,

• If there exist W1 and W2 such that the corresponding property holds for input
x ∈ [−5, 5], provide an example of such W1 and W2 and, for that example,
provide a plot of the function over x ∈ [−5, 5].

• If there do not exist such W1 and W2, explain why.

(a) (1pt) The function is linear.

(b) (1pt) The function has 2 non-differentiable points.

(c) (BONUS; 0pt) The function is convex (and not linear).

2

Homework 1
6.S898 Deep Learning

Fall 2024

(d) (BONUS; 0pt) The function is neither convex nor concave.

6. (BONUS; non-convexity of neural networks; 0pt) Consider a 2-layer ReLU network.
Plot an example to show that the network output is not guaranteed to be convex (or
concave) w.r.t. network parameters. You can pick the network width (although 2
suffices).

In particular, find a fixed input and a linear path in parameter space, and plot the
network output with that fixed input while varying parameters along the linear path.
The plot should be neither convex nor concave.

7. (4pt) Logic gate ReLU networks

Hint: ReLU(x) non-linearity is like a ”branching” operation at x = 0. Can you find a
set of weights such that the desired decision boundaries correspond to zero inputs to
ReLU’s?

(a) (OR gate; 2pt) Construct a 2-layer width-2 ReLU network with 2-dimensional
inputs in R2 such that:

f(x;W1,W2,b1,b2) > 0 ⇐⇒ x1 > 0 OR x2 > 0 (1)

Write out the algebraic formula of f with explicit W1,W2,b1,b2.

Hint: Reminder, the input is not boolean.

(b) (XOR gate; 2pt) Construct a ReLU network with at most 3 layers, each with width
at most 4 and 2-dimensional inputs in R2 such that:

f(x;W1,W2,b1,b2) > 0 ⇐⇒ (x1 < 0 AND x2 > 0) OR

(x1 > 0 AND x2 < 0) (2)

Write out the algebraic formula of f with explicit weight matrices and bias
vectors.

Hint: This is a more challenging problem. Think about how to implement an
AND gate.

(c) (BONUS; NAND gate and functional completeness; 0pt) Write down a ReLU
network that implements the NAND gate. What does this tell you about the
possibility of representing any boolean function with ReLU networks.

3

Homework 1
6.S898 Deep Learning

Fall 2024

Backpropagation (3pt)

8. (3pt) Let W denote a d×d real matrix, and consider the following system of equations:

y = Wx (3)
u = ReLU(y) (4)
v = u+Wu (5)
L = 1

2
∥v∥22. (6)

Note that x,y,u and v must all be vectors in Rd for these equations to make sense.
Since ∥v∥22 denotes the standard squared Euclidean norm of vector v, L is a scalar.

(a) (1pt) Show that
∂L

∂Wij

=
d∑

m=1

vm · ∂vm

∂Wij

.

In a similar manner to part (a), one may derive the following additional relations:

•
∂vm

∂Wij

=
∂um

∂Wij

+ δim · uj +
d∑

l=1

Wml
∂ul

∂Wij

.

•
∂yk

∂Wij

= δikxj ,

where the “Kronecker delta” is given by δik =

{
1 if i = k;

0 if i ̸= k.

•
∂ul

∂yk

= δlk ·Θ(yk),

where Θ denotes the Heaviside step function given by Θ(yk) =

{
1 if yk ≥ 0;

0 if yk < 0.

(b) (2pt) Let ∂L
∂W

denote the matrix with entries (∂L
∂W

)ij = ∂L
∂Wij

. Using the given
relations and your answer to part (a), show that:

∂L
∂W

= v ⊗ u+ diag(Θ(y))(I+W⊤)v ⊗ x,

where ⊗ is the outer product and diag shapes its input into a diagonal matrix.

The advantage of this kind of expression for ∂L
∂W

is that it is easy to code up in
PyTorch, and makes efficient use of matrix multiplication primitives, which have
highly optimized, parallelized implementations on GPU.

4

Homework 1
6.S898 Deep Learning

Fall 2024

PyTorch (0pt)

9. (NOT GRADED; 0pt) Complete PyTorch tutorial colab notebooks here. Before
proceeding with the following section, you should at least complete the notebooks
(”Tensor Arithmetic” and ”Network Modules”).

CIFAR-10 Classification (12pt)

In this section, we are going to work on this colab notebook to train a network for classifying
a handwritten digit dataset, CIFAR-10 [Krizhevsky, 2009, Torralba et al., 2008].

The following questions 9-15 are stated in detail in the colab notebook. Please include your
added lines of code, text output, and any plots to them in the same pdf submission.

To download a plot from colab, hold shift while you right click on the image.

Note: A lot of skeleton code is provided to you already. Make sure to read through and
understand them. We will provide less skeleton code in future assignments as you get more
used to deep learning code structures.

10. (Building neural networks; 4pt) Complete the incomplete forward and backward
definitions of the module classes, each using ≤ 5 lines of code. We expect this question
to take more time, as you are being asked to derive and implement the backward pass
for multiple components. Hint: Recall, for linear layers, the forward pass takes the
form: out = Wx+ b, and the backward pass requires us to know dL

dout
, dL
dx

, dL
db

. ReLU
and Loss layers can be similarly computed.

(a) (1pt) Linear.forward

(b) (1pt) Linear.backward

(c) (1pt) ReLU.backward

(d) (1pt) CrossEntropyLoss.backward

11. (Training loop; 2pt) Complete the missing parts in train epoch and evaluate func-
tions, each using ≤ 5 lines of code.

12. (Training curve 1; 2pt) Train a model for 30 epochs and plot the learning curves.
Comment on any interesting observation from the plot.

13. (Universal approximation; 1pt) Neural networks are universal approximators, which
means that we can always find a network that fits the training set. Why do you think
that we didn’t get perfect training accuracy? Write down some ideas for improving
training accuracy. Is a perfect training accuracy all we need?

5

https://github.com/davidbau/how-to-read-pytorch
https://colab.research.google.com/drive/1H_Htddamebxg7trHfaO9uGiG_IuCi2b9?usp=sharing

Homework 1
6.S898 Deep Learning

Fall 2024

14. (Data augmentation; 1pt) Write code to create training and validation datasets, where
only the training set has a random cropping augmentation (specifications in colab).
Visualize the effect of the augmentation.

Provide both your code (≤ 5 lines) and your visualization.

15. (Training curve 2; 2pt) Train a model on the new training dataset and plot the learning
curves. Comment on any difference you observe from the previous curves.

References

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large
data set for nonparametric object and scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2008.

6

MIT OpenCourseWare
https://ocw.mit.edu

6.7960 Deep Learning
Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover2.pdf
	Blank Page

