MITOCW | mit6_7960f24_lec09.mp4
[SQUEAKING]
[RUSTLING]

[CLICKING]

PHILLIP ISOLA: Today we're going to have a lecture which is a little bit different than some of the other ones because it's a bit
more on just practical advice and heuristics and hacks, a little less on formal knowledge and theory. So the big
disclaimer is that this is going to be a somewhat opinionated lecture. I'll share things that | think are good ideas,

but they're not what everybody would agree on. It's just anecdotes from my own experience.

And we'll talk about a bunch of different aspects of the deep learning pipeline and how to actually make working
systems with data and models and good optimizers, and also then some comments on the other parts of the
problem, like how do you create a good evaluation framework and how do you use compute effectively and so

forth.

And these slides are put together from a lot of sources. So in particular, Evan Shelhamer had a talk which formed
the skeleton of this talk that he was giving for some years. Evan was the developer of Caffe, which was the most
popular deep learning framework 5 or 10 years ago. And then | got a lot of tips from Andrej Karpathy's blog posts

on this topic and from my lab members and other folks.

OK. So the starting point of this lecture is that a big part of the story of deep learning is not just the theory or the
algorithms, it's actually the hacks, the practical tips. It's a little bit of a triumph of the practitioners over the
academics and the theorists. It doesn't mean that we won't eventually have a very clean mathematical theory of
deep learning. But historically, a lot of the people that have really made progress here have just done these

things which we might call hacking. And it's worth valuing that and understanding that.

And in the generalization lecture, | talked about this paper briefly, which is that you can overfit to a set of
random labels with a deep net. And this means that the generalization bounds you get from some classical
theories, like the VC dimension, are vacuous. They don't really tell you anything about how well that system will

generalize. And yet, deep nets generalize. So clearly, the classical theory doesn't quite work.

And a lot of the places you may have been introduced to deep learning, if you've studied it in the past or you've
programmed with neural nets in the past, would be courses that are very practical in nature, like fast.ai, which
are really focused on, let's just code these systems and make them run, and maybe the math and the theory is

secondary.

OK. So this practical stuff is a big part of the story, and it's worth understanding. So I'm going to start with one
story, which comes from my postdoc advisor, Alyosha Efros, here on the right, back when | was at Berkeley. And
his advisor, Jitendra Malik, on the left, was mentoring Alyosha when Alyosha was a grad student. So this has been

passed down to me through multiple generations.

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

And essentially, Alyosha was training models back in those days, 10, 20 years ago and would come to Jitendra,
his advisor, and say, OK, here is my result. And it wasn't a deep net. It was something else. But this is just meant
to convey the idea that he would show the results of some numbers, some plot, like, oh, | got 30% accuracy. Or
maybe here's my loss or my optimization graph. And Jitendra would say, OK, what's going on here? Why are

these spikes? And Alyosha would say, well, | don't know.

And so Jitendra said, OK, this is not enough. This doesn't tell you that much about what's going on. You really
have to look at the data. You have to look at the results that you're getting. This was a computer vision lab. And
so the data was images. Look at the images. Look at what images you're analyzing, what labels you're
predicting. Look at the data. Don't just give me some summary statistic. And he put it this way. He said, "Become

friends with every pixel."

So | think that's just a lovely phrase. And whatever domain you're in, try to become friends with the data points
in that domain. If you're studying music, become friends with every note. If you're studying chemistry, become
friends with every molecule. Become friends with every pixel. Look at the data. OK. So then Alyosha is well known
in computer vision now as being a very intuitive and insightful person, in terms of the holistic nature of computer

vision. He went to France and took photos and understood the beauty of that data type.

OK. So look at the data. And you can think about this also for your final projects. Don't just show us a plot. Show
us the data, something a little bit more high dimensional than just a single plot. Here's an example from a system
that tried to diagnose whether or not a scan of a patient's chest-- this patient has breast cancer or not. And so

you're trying to classify benign or malignant for the possibility of there being a tumor.

And this paper is actually an analysis and critique of prior work. So it's not their fault. These authors were the
ones that pointed out this issue. But what happened is, a deep net was used in prior work to try to identify, is this
cancerous or not? And it got really high accuracy-- | don't know-- 99% accuracy. So what do you think it was
doing. Anyone maybe have seen cases like this? Was this deep net accurately classifying the scan? Actually, I'll

tell you. I'll tell you, it wasn't. So they then tested this system, and it failed.

So why did it fail? What was it doing that made it fail? | saw an answer back here.

So [INAUDIBLE] nothing is cancerous. [INAUDIBLE]

Yeah. So one answer-- it just said nothing is cancerous. And maybe the data set is imbalanced, so 99% of the
cases were not cancerous. That could have been it. That's not the case in this one, but that is a common failure.

Let's go back here.

It was looking at stuff outside of the lungs. Like, maybe the R in the top right corner is more often seen in

cancers.

That was the point they were trying to make. So in this case, as you said, the deep net was not looking at the
tissue. It was looking at the R in the corner. So there was this kind of spurious correlation, this shortcut. And it
turned out that that R was some indicator about what hospital this came from or-- | don't remember entirely. But
let's just imagine that it was R if it came from Roosevelt Hospital or something like that. And at Roosevelt
Hospital, all the patients that were put into the system had malignant tumors because it was a hospital you go to

for that situation.

So there was a bias in the data, and the data gave away the answer. And so you really need to look at these
things to identify, is your model working for the right reason or the wrong reason? This is the wrong reason
because it won't generalize to other hospitals. OK. Or you can imagine a worst case, where R just meant
malignant, and it would have a different symbol if it weren't. It would just completely give away the answer, and

it wouldn't generalize to a system that doesn't give you the answer. And that's what you really care about.

OK. Look at the output too. So don't just look at your loss curve. That's the most superficial thing. You should
definitely do that, but don't only do that. So here is something that would be better to look at if you're in the
business of training generative models of cats. We'll talk about generative models later. But these are models

that make photos of-- you've all seen this, DALL-E and Midjourney and these types of things.

So this is learning to make photos of cats. And if | were to only look at my loss, like, what does my objective
function say about the quality of these images? It might be spiky and crazy. | don't know what's going on. But if |
look at samples from the model-- actually, these are outputs from the model as it's being trained-- you get a lot

more information. You can kind of see something, which is like, it seems to oscillate. It's, like, periodic.

So now this happens to be what's called a generative adversarial network. We'll talk a little bit about these later.
But they do have this oscillatory behavior. And it's something that's very obvious in this output. It would also
maybe be obvious in certain loss curves. But you get a much higher-dimensional, high-throughput understanding

of what's going on when you actually look at the data like this.

OK. Oh, here's another example. These are some little ants that | trained years ago to try to play some predator-
prey game. And what was happening is they would-- | looked at the reward function. This is like a reinforcement
learning. They're trying to chase each other. | think that the blue ones are trying to run away from the red ones,

which are the predators.

And at first, the reward of the predators would go up a little bit, but then it would just plateau. And | didn't know
what was going on. And why was it plateauing? Because they were falling over and then making no more
progress. So if | only looked at the loss, it was like, oh, it just plateaued. Learning is hard. | don't know. SGD was

failing. No, it was failing for a very particular reason, which is that the ants fell over and | had to fix that.

OK. So look at your outputs. Look at your inputs. Visualize what you're doing. OK. So just to summarize some of
those points-- look at the data. Inspect the distribution of inputs in your training set. Inspect the distribution of

outputs in your training set.

As the student said over here, you could have an imbalanced set of target outputs in your training data, and that
would be another common failure. If your data is 99% benign tumors and 1% malignant, then chance, where the
system is completely doing naive guessing based on those priors, not looking at the data, not looking at the input

at all would be 99%. You could just say, well, | know I'll be 99% right if | always say benign.

Then you have to calibrate with respect to that. You have to realize that 99% is trivial. And therefore, you're
looking for a higher number than this. Or maybe you want to measure something else, like the conditional

probability of being correct, given that it's malignant.

OK. So you can select random mini batches. You can visualize them, plot histograms, plot marginal statistics.
What is the variability of the units of measure in your data? Are your numbers in the range 0 to 1, or in the range
0 to 256, or in some other range? Can negative numbers be your data, or is it only positive numbers? These are

the types of things you want to know.

OK. So one of the most common bugs that | come across, especially in final projects, is that the data is not being

preprocessed and loaded into the format that you think it is.

So, for example, let's say you're working with images, and you have assumed that your data lies in the range 0
to 1. But actually, when you loaded it, it is loaded as a unsigned integer 8, uint8's in the range 0 to 255, which is
a common format for imagery. So you might have a bug because you have code that-- let's say you actually
clamp your inputs to be between 0 and 1, but the data you're loading is between 0 and 255. So now you're losing

all of the information because you're making all your data points equal to either 0 or 1.

So you have to be very careful about this. And what | would recommend-- and | think it's just a very simple
recipe-- is, somewhere in your code, you're going to have model.forward, right? You're going to run your neural
net in a forward pass on your data point. Right before that line is where you should inspect the data. So you don't
want to inspect the data as it's sorting your hard drive. You don't want to inspect the data as it's initially loaded

by your data loader.

You can do that too, but the place where you really need to understand what the format of the data is and what
the distribution of the data is right before you run your model on it. And make sure that what format you think it
is, what shape you think it has, what dimensionality you think it has, exactly matches what it actually is in

practice.

OK. So here's just another example of where this can go wrong. So it turns out that in some of these old neural
net libraries-- one is called DeCAF. Another is called Caffe. So these are like the precursors of PyTorch and

TensorFlow and other models like that, other systems like that.

If you load an image off of your desk, in DeCAF, it will be represented upside down. It'll be flipped. And in Caffe,
the channels will be permuted. So the standard color space for Caffe is BGR instead of RGB. The color channels
are permuted. And so if | have an image on disk and it's in RGB order and then | load it into Caffe, the order of

the channels will be-- the blue channel is in the first channel dimension, the first index.

So that was because of some old convention in a library called OpenCV. It doesn't really matter, but it used to be
BGR was the convention, and now we use RGB as a convention. But let's say that I'm training my Caffe model on

images. And maybe it says-- oh, this is a blueberry, right?

Well, that could be because it's actually seen an object which has a strong red channel, but it's interpreting that
red channel as the color blue because maybe the system was pre-trained on data in the format RGB. But now you
load it into Caffe, and it's in the framework BGR. So anyway, you can get errors like this. So you really need to
have a match between what your model is expecting and what you're giving it. And if there's any mismatch
between training and inference, or between the model architecture and the numerical transformations you apply

and the data format, then this will cause problems.

AUDIENCE:

PHILLIP ISOLA:

OK. So here's, | think, the most important function in deep learning. This is one that | wrote. So it's a very clever
advanced contribution. OK. So here it is. Inspect data. OK. So | just put this all over in code that | write. Right
before you called model.forward, that's the most important place to put this. But you can just sprinkle it all

throughout your code.

OK. It's going to just tell you a few things. And to me, these are the most important things to know about your
data, but there's a lot more you could think of as well. Again, you could try to visualize it somehow or plot two-
dimensional distributions over the different axes. But, OK, what's the data type? Is it a tensor? Is it a 32-bit

tensor? Is it a uint8? What is it? What's the shape? The shape of the tensors in deep learning are super critical.

Does it require gradients? So in your problem sets, you're constantly training these networks. And any parameter
that you want to train needs to have requires gradient equals true so that you're actually getting gradients for
that parameter. What is the min? What is the max? What is the mean? What is the variance? You could go on
from here, but these are the ones | like. There are some libraries that just kind of give you this by default. But |
find those sometimes change or have to require an install, or it's just a little bit-- | just like the snippet of code.
That snippet of code will work, | think, for at least a few years. OK, so really simple, but | actually think this kind

of stuff is important.

OK, so data. Another thing is, again, the numerical range matters a lot. So one of the standard and most useful
ways of removing dependence on exactly the units in which you're measuring your inputs and your data in
general is to normalize it somehow. This is like the standardization transformation, where | take my data and |
subtract the mean and divide by the square root of the variance. This is a really common first step to any kind of

data loading that you're going to do. You load your data. You subtract the mean, divide by the variance.

And the point that this achieves is that it makes it so that you're kind of invariant to exactly the unit of measure
in which the data is stored. So if I'm modeling some geospatial information, it doesn't matter if I've measured my
data with meters or centimeters or inches or feet. If you standardize, then it will remove the dependence on the
scale of those measurements to some degree. At least, it, makes it unit variance and zero mean. You could also

squash and squish in other ways to massage your data into a more canonical distribution. Yeah, question?

| was going to ask, is this necessarily better than just a min, maximum--

Yeah, exactly. So is this better than just divide by the difference between the min and the max or subtract the
min divided by the difference between min and max? Not necessarily. Basically, you want to remove information
about maybe the unit of measure, like the scale of it, or the mean of it, or possibly other statistics of it. And

there's a lot of ways of doing that.

So I'd say this is one of the most common, is just standardization. And the other most common is probably
subtract the min so that the numbers are all positive now and then divide by the max after subtracting the min sc
now the highest value is 1, and the lowest value is 0. That's another very nice trick. Now your data lies in the

range O to 1.

OK. And this kind of removes inductive bias about the unit of measurement, which might be good or might be
bad. So it says that no one dimension is treated as more important a priori than another dimension. They're all in
on the same scale. They all range from 0 to 1. Can anybody think of a case where this would be bad, where,

actually, you would want to use that information about the scale? OK, yeah?

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

So if you have, say, like a horizontal and vertical distance, if they are actually two-dimensional phenomenons,

you wouldn't want to scale them differently.

Yeah. If you have horizontal and vertical distance, you might not want to scale these differently because maybe
distance in the vertical dimension is physically different in meaning than distance in the horizontal dimension. Is

that what you're getting at?

If they're physically the same, you'd want to scale them together as opposed to independently.

Oh. Yeah. So if they're physically the same, then it could be that the horizontal data has a very narrow
distribution. But you wouldn't want to therefore scale it up because now it's like you're measuring space in the
horizontal axis differently than the vertical axis. Yeah. So there's a lot of interesting considerations that can come

up where this could go wrong.

But | would say, in general, it's a good heuristic, especially when you have measurements on vastly different

scales. Like, you have some measurements that are 10 million times bigger than other measurements. It'll be
very hard for your network to learn to pay attention to the tiny measurements if there's another measurement
that's 10 million times bigger, because the gradients will just be much, much smaller for the data on a smaller

scale.

OK. This slide is going to be a little more subtle. So beware of low dimensions. This is a slightly different thing
than maybe what you've heard before. Maybe you've taken some statistics class or even high-dimensional
statistics and people said, oh, high dimensions are weird. Beware of high dimensions. Things are different than

your intuitions in high dimensions.

OK, that's true. So the human intuitions we have are mostly for low-dimensional, three-dimensional spaces. The
world is, like, three spatial coordinates. Time is another dimension. We're used to thinking in low-dimensional
spaces. We think of objects like a sphere in a low-dimensional space. We know what that looks like. But you may

know from other classes that a sphere in high-dimensional space has slightly different properties.

So a Gaussian distribution in high-dimensional space is like a soap bubble, where almost all of the probability is
in a tiny little band around the surface of the sphere. OK. So things are a little bit different in high-dimensional
space than we're used to. But what | want to point out is that if we weren't human and we're just some ideal
creatures of math, then high dimensions is a simple one. Things are simple in high dimensions, and they're weird
in low dimensions. And deep learning is all about getting used to thinking in high dimensions. And everything

gets simple in high dimensions. So that's what's really nice about it.

So here's an example of that. So we talked about RMS-norm. Remember, Jeremy introduced that in one of his
lectures. And we sometimes will want to take the RMS norm of the activations to achieve good effects on learning
dynamics. And we also talked about layernorm, which is the standard layer in transformers, which is almost the
same. And in high dimensions, these things behave almost identically. So the only difference is, layernorm, you
subtract the mean over your vector, and then you take the RMS-norm of that vector. In RMS-norm, you don't

subtract the mean of the vector.

So RMS-norm will tend to map data points onto the unit hypersphere. That's the effect of that operation. So
here's a visualization of the inputs. It's like a cloud of data points. And then the outputs, after an RMS-norm layer,

are going to map everything to this unit sphere. So that is this normalization. You get everything onto the unit.

AUDIENCE:

PHILLIP ISOLA:

Well, layernorm, you might think, OK, yeah, it's basically the same operation. And it is in high dimensions. But in
low dimensions, it has this effect. So for 2D inputs-- this is a layernorm applied to 2D inputs. The data points are
the red points. But layernorm is doing is by subtracting the mean-- like, the vector x is two-dimensional for a 2D
space. And we're subtracting the mean of a two-dimensional vector. I'm losing one degree of freedom. And now

that kind of degenerates into all of my outputs have to be on-- | lost one degree of freedom, essentially.

And then the RMS norm kind of loses another degree of freedom. So now the outputs have 0 degrees of freedom,
and they end up being on these just two points as opposed to being on a one-dimensional manifold, the circle for
RMS-norm. OK. So the point is just be careful in low dimensions. Try to work in high dimensions as much as
possible, where things are nice and simple. And get an intuition for high dimensions. And especially,
normalization layers, like batch norm, won't work well if your batch size is small. layernorm won't work well if

your layer dimensionality is small. Or it will have weird effects, like this. So you have to be really careful.

| remember | had a bug-- so the work that was the most popular that I've ever been involved in was this project
called Pix2Pix. And in the initial code release of that project, | had batch norm over a batch size of 1 for one of
the baselines. And batch norm over batch size of 1 means take a data point and subtract the mean over a batch
of 1. It just take the data, subtract it. It's 0. So that baseline was trivially beaten. And | corrected it. We still beat
the baseline in the end. But that was out there for a while. And that was just a bug. So you can't take batch norm

over batch size 1. You can't do layernorm over layer size 1 if the dimensionality layer is 1.

OK. So the general trick is just you're going to be working with data tensors of batch size N by M by C, maybe
some other dimensions as well, these tensors. The weights are going to be matrices N by M. Just make sure all of

your dimensions are big, and you'll be in good shape. Yeah?

When you say big, what sort of scale do you mean?

Oh, yeah. When | say big, what kind of scale do | mean? Yeah, these are just heuristics. So | don't know. Let's say
at least 10 and above, and ideally, probably as big as-- the bigger, the better, in general, | would say.
Asymptotically, everything becomes nice and simple. Deep learning is kind of like thermodynamics. It's really
hard to say anything about a set of three or four molecules. The three-body problem in physics is really hard to
solve. But it's very easy to say what the temperature is of a billion atoms because, asymptotically, things become
very simple. We leverage the law of large numbers. So it's the same thing. You always want to be toward the

asymptotic limit.

OK. What is the cost? Well, money, time, energy. So there is a trade-off. There's not zero cost to increasing the
scale of these things. But for statistics and inference and prediction, bigger is better. Yeah. These are basically
things that I've already said. But you want to know the range of your data. You want to know the shape of your

data.

And one little trick-- this is coming from Evan-- is that if you want to sanity check your neural net architecture,
don't test it on tensors in which different dimensions of the tensor all are the same number, because it makes it

much harder to catch errors with reshaping.

AUDIENCE:

PHILLIP ISOLA:

Because it could be that you do some reshaping operations and you still get a tensor of dimension 64 in the
second dimension of that tensor. But the first dimension also should be 64. And you actually have permuted the
tensor in the wrong way, but you can't tell. So you get kind of a better type checking to make sure the numbers

all work if you use a unique set of numbers, a unique dimensionality for each dimension of the tensor.

OK. So it's a good way of just getting syntax errors in your code. And they'll throw a shape mismatch error when
you've used unique numbers if you're getting them in the wrong order. But they won't if you have the same
dimensionality. OK. And yeah, be very careful with changing the types of your tensors. If you cast a tensor as a
uint8 because you think I'll save memory, well, uint8's can't represent negative numbers. So now all your

negative data, if you have negative data, will go away.

So that's the point here. What is negative 1 for a byte? A byte is like a uint8. And what if I've taken my input
data-- I'm like, oh, | know my input data is positive, but now | standardized it to make it lie between the unit
variance and centered on 0. So that means it can have negative values. But | still have the intuition, well, I'm
working with only positive data. But I've standardized it. Well, now it has negative values, but it's uint8's, and it

can't have negative values. OK, there's going to be a bug.

OK. So you've probably gotten the feeling for this in the Psets already, but a lot of your code is just going to be
reshape operations. And this becomes a bookkeeping nightmare. You're going to have a lot of bugs that come up
just because you didn't reshape things in the right way. You're constantly transposing, permuting, reshaping,

flattening, unflattening, unsqueezing, squeezing. This is like half the code in PyTorch.

And | personally can never remember the conventions for these things. So if | do reshape a tensor-- let's say it's
a two-dimensional tensor. And | reshape it into a flattened array-- so just a vector of the product of the two
dimensions-- is this going to stack the rows into a sequence or stack the columns into a sequence? | don't even

remember. | don't know what this does. Who knows, actually.

Is it going to be row major order or column major order? If | have a matrix, is it going to read off the first row and

then the next row and put it after the first row? Does anyone know for reshape in PyTorch? Yeah?

It's row contiguous.

OK, it's row contiguous So it does the first row, and then it takes the next one and puts it after it. Right. But it's
hard to remember these things. And you really don't want to have to remember all that stuff. So this is a library
that | think makes some of that a lot easier, makes keeping track of the reshape operations a little bit easier, is
einops. It doesn't mean you don't have to think at all. And you can still have bugs with einops. But | found it to be

very helpful.

So all of the kind of reshape, flatten, unsqueeze operations now have a common notation. They're just rearrange.
And you give a string, which is going to say-- it's kind of like a shorthand for telling the system what is the set of

reshapes that will map from one space to another space.

So here, we have b, h, w, ¢, That means that, first, | have a four-dimensional tensor. And I'm going to map that to

h, b, w, c. b, w are in parentheses. That means I'll flatten those two into a single dimension.

So it'll be an h by b times w by c tensor. It'll be a tensor with three dimensions. And yeah, you still have to worry
a little bit. Is it the row major order or column major order? But it makes a lot of this easier to think about. And it
tends to have the property that-- or maybe it always has the property that if | do the inverse operation, it will be

an identity.

So if | do reshape b h w c to h b w c and then | do the inverse, where | do h parentheses b w c and thentob hw
¢, so | do the opposite direction-- if | do those one after the other, I'll get back where | started. They're inverses of
each other. So that's a nice property. OK. Reshape might have that property too, but this makes it very easy. OK.
So try einops. OK. As you can see, this lecture is just going to be throwing a whole lot of little tips and tricks to

you. And I'm hoping that some of them will stick and you can go and pull on these later.

OK, so data augmentation. You did some data augmentation in Pset 1, so you know what data augmentation is.
Just a quick recap-- if | want to take small data and | want to make it bigger, there's simple tricks which you can
do, which are apply transformations to your data, which should not fundamentally change it. So you want to be
able to apply transformations to, in this case, images that do not change the target class. So this creates bigger

data from smaller data.

And | think a lot of people have this impression that data augmentation is a little bit ugly, a little hacky. And
there's a whole community of people who say, oh, you should really replace data augmentation with what we
might call geometric deep learning, where data augmentation is forcing invariance to this set of transformations,
forcing invariance to mirror flips and crops and changing the lighting conditions very slightly, like just changing

the intensity.

So data augmentation says all of those changes should have no effect on the label. But geometric deep learning
approaches say, no, | should design an invariant neural network architecture. | should use a ConvNet to achieve
translation equivariance and then pooling into two translation invariance. And therefore, why do | need this

cropping? And there's all these arguments that | can actually use an architecture to enforce the invariances and

equivariances and symmetries that | care about as opposed to data augmentation.

But | think that that's mostly not the right advice for a good hacker in machine learning. | think the right advice
is, data augmentation is really easy, really intuitive. And it's architecture agnostic. That's the power of it. It's all
on the data side. So you don't have to design some fancy symmetry-preserving architecture graphnet that knows
how molecule chirality should be properly propagated. You don't have to do any of that. You just say, OK, here's
the setup of things | think are fine to do to my data. And I'll feed that to any architecture. | can send this to an

MLP, and it will be invariant to these operations too.

So data augmentation, | think, is the way to go for most of the types of invariances you actually want. It's just
simpler. And software engineering wise, it decouples these properties from the architecture design. OK. That
might change. Maybe in a few years, we'll have a very clean framework for geometric deep learning, and then

we'll go to that.

OK. But | love data augmentation. | think it's one of the most important tools. And there's another kind of data
augmentation which is really cool, which is sometimes called domain randomization. Oh. OK, yeah. So I'm just
showing-- here's a visualization of what data augmentation is doing. But | think that you probably have thought
about this before. But we have our training data. | just make more data from little data by adding these other
points by perturbing my input training data. And that just makes it so that my test data looks like it's in

distribution. My test data just looks like more training data.

OK, so a little quiz now. So which of these three loss curves would you be happy with? Let's say you're running an
experiment. You're training your model. Which one are you going to be happiest with? So raise your hand if you
think the leftmost image is the one that you're most happy with. OK. We get, like, a third. OK. The middle one,
are you happy with? OK. No one thinks the middle one. The right one? We get 2/3.

OK. So you're all actually very clever. The first guess, the naive guess, would be that the left one. And that is the
right answer in some sense, but it's not the answer | was looking for. So what is wrong with the left curve? OK. So
it's too easy. If you're seeing a loss curve that just goes down really fast and then it's just flat, well, you've
wasted time optimizing in the flat region. | mean, maybe not. Maybe it's decreasing a little. But if it's truly flat,

you're just wasting flops by doing more training in that region.

And in general, you don't want to make your problem so easy that training on it converges really, really quickly.
You want to make your problem hard enough that you're actually going to learn a lot. So, OK, obviously the

middle plot is bad because your loss is going up as you train it. But the kind of plot you want to see is that, yes,
your loss is going down. It's very graceful and smooth. But you're making continual progress, and there's a long

way to go. And you've made the problem hard enough that there's something interesting to learn.

So here's a rough recipe | have in mind. So you definitely want to minimize your loss with respect to your
parameters. That's backpropagation. That's basically the main optimization thing we do in deep learning. But
there's another thing that we don't usually optimize. But if you're going to actually work on a largescale project,
most of your time will be on this part, is changing your data to make it harder. Make your data hard enough that

there's a lot of information you can get out of it.

So you don't necessarily want to max over data, but you want to increase the difficulty of your data until there's
something interesting to learn from it. And that's what domain randomization, that's what data augmentation do.
They add more data so the learning problem becomes harder. They're a little bit like going from the really bad,
easy loss function on the left, loss curve on the left, to this one over here. Why? Because you're adding more
data points that the model has to learn about. And why is that a good thing? Because it will generalize better.

Right?

So fitting this distribution, understanding that is easier than this, is easier than this. But the last one, which is the
hardest to train on, is going to generalize the best. OK. So another version of that idea goes under the name
domain randomization. So this is a popular term in robotics, where we want to train a robot to be able to pick up
blocks on a table. And | could train it with just one lighting condition with just-- this is training in simulation and
testing in reality. | could train it with just one particular setting of colors of the blocks. But then it will only know
how to pick up blocks of that color. | could train it with one lighting condition, but then it will only work when I'm

in that lighting condition.

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

So | make my problem harder by adding all this random variation. And it will take a lot longer to train, but it will

generalize better to any new test environment with different color blocks than it saw at training time. Yeah?

Will it generalize even to lighting solutions that will never happen?

Will it generalize to light changes that never happen? So the idea is that you want to make it so that you've
covered all possible lightings in your training data so that the test data just looks like another random lighting
condition that exists in the training data. So the short answer is, no, it won't generalize to a lighting configuration

that's not seen in this randomized training data.

But the longer answer is, you potentially could get the property that if you train on a broad enough distribution,
maybe you start to get this kind of emergent generalization. | think that I'll set that aside, but I'll say the short
answer is no. But maybe there are cases where you would actually generalize even better out of distribution with
respect to this randomized training distribution. But it's a little more subtle, and I'm not sure that there's a clear

answer for that.

Yeah. OK. So what is this doing? We're just minimizing the gap between the source domain, which is simulation,
and the target domain, which is reality, by randomizing the source domain. This is what OpenAl used for their
robot hand some years ago. And I'll just show you what their data augmentation looked like. So they just had a
simulated environment. They rendered that hand with a lot of random conditions. They also randomized the

physics parameters. So they randomized gravity.

So why would they randomize gravity? We know that gravity's negative 9.8 meters per second, whatever it is.

And why would they randomize gravity? What do you think? Let's go here.

Space?

Oh, right. OK.

[INAUDIBLE]

So the answer-- you go to space, change the altitude. Maybe you're on a different planet. That's one good
answer. So like, if they want their robot to work on Mars, this will work better. That's not quite, | think, what they

had in mind. They weren't quite imagining going to Mars yet. But-- OK.

When a machine is moving, are you-- [INAUDIBLE] they can have some acceleration, can change the gravity.

That's a really good point. So when the machine is moving, then your measurement of gravity is affected by that
because of some general relativity type-- like, reference frame. You can't tell the difference between acceleration

and gravity, according to physics. So that's another possibility. | think that's part of it.

But what | think is the real reason is gravity-- they have these accelerometers that measure things, like how the
robot's moving and what the gravity direction is, what's down, what's up. And it was just a little bit noisy. So
they're just modeling that noise, essentially. They're saying, well, actually, our physical measurement of gravity
might be pointing in the wrong direction. Maybe 9.8 is always correct, but let's say it's slightly miscalibrated, so
slightly in the wrong direction. Well, if | trained so that it's always slightly randomized, it doesn't matter if I'm

miscalibrated. It'll still be within distribution, and it'll still be robust to that variation.

AUDIENCE:

AUDIENCE:

OK, a lot of good answers there. But here's the one that | thought was the most important kind of surprise or the
most important lesson, is that-- this is on the x-axis, the years of training, simulated years. So it trains in a few
weeks, but it was simulated years of experience. And on the y-axis is the performance. So higher is better. And
with no randomization, it learns really, really quickly. So this is like that loss curve that goes down really, really

quickly.

And some engineer on this project might have seen that curve and been like, OK, we're done. We solved it. But
they were smarter than that. And they said, no, no, let's add a lot of randomization and make it robust to all the
different errors in gravity that we might be measuring and make it robust to all the lighting conditions. And then--
look at this. It took, like, 10 times longer to get to the same level. Like, this was one year of experience to get to

there, let's say, and then 10 years. This is a logarithmic scale.

So they're having to train this thing for so much longer to make it solve a much harder problem, which is to solve
robotic cube manipulation under a lot of different conditions as opposed to just one condition. And if you reported
that to your manager and you're like, oh, | got a lower accuracy, well, a bad manager would say, oh, get rid of
that. Make it learn quickly. But that's wrong because you want to make the problem hard enough that it will
actually generalize to the real cases you care about, which are the test cases, not the training cases. This is
performance on the training data. OK. So high training accuracy means the problem is too easy. So make your

problem hard enough that it will generalize better.

OK. So let's see, continuing on with this theme. So in academia, in universities, in research labs, most of the time,
in machine learning and deep learning, we do the following. We say we have fixed data. You're given data and
you have to model it. And you design neural net architectures and learning problems and objective functions and

optimizers to learn a function that models that data.

But this is actually not the way it works in most real-world scenarios in industry in practical scenarios. It's usually
the other way around. You just download the latest, greatest model, and you don't change it too much. But what
you do change is the data. That's what companies can do. That's what governments can do. We can change the

data. And that's where most of the leverage, in my opinion, is.

So you can collect more data. You can collect better data. You can label your data in new ways. You can change
the data. And this is an even more powerful set of tools than changing the learning algorithm. So most of this
class and most classes you'll take at MIT are about the algorithms and not the data. But there's, | think, more
leverage to be had on the data side in practice. OK. So it's probably a problem in our curriculum, and we should
have more data science or data-centered classes. And we have some. We'll talk a lot about data properties and

things like this too in this class.

OK. So here's another little quiz. So here is a language model that's trying to predict the next word in these
sentences. And these are the first line of famous novels. So what do you think is the second word after it? Let's
say I'm going to try to predict next word, given previous word. What do you think it's going to be? This is a

famous opening to a book.

All of them.

[INAUDIBLE]

PHILLIP ISOLA: It was. Who knows what the book is?

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

Tale of Two Cities.
The--

Tale of Two Cities.
Tale of Two-- wow. OK.
[LAUGHTER]

Yes, that's right. You're right. But there's actually a lot of other ones. There's a lot of first lines-- so anyway, yeah.
"It was the best of times. It was the worst of times." That's actually what | had in mind. But obviously, it's not the

only answer. What about the next one? "Call me"--
Ishmael.

Ishmael. OK. That's Moby Dick. "All happy families"--
[INAUDIBLE]

OK. And hopefully you can hear from the volume that a lot of people know the last one. Not as many knew the
first one. What's the point? The point is that prediction is easier the longer the input, OK. Because the longer the
input, the more information you have with which to make that prediction. And this is also something that people
got, | think, a little bit wrong historically. It was kind of thought that, well, it'll be harder to model strings of length

n than strings of length m less than n.

So back in the early days of NLP, people would have these N-gram models. And it was like a model of how words
co-occur with each other. And you'd have bigrams. How often does this word co-occur with that word? And
trigrams and N-grams. And you didn't want to make N too large. But this was a little bit misguided, | think.

Really, you can make your prediction problem much easier by making N really, really, really big.

There is a little technical distinction, which is, in the N-gram error, you are modeling the joint distribution of
everything. Here, you're modeling just the conditional distribution on the last word given the previous words. But
| think it threw off our intuitions a bit that the more data you put on the input, the easier the prediction problem

becomes. So you should add a lot of data on your inputs.

And you can do this. In research, maybe you just have a fixed standardized data set. But in life, you don't. You
can change your data. And that's the main thing that's going to give you performance. So we have X, and we
have Y. We're predicting Y from X. So suppose you're designing a pharmaceutical drug. And Y is going to be the

effectiveness of the drug.

OK. You generally can't change Y too much. Like, maybe your boss just assigned you that job. You don't get to
have too much control over what is the goal that's useful to society. But you can change X a lot. So what would
you put in X? Let's say | want to predict the effectiveness of a pharmaceutical. So maybe I'll put the chemical
formula. What else might you put in to make it an-- like, if | only do that, OK, | can kind of predict the
effectiveness. What else might you put into X to improve your predictive performance? So somebody shout out

some ideas.

Patient data.

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

Patient data, yes. Patient age, patient-- you can take a biopsy, personalized medicine. You're going to get better
predictions with more information. OK. What else? The folding structure of the protein, so not just the chemical

structure, but the geometry. What else might you put in?

Other medicine that worked.

Other medicines that worked, nearest neighbor, similar medicines. Yeah. OK, everything, the universe. You
should put the universe in, OK? So the point is, the more information you condition on, the easier the prediction
problem becomes. Now, this contradicts my previous advice that you don't want to make your prediction problem
too easy because you might overfit to shortcuts. Like, you might be putting in the R label at the top of the cancer
scan. But | think, roughly, this is even better advice, that you should put a lot of information into the inputs to

your modeling problem and control overfitting in other ways.

OK. So why is this a good recipe? So if I'm going to map from X to Y and | don't have a lot of information about X,
that means that there could be a lot of possible predictions that are all equally valid. So if | just know the
chemical formula and I'm trying to predict if it's a beneficial chemical and | don't know anything about the
patient, then | have to say, well, with 10% probability, it will help. With 90%, it won't help. And when it doesn't

help, it might not help in these different ways. There's a complicated amount of uncertainty in the output space.

And with neural nets, you can always think of it or you can often think of it as modeling a probability of Y given X.
We'll talk more about this in the generative modeling lectures. But if my probability, my uncertainty that I'm just

trying to model is complicated distribution, then it's just very hard to solve this problem.

But there's a hack, which is that standard neural net training that we've learned about so far will use things like
L2 loss function to do regression, take some inputs and make a point prediction of the output value. So it doesn't
handle modeling a whole distribution of possibilities. The standard tools we have so far only do this. We'll learn

about generative models that handle uncertainty later, but that will be more complicated.

The simple models do this. But you can solve this problem with the simple models. And the way you do it is, you
just put enough information in x that probability of y given x becomes deterministic. It becomes a delta function.
It looks like a single point. And this hack works really well. This is the hack that led to text-to-image models

working so well.

So here's the history of text-to-image generation-- or image generation, let's just say. So in 2019, the best image
generation, it looked pretty cool at the time. But in retrospect, it's just not much. All it could do is make photos of
faces, front-facing photos of faces, good lighting. It could just make this one really narrow kind of thing in the

world. Imagine all the things you might want to visualize. It can only make faces.

And what they were doing at that time was they were training models that don't map X to Y, that just Model Y,
just model the output. So the faces are the output. So we had no information about X, and we just have to model
the entire possible space of all faces. So you can't do that for all images in the universe. You can only do that for

really narrow categories, like all faces, with current technology.

AUDIENCE:

PHILLIP ISOLA:

But now we do have models that can make all kind of crazy images, any image you can imagine, right? DALL-E,
Stable Diffusion, Midjourney. So what happened, what allowed that to happen is because we switched to giving a
lot of information into the input to make it so that the problem of modeling data is almost deterministic. There's
very little uncertainty about-- well, not very little. There's still some. But there's not as much uncertainty about
how something should look if you have a sentence describing how it should look. That makes it so that standard

neural net methods actually work.

OK. So I don't think we've made that much progress in generative modeling on modeling complicated
distributions. We've actually just switched to modeling simple Gaussian distributions conditioned on a lot of
information. But we'll talk more about this when we get to generative modeling. The point is that you can change
your data to make things work better. And the big change that I'm recommending is, make it big. Big means train
on a lot of data. That's the most obvious sense of big. But it also means that your inputs can be a big object, a
high-dimensional vector. Remember, high dimensions makes things easier-- a lot of information in the input to

pin down the output so there's not uncertainty in that mapping.

And then this one's a little bit more subtle, but | also would recommend making Y a big object. But we'll get to

that when we get to generative modeling and foundation models and things like this. Yeah, question?

Have you seen or know of techniques people used to handle-- | think this advice works really, really well when
you have a nice guide in your classes. But | worked for four years at a company that does like insurance tech.
And one of the problems we were solving is crash detection. And like, Apple, | don't know. They came out with
their crash detection model a few years ago. And we kind of laughed because they ran into a problem very

quickly that we had seen, was people go on roller coasters and it starts detecting crashes, like crazy.

And one of the key problems in this domain is that you're going to get five car crashes for every million miles of
driving. So if you want to scale your data up really big but respect with the distribution shift, like between less
than a fraction of a percent of actual data being true positive, we end up training on 8-terabyte data sets that

have 2,000 crashes. And a lot of this [INAUDIBLE] does not scale.

So yeah, great comment that if the stuff you care about in your data is extremely rare, then just scaling your
data might not be the most efficient way of capturing those rare classes, because you'll be wasting most of your
scale on the common case, which is already well understood. And I'll mention this a little later, but data diversity
and coverage over the classes of interest, that's the key thing that matters. So scale is kind of a proxy for,

actually, coverage over all the different things that matter. And yeah, diversity is the other key word there.

But here, I'm not just saying big data as in a lot of data points, but also-- so if you have this rollercoaster issue,
how would you solve that? Well, you would add more information and context into the inputs to say that if | know
I'm at an amusement park, because that's in my context, then you should have lower probability of states to
crash. And what do language models do now? They're all trying to make the longest possible context. You hear
about, like, a-million-length contexts, in terms of the tokens in language models. This is basically trying to

achieve the same thing. If you have enough context, then a lot of things become easier and more performant.

OK. So that was all about data, and that was already more than half the lecture. So data is the most important
thing in machine learning. So it's good to it's good to focus mostly on that. But models and other things are also
important. So let's talk a bit about that. OK. So | think the first principle of modeling is, keep it simple. Why keep

it simple? It just pays off multiple times.

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

AUDIENCE:

PHILLIP ISOLA:

Simple models are easier to build, to debug, to share. It's tractable to understand. So we can't do any of this
theory and really understanding how these things work and giving guarantees about them unless we keep things
really simple. And it may be a little frustrating to be like, oh, why are we proving properties of MLPs? Like, | want
to do a more complicated model. But it's because it's easier on the simpler models, and so we should take that as

a constraint on what we can actually make progress on.

It's easier to build theories around simple models. But this is the other one. You might think, oh, that's a trade-
off. Like, | want a really powerful model. No. Simple models are also the most powerful models. Well, the simplest
model that fits the data, that is, by some arguments-- that we talked a little bit about-- going to be the best
model. And there's the intuitive argument of Occam's razor. And then there's a lot of formalizations of that with

generalization bounds and ideas of optimal inference.

OK. So | would just say-- I've been saying this for years in lectures like this, but | still think it's true. If you focus
on simplicity and overweigh that relative to what the average person does and are willing to sacrifice some
accuracy, are willing to sacrifice some other things, you'll have an unfair advantage, and your contributions will

really stand the test of time.

So what | tell my students is, if method A gets 1% better on benchmarks than method B, but method A is more
complicated than method B by some factor, go with the simpler-- publish the simpler method. There's so much
competition in research to have these bold numbers, the leaderboard or the benchmark. And if you just remove
all the bells and whistles that got you to that bold number, that being the leader, you'll probably have a method

which will stand the test of time and be higher impact long term.

So don't fight for that last 1% by adding complexity. Every bit of complexity you add has a cost. And it's usually
not worth a little tiny change in accuracy on your problem, unless you're, like, saving lives at a hospital. OK. So

anyway, there are some cases where it might be. But keep it as simple as possible.

[INAUDIBLE]

Yeah?

But a lot of times, how would you know that you're sacrificing--

Yeah. How do you know that you're sacrificing-- like, what is this trade-off ratio between complexity of the
method and accuracy on some benchmark? | don't know how to measure that. | just think most people are
calibrated too much toward accuracy or performance on the benchmark. And it'd be lovely to have a way of

measuring simplicity. But again, we don't really have that. So it's more just an intuition. Yep?

Is it good to use out-of-domain data for the training set so they don't have a test set?

Is it good to use out-of-domain data in the training set? Yes. So roughly, again, this principle that trained on as
much as possible and put as much information into access possible is, | think, a good principle. And I'll talk about
the idea of pre-training in just a second. And we'll see lectures on that a little bit later. But the general trend is, if
you have data x y, and z and your problem is about data z, you should train on x, y, and z. Don't only train on z.
x and y are strictly beneficial towards z if you're doing things right. Like, there's some kind of data-processing

inequality type argument. You could always just ignore x and y if you had the optimal algorithm.

OK. So yeah, popularity matters more than performance. And simplicity matters more than anything. So you
want to work with systems that are widely used. That usually means they have to be simple. And it also means
that they will interface well with the community and that you won't just be building some amazing palace that

nobody ever visits.

OK. So a lot of folks are always going to be looking for, like, but where do | even find the good model to start
with? Where do | find the popular standard model? So GitHub, the number of stars or forks on GitHub is a good
proxy for quality. So this is a little bit of a sad story, but popularity matters. Don't look at the leaderboard. Look
at the number of stars. The stars is more predictive of if it's going to be useful than the accuracy. Of course, this
will mean that you're only going to be doing things that are popular. So if you want to do cutting-edge research,
where you're really changing, you're innovating beyond the state of the art, this advice does not apply. But if

you're just trying to solve a problem at a company, popularity matters more.

OK. So Hugging Face is a great resource for wonderful popular models. GitHub, PyTorch has a lot of repositories.
And Papers with Code is the place to go for the leaderboards of the latest, greatest state of the art model. But
you probably don't want to do that. You want to look at the latest, greatest one. Look at how many GitHub stars it
has. Go down the list until you find one that has 10,000 GitHub stars, and do that one. So the highest-
performance model that has 10,000 GitHub stars is like-- that's the rule of thumb.

OK. But you definitely want to start with a pre-trained model for practical purposes. Again, this might differ
between theory or you're writing the latest research paper. But if you just want a system to work, this is the
advice. So stand on the shoulders of giants. Use pre-trained models. We'll talk about pre-training and transfer

learning a little bit later. But you generally don't want to be training your systems from scratch.

And be aware of the flaws and the copyright issues and the biases and all the other problems with pre-trained
models out there. But there are some like AlphaFold and AlphaFold 2, which are probably pretty safe to use.

There might not be too many negatives, social biases, or ethical issues there.

OK. So here's another little trick that I like, which is to transform your problem into a solved problem-- again, it
goes back to the simplicity and popularity are things that matter a lot. So if there exists a solution to your
problem, just transform it into that solution. This is a little like in CS theory, where we talk about polynomial-time
reducibility. Like, | can show that | can find a polynomial-time method that will convert my problem into a known

problem. And this gives me some way of understanding my problem.

OK. So can | find a way of changing a new problem that | don't know how to solve? Like, in this example, I'll give
image colorization to a known problem that | already know how to solve, like image classification. OK. So this is a
project that | was involved in almost 10 years ago now. You're going to try to predict the color of a black-and-

white image, predict every pixel value.

So at first, you're thinking, this doesn't look very much like just a classification problem. I'm trying to do
something like regression. I'm trying to predict the color. And I'm trying to predict the color of every pixel, not
just one label. OK. Well, we set it up as empirical risk minimization. So find the function f that makes the correct
predictions on the training data and expectation. You can predict the colors, and then you can concatenate them
with the input image. So you don't have to predict the black and white. It's already in the input. You get a

colorized photo.

AUDIENCE:

PHILLIP ISOLA:

OK. So how do we turn colorization into-- how do we reduce that into classification? So, first, we say we could just
predict the color of the image, right? Yellow, it's a class, right? So just have k different color classes. That would
be OK. So how do | turn colors into classes? Well, | can just quantize my space. So | can say, I'll have one class is
yellow. One class is orange. One class is blue. Each class, I'll represent with a one-hot vector, just like we

normally do for classification problems.

OK. So now, rather than cat, dog, elephant, it will be the blue class, the yellow class. And each box here will be a
different discrete class. OK. So now, just like | could predict the label as rockfish, | can predict the label as color.
It's the same math. OK. But how do | do that for every pixel? OK. What do you think? How am | to change from

doing a whole-image classification to a per-pixel classification? We've already seen it. What architecture should |

use?

CNs.

CNN, ConvNet. Yeah. OK. So ConvNet just says, | will predict the label of the center pixel of a patch. And if | slide
that ConvNet across the whole image, | will be predicting the label, the color, of every pixel in the image. So now
I've converted classification into per-pixel color class prediction over a sliding window operator. OK. And so that
allows me to formulate my problem as classification, which is generally a good idea. Or we would call it softmax

regression for the softmax cross-entropy loss.

OK. So why is this generally a good idea? Well, we have really good machinery for it. We know how it works. But
there's another interesting property, which-- OK, I'm not going to have time to go into all the details. But the
softmax distribution, the categorical distribution that you predict, is fully expressive over all possible-- so for

every pixel, I'm going to predict the color.

And I'm actually modeling a fully expressive distribution over the space of probability mass functions over the
discrete vocabulary that I'm modeling. And this is the most general way of quantifying uncertainty or modeling a
distribution over a discrete variable. And if | were doing, like, regression, least-squares regression, that would not
be the case. It can only represent Gaussian distributions. So this is why classification has this nice property of
being more expressive than regression for this type of problem. And discrete classes are also easy to label, easy

to talk about, easy for humans to understand.

OK. Another one is that under this representation, we remove the inductive bias about how we have measured
distance in the input space because all one-hot variables are equidistant from each other. So the distance is
always 1 or 0, is O if it's the same class and 1 if it's two different classes. So this removes inductive bias about

how we represent target variables.

OK. So here are some good default choices for this year for deep learning a new domain. So turn your data into
one-hot vectors. Transform your goal into a cross-entropy classification. And use Adam and transformer to solve

it. So just the basic recipe-- this will work pretty well.

OK. But there's a few things that you should be aware of not to use in my opinion. Again, this is a bit subjective.
Don't use batch norm. | think that lesson has kind of gotten out now, so | don't know if | still need to say this. But
if you're using batch norm, just get rid of it. So batch norm introduces a strong dependency between the batch

size, which is one of the cardinal hyperparameters that matters in deep learning, and the learning.

So batch norm is normalizing activations with respect to the statistics of a data batch. So you're introducing this
even stronger dependency on batch size. So now your performance will change dramatically when you change
batch size. And this means that if | change my batch size, | have to retune my whole model. And | don't really

want to do that.

Batch norm has different performance at training time and test time, which is undesirable. Because at train time,
I will have a big batch, and I'll take the statistics from it. At test time, | usually have just one data point in
processing, and | have to do something else. | can't normalize with respect to the batch. Instead, you use learned

statistics.

It makes distributed computing really hard because | can't just shard up my batch onto a lot of nodes in my
cluster. | have to communicate information about the different elements of the batch across nodes. So you have
this communication overhead. So just use layer norm. That's the standard one right now. Maybe there'll be other
standards in the future-- some stuff you can read, if you want, on the problems with batch norm. And | already
mentioned that in the Pix2Pix project, we did batch norm on batch size 1 and had a bug. So that's one problem.

But that's just for you to read after.

OK. So the easiest way to get your model to perform better is actually not to do anything fancy, but just scale up
your data. | already said that. Scale up your model. Make the model bigger, wider, deeper more channels, more
heads. And scale your compute. Train it for longer. So just remember that this is like the simple recipe. This is

kind of the scale is all you need recipe. And it's not necessarily the entire story, but it is part of the story.

So here's a reminder for me to tell the story about-- when we were working on that colorization project that |
mentioned on the previous slides, we were trying to come up with a new model as opposed to just turning it into
classification and running a standard convolutional network of the era. And so Richard and |, who were working

on this, we went and visited a lab in France for a month that summer.

And when we left, Richard just said, OK, well, we don't have our model ready yet, but I'll let the baseline keep
running while we're away. And so we just turned the GPU on. And it started doing this regular thing. It had
horrible results at the time. And so we go. And then, like, two weeks later, we check on it, and it's beautiful. And
it's better than all the kind of crazy advanced architectures and variants that we tried. So just if you're ever not

sure what to do, just train for longer. Go to France. Go to the beach. Relax.

[LAUGHTER]

And a lot of people call this the bitter lesson, or they worry about this, and they think it's diminishing to science
and truth. But it's like, truth might be simple and easy. And if it is, all the better. It's, to me, very sweet. So | don't

think that that is all there is, but | do think that this is a really, really big part of it.

OK. So there are reasons to work at small scale, because it will allow you to iterate quickly. It will force you to be
efficient and come up with clever algorithms that do scale better. But eventually-- | would say scaling is
necessary but not sufficient. So it's not that scaling-- | don't really think there's going to be any way of making
performant, human-like intelligence without massive scale. That's just going to be a necessary condition in my

opinion.

OK. So in my opinion, there's not a hope to solving it with small models and not much data and not much
compute. But we'll see. Maybe somebody will come up with that. So a lot of people make their whole system. And
then they get it to be really, really performant, and then they stop. But you're only half done when you get there.

When you get your system to work and be scaled up, you're only half done.

And this advice comes from the author of The Little Prince, which is shown here. So once you get your system
working, now you should go back and remove all the nonessential components. Because you probably added a
lot of things that, at the time, were important but, once you scaled up and once you got other parts of the system

to work, were no longer important. So don't forget to go and remove all the stuff that's nonessential.

So "perfection is finally attained not when there is no longer anything to add but when there's no longer anything
to take away." So | think projects should always go-- add, add, add until it works. Remove, remove, remove until

it stops working. And cut off there. And then report it.

OK. I'm a little short on time, so | will go quickly over a few slides or skip a few slides to get to some of the final
points. Copilots, coding assistants, you should be using these, not on your Psets. So we're going to clarify on the
next Pset a little more about how to turn off the Colab's autocomplete. We weren't super clear on that. But it is
course policy. You shouldn't use Al assistants in a way you wouldn't use a friend. So you shouldn't have them just

write all the code for you.

You can ask conceptual questions and iterate and figure things out with them. But for your final projects and for
life in general, you should absolutely use coding assistants. These are just going to get better and better. They
have some mistakes right now, but this will be an essential tool in the software engineer's toolkit. And you should
be learning how to use them. And this class is about Al, and so we're very happy for you to learn how to use

these.

But you should always-- don't replace thinking. Think first, and then ask the LLM. Don't trust the code without
understanding what it's actually doing and verifying it and testing So there's good practice for using these. You
definitely don't want to just use them blindly without actually having knowledge about how it works. And general
advice is, write a very clear docstring, and then autocomplete with a Copilot will work pretty well. And you can
prompt it by saying, you're a really smart coder, if you want. But | think some of those tricks will disappear

because they're being baked into the new systems.

OK. So, first, when you're going to optimize your models, start with one data point and overfit to that data point,
then a few data points. And then finally start scaling up. So scaling comes last. Check your-- oh, actually, this
one's kind of fun. So it's good to get used to log numbers, because most of the time, in deep learning, we're
talking about log probabilities. Or like, the cross-entropy loss is the average log probability of the data under the

model.

And so get used to log probabilities. Know, is a negative number OK? Is smaller good, or is bigger good? What if it
comes out 0?7 What does that mean? So here's a few log probability numbers just to memorize. So what does
negative 0.69-- if you get that number as your loss, is that good? Is that bad? That's just log of 0.5. So if you have
a binary classification problem, you'll often see you get negative 0.69. You're like, OK, it looks pretty good. No,
that's chance. That means you're outputting equal probability to both classes for a binary classification problem

with equally weighted classes.

OK. What is log of 10%? Like, 10%-- we often have 10-way classification problems as our standard homeworks.
Negative 2.3 means you're at chance. You're outputting 10% probability over all data points. OK. So with

regression loss, like a least-squares loss, it better not be negative, because the minimizer of least squares is 0.
The minimizers of log likelihood is negative infinity. So it's good to get used to these and know when to look for

bugs. If you see negative 1,000 on a regression loss, you know there's a bug.

OK. Always tune your learning rate and, often, your batch size. OK. | just want to-- let's see. Oh, | have a lot. Well,

you're going to have to read some of these slides after. Yeah, sorry. We got a little late start.

OK. Another one that is kind of fun is, use exponential moving averages to smooth things out. So what is an
EMA? An EMA is Exponentially Moving Average. It just says, take whatever value you have. And over time, you
will mix in the new value with the previous values multiplied by some decay factor. So you're exponentially

decaying the contribution of your previous values with the new values.

And people use this all the time to trade off between averaging across space-- so let's say | have a batch of
gradients. And I'm going to take an average over all my-- like, the sum of my gradients is going to be my
estimate of the total gradient. And you can replace averaging across space, across batch dimension, with

averaging across time, across iterates of your learning using EMA. So it's a trade-off between time and space.

And whatever quantity you have in deep learning-- gradients, activations, data, weights, even target predictions--
you might want to try putting an EMA on that. You can, in PyTorch, just have some wrapper that says this
variable will not be its value but be its value summed up over all the previous values. And then it becomes kind

of the EMA version of that variable.

OK. So, yes, | packed way too much into this lecture. OK. This one, | want to point out too. OK. So there's all these
pieces of advice and little tips here. But if you're going to make some nice dish for dinner tonight, which spice
should you use? So somebody might say coming from Google or someone might say, oh, cayenne pepper is all

you need. It's just the best. Just use that. OK. Is that right? Is cayenne pepper all you need?

No, it's not quite like that. So attention is not all you need. Attention is one thing that works pretty well and has
certain effects. ReLUs are nice. But it's really like cooking to me. It's very multimodal in this such landscape as a
function of all these things. You want to find the right combination of spices that solves your problem. Every
regularizer you add is going to have a certain effect. And they'll overlap. So you have to have some

regularization.

Do you need to have skip connections? Well, yes, you do if you have a really deep architecture. But maybe you
don't if you have an optimizer which somehow doesn't have vanishing gradients. So you have to get the right
combination. And there's many combinations that are all equally valid. So you can have a nice, spicy chicken dish
with cayenne and peppers on it, or you could have a nice sushi with miso and soy sauce and things like this. And

they're both good.

And you just want to learn which ingredient to use to have which effect. Some ingredients regularize. Some
ingredients increase capacity. Some ingredients make optimization faster. So you just have to get the right
combination. And don't overspice. Don't overrely on one. OK. So | think I'll end there. The rest of the slides have
various tips that you can read on your own time. | hope that they're self-explanatory. And | will see you next

week.

[APPLAUSE]

