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[SQUEAKING]

[RUSTLING]

[CLICKING]

PHILLIP ISOLA: OK. Hi, everyone. So we're going to get started. I'm the third instructor for this course, so I'll just quickly
introduce myself. I'm Phillip Isola. I also go by Phil, so feel free to call me by my first name. Just Phil is fine. And I
am a professor in EECS. Just-- I love deep learning. Deep learning is, for me, the most beautiful kind of math and
intelligence that I could imagine.

I think that it's a very popular subject, obviously, but sometimes deep learning gets a little bit of flack because
maybe it's too hyped or because people feel like too much money is in it. So there's always this weird pushback
to deep learning. And I just want to say, I just love it. It's so cool. And it's OK to love it. We're going to try to
convey why it's so cool. So deep learning to me is just the most-- my favorite subject of all, and it's great to get to
teach you about it.

OK, so there's a lot of beautiful things about deep learning. You've already heard some of them. And today we're
going to hear one more, which is graph neural networks. This is a continuation of the sequence that we have
going on architectures.

So we have four lectures. We have the one that Sarah gave on Tuesday on convolutional networks. Now we're
going to see graph nets that are a generalization of ConvNets, along with a lot of other architectures. And then
we'll see transformers, which are a special kind of graph net and we'll see recurrent networks and memory-based
architectures as well over the next few weeks.

So the outline of this talk is going to be, first, talking about what types of problems are appropriate to use graph
nets on. And then we'll talk about the main way that graph nets work. We'll present that as a message-passing
algorithm, but you'll see that it turns out to be very familiar. It's just another neural network that has a forward
pass and a backwards pass.

And then the last section of this lecture will be on approximation power. So this will be continuing on from the
approximation lecture that Jeremy gave, looking at, what types of functions can graph nets approximate? To
what degree are they universal? What is their capacity to represent different types of functions?

And one of the interesting things I want to point out here at the start is that graph nets are not universal in the
same way that MLPs are. And in fact, that's where the power comes from. And that's what Sarah mentioned at
the beginning of last lecture as well, that the idea of architecture design is to make systems that are maybe
better to run on hardware, on GPUs, to make systems that are easy to parallelize and so forth.

But another big part of architecture design is adding constraints. So making a function approximator that
actually can't fit certain types of functions because we want to rule those types of functions out.



Graph nets and graphs are a language for introducing constraints that limit your system from doing things you
don't want it to do. And this is one of the perspectives on architecture design that we'll keep on coming back to.
We want to be able to fit the data, but we want to constrain ourselves to fit it only in the right ways. So
universality is actually not what we're after in architecture design. But within the family of functions that we do
care about, we do want the architecture to build approximate them, and we'll see what family graph nets can
approximate.

Quick reminder on logistics is that problem sets are due next Tuesday. So hopefully, you're making good
progress. But if you haven't started, start now. It's a two-week problem set. There's a lot of stuff in there.

OK, so let's talk about what types of problems graph nets are amenable to. And maybe before I tell you some
examples that I have in mind, I could just ask the audience. So graph nets are going to be appropriate for
problems that naturally can be specified with a graph or data types that exist on a graph. So in your work and
your fields that you're coming from, what are some problems that you can think of that are well-stated as graph
problems? OK. Yeah, let's go up here.

AUDIENCE: Social networks?

PHILLIP ISOLA: So one are social networks. Social networks are graphs, people and their friends or their connections. OK, another
one?

AUDIENCE: Hidden Markov models or time-variant data?

PHILLIP ISOLA: Yeah, hidden Markov models are one kind of probabilistic graphical model, and this idea of graphical models for
representing probability distributions is a classical idea, and graph nets are appropriate for representing things
like this. OK, back here.

AUDIENCE: Gene interactions.

PHILLIP ISOLA: Gene interactions. Yes. I'll have some examples on that. So whenever I have different genes that are interacting
with each other or with proteins that get transcribed from those genes, then these could be thought of as nodes
and edges that represent relationships. Let's do just one more.

AUDIENCE: Cross referencing of different websites.

PHILLIP ISOLA: Cross referencing different websites. So things like PageRank, hyperlinks between different web pages. Like,
Google started as a graph search company, essentially. They represent the web as a graph of hyperlinks, and
then they try to evaluate where the important nodes are in that graph. So whatever problem you have, if you
have studied physics or chemistry or computer science, I'm sure that you have seen a million graphs. That's one
of the basic data structures we use for representing the interesting types of data in the world.

So graph nets are an appropriate technology for problems that naturally exist on graphs. And there's a few
different things we might want to ask about a graph. So one thing is you might want to take a node in a graph.

Maybe this is a social network graph. This is a user in that social network. You want to classify something about
them. You want to say, is this person somebody who likes jazz music or not? Maybe that's the prediction problem
that your social media company wants to make. So that's a node classification problem. We can ask a question
about a node.



Other times you might want to ask a question about the entire graph. What is the average number of friends that
people have within this social network? Maybe that's a property that I care about. So we can ask questions about
nodes, about edges, relationships, about the entire graph. I'm going to give you a few different examples just to
motivate why graphs are so important.

So another one might be this-- I think this is from Pinterest. So it's users and the boards that they're interested in.
So these topic areas that they're interested in. So assigning you to, what are the topics that you're interested in
on this website that allows you to see content under these topics? So this is a graph between people and their
interest.

These types of graphs are often used in recommender systems. I want to recommend what you might be
interested-- what next video on YouTube would you want to watch? So it's like a bipartite graph between users
and their interests or users and content.

So I think we had the gene expression idea previously. But in general, for biology and especially chemistry,
molecular biology, we have graphs which are molecules. Molecules are well-represented as graphs. There are
atoms and bonds between the atoms. And if we want to do things like predict which-- where would the binding
site be on that molecule for some drug, or would this molecule be toxic to a human, these are graph prediction
problems. I'm trying to ask a question about that graph, which is the molecule structure. So in biology and
chemistry, graph nets are used extensively.

Here's another example where we have the graph of interactions between different drugs and the drug's effect
on the human for some kind of medication. So we might have, in this example, two different drugs that can have
a positive effect on you. But if you combine them, they're negative. Interactions between drugs that can be bad.
You always have to read the bottle on the pills you're taking. Like, don't take this if you have this other drug. So
that can be represented as a more complicated graph.

Now, in this graph, we have edges between pharmaceutical interventions, like the drugs that you're going to
take, and also edges between the drugs and the proteins that they affect. And so different types of edges and
different types of nodes can exist in a graph, and we are going to be wanting to learn properties of these edges
and these nodes so that we can make predictions about what combination of drugs might be toxic.

So graphs also come up in just classical computer science algorithms. So in shortest path algorithms, in graph
search of various forms, tree search algorithms, we often represent classical, discrete optimization problems as
some kind of search of a graph.

So here's one example. This is from Google Maps. And they're trying to find the shortest path, the fastest driving
route between your house and where you want to go. So you probably use Google Maps to do this all the time. So
how do they do it? Well, this is a huge, huge graph. It's a whole world of roads. So it's slow to use classical
algorithms like Dijkstra's algorithm. And additionally, there might be a lot of constraints beyond just searching
over the edge lengths of that road network. It might try to optimize for other properties, like how safe or scenic is
the road, or avoid highways, or there's different constraints that you can add on top of this.



So it becomes a very difficult graph search problem to solve with classical methods. It might be too slow. And so
one use of graph neural networks is to find heuristics and approximate graph search algorithms that can solve
these problems more quickly. So Google, in this example, is using a graph neural network to do faster search
than classical algorithms, and we'll talk a little bit more about that as well, by learning heuristics

Another one-- I don't think anybody mentioned physics, but that's another place where graphs come up all the
time. So one of the popular ways to simulate fluids or particles or atoms is by thinking of them as a set of nodes
with edges between the nodes that are indicating the physical forces. So two particles might have an edge, and
that edge is describing the repelling force between those two particles because we know that two atoms can't
occupy the same space, and they might have electrical forces that push them apart.

So in this example, it's a particle system that simulates fluid dynamics, and this is represented as a graph neural
net that takes in the graph of all of these water particles, and the edges between them are going to learn to push
apart those nodes, essentially. So just more examples, and there's some paper references if you want to read up
on these in more detail.

And then most abstractly, just a lot of optimization problems, especially discrete optimization, combinatorial
optimization, take the form of a graph problem where we might have a set of decision variables we're trying to
optimize. We're trying to find, what is the setting of these xs that will satisfy a system of constraints?

So on the right-hand side here, we have a linear program. We're trying to minimize this linear cost function
subject to some constraints. And that can be set up as a graph of constraints that will penalize a certain kind of
interaction between the decision variables, x. And we want to find the setting of the decision variables that
satisfy those constraints. And so we can phrase this in the language of graphs, and there are graph neural
networks that can help us solve these types of problems more efficiently.

And something I want to point out here is that, again, just like in the shortest path example I gave, we do, often
for these problems, have classical algorithms that we know will find the solution. And so one question you might
have in mind is, why would we bother with a learning algorithm? Why would we bother with a neural network
that's going to do something that we already have the optimal classical algorithm for? We know exactly how to
solve a linear program on the right. We know exactly how to solve for shortest path in a graph on the left.

And the reason is, essentially, that these classical algorithms can be slow. And if we want to use a learning-based
system, we can potentially learn a faster way of finding an approximate solution. And the trade-off is that the
classical algorithm will find-- will be guaranteed to converge to the true solution.

But it might be slow. And the neural net, the graph net, might be able to use heuristics that work really well on
the data distribution we train it on. And so it will solve the problem more quickly on the data distribution that
we're training on, but it won't be guaranteed to find the right answer on other data distributions. So you're
learning something that is more specialized to that data distribution. OK, cool.

So now let's get into the technical content of how these graph nets work, how do they represent data. And this is
how we'll represent graphs for this lecture. We'll say that a graph is a set of nodes. Every node is going to come
with a attribute vector. So this is going to be our input to our graph processing algorithm. We will have a attribute
vector for each node. If these are molecules, that attribute vector might tell us what is the atom. Is this carbon?
Is this hydrogen?



So in gray, we have this vector, which is the initial data, our observation about that node in the graph. And what
we're going to try to learn is a mapping from our graph nodes to representations of the nodes that are going to
be more informative about the properties that we care to predict. Just like we can do take an image patch and
embed it into a vector, we can also take a node in a graph and embed it into a vector that tells us something
important about that node, maybe classifies is it a binding site for the drug of interest?

Additionally, we will represent the edges between the graph with an adjacency matrix, and this will be an
additional input to our graph neural network. So we'll have a set of nodes which are represented by vectors of
observed data and an adjacency matrix. And then we'll do some computation on that to make a prediction about
the nodes.

We can also make a prediction about the entire graph itself, and that's sometimes called a graph embedding. So
this is graph to vec right. On the left side, we have node to vec. Every node gets embedded into some feature
vector that tells us something of interest about it. On the right, we're going to just embed the entire graph into a
feature vector that tells something of interest about the entire graph. For example, is this molecule toxic or not?
So we can ask questions about nodes in a graph or about the entire graph itself.

So GNNs-- graph neural networks are GNNs. They learn a function from these adjacency matrices that tell us the
edge structure and the set of graph node attributes that are observed to a set of embedding vectors or
predictions about the nodes or the entire graph itself. Do I see a question in the-- I think I see a question here.
Yeah.

AUDIENCE: [INAUDIBLE]. Graph embeddings. Do they do the same model?

PHILLIP ISOLA: Yeah. So the question is, what is the relationship between node embeddings and graph embeddings. And we'll
see more details on this. But the node embedding is going to be a vector that we learn for each node in a graph,
and the graph embedding is going to be one vector for the entire graph. We'll see examples of this. And then I
saw one other question. Good? OK. In the back?

AUDIENCE: For tasks, are you learning either the node embedding or the graph embedding, or do you typically join
[INAUDIBLE]?

PHILLIP ISOLA: So are we going to learn either node embedding or graph embedding, or are we going to jointly learn them? You
could do either one. You could do both. Well, in general, we might learn a set of node embeddings and then sum
them up at the end to get a graph embedding. That would be one way of combining the two. OK, one more
question. Then I'll move on. Yeah, over here. Sorry, in the middle. Yeah.

AUDIENCE: How much do we care about the size of the adjacency matrix and [INAUDIBLE] number of nodes [INAUDIBLE]
dimensionality of the [INAUDIBLE] those are constrained not at all [INAUDIBLE]

PHILLIP ISOLA: I think, if I understood the question- how much do we care about the dimensionality of the adjacency matrix? If
we have a really big graph with a lot of connections, does this become intractable? And I would say that's more--
that's not really our choice as modelers. That's going to be the property of the data that we're working with.



So yes, if we have a graph-- if our data type that we're working with are molecules are just very densely
connected, then this will be something we have to deal with, and that will be computationally more expensive to
deal with. But that's-- we don't usually try to simplify the input graph. We're going to take the input graph as
given and ask a question about it. Yeah.

So before we get to how graph nets work, let's first ask, what if we just wanted to make a prediction about graph-
structured data with an MLP? We've already seen MLPs. So MLP's another name for that fully connected neural
network. What if we just use this fully connected neural network? How would we take as input the properties of
the graph?

So one thing that we need as input is the adjacency matrix that tells us which nodes in the graph are connected
to which nodes. And just to quickly show you what that looks like-- let's see. What happened to my mouse? How
do I find my mouse? OK.

Well, anyway, you can see the adjacency matrix up here on the left, and this is just telling us which nodes in the
graph up at the top right are connected to each other. So 1 means there's an edge between the node index i and
the node index j in that matrix. And a 0 means there's no edge. So what is the fourth row of that adjacency
matrix? Which node in the graph at the top right does that refer to?

Blue? OK, I heard it. Yeah. So blue, right? So there's three 1s, and that's the only node in that graph that has
three edges, so that's how you would know that that's the relationship.

So the adjacency matrix tells us the connectivity of the graph. And we additionally would have a set of attribute
vectors for every single node, the observed vector for that node. And we could just put these into an MLP by
simply creating a serialization of our adjacency matrix and all the node attribute vectors and just one really big
vector and just put that into a multi-layer perceptron.

So can anyone think of why that might not be the best strategy? What might be an undesirable property of just
serializing our adjacency matrix and our node attributes? Let's go over here.

AUDIENCE: So adjacency matrices can only consist of 1s and 0s, whereas MLPs can take in real numbers.

PHILLIP ISOLA: OK, yeah. So adjacency matrices only consist of 1s and 0s. Maybe we're not making use of the full capacity of an
MLP to take in real numbers. That's a good idea.

AUDIENCE: It depends on the index you put on the nodes. So if you permute, it's not going to work.

PHILLIP ISOLA: Yeah. So the answer-- and this is the answer that I always had in mind myself, is the adjacency matrix,
represented as a vector, is going to depend on how we assigned indices to the nodes in the graph. And that
decision was arbitrary. We decided that the fourth row of the adjacency matrix-- the index 4 is the blue node. But
why didn't I say that index 3 is the blue node.

So generally, for graph-structured data, we want to be processing it in a way that is invariant to how we chose to
index into the nodes. The structure of the graph, the structure of a model-- of a molecule in many types of graph
data don't really depend on the ordering of the nodes. So in math terms, we would say that we want a function
which is permutation-invariant to permuting the indices of the adjacency matrix and permuting the ordering of
the node attribute vectors that we put into our system.



So here is a permutation matrix, P, applied to the rows and the columns of our adjacency matrix. And the graph
that is described by this permutation is the same, structurally, as the graph that's described by the original
adjacency matrix. We've just chosen a different ordering of the indexes to label the nodes.

So the first matrix, P, permutes the rows, and the P transpose permute the columns. Additionally, if we have a
matrix of node attributes-- so we have four nodes, and so we'll have a 4-by-D-dimensional matrix, X, of the node
attributes. This is the observed data at each node. We can permute that with our permutation matrix, P.

And in order for the graph net, f, or the function, f, to be invariant to these types of reindexing of our graph, we
would want that permuting the adjacency matrix and permuting the nodes-- the node attributes will result in the
same answer as any other permutation. So this property's called permutation invariance. Very related to what we
heard about on Tuesday. Where convolutional networks are invariant or equivariant to translation, graph nets are
going to be invariant or equivariant to permutations of the inputs.

So permutation equivariance is almost the same thing. It just says that if you permute the way that you have
indexed into the data, then you should permute your outputs. So if I shuffle my nodes, then I should end up
shuffling my predictions.

So same idea as translation invariance versus equivariance. I would want to be permutation-invariant if I'm trying
to, let's say, predict something about the entire graph. So no matter how I index those nodes, then the prediction
about the graph will be the same.

And if I want to predict something about every node, like I want to output node embeddings, then I would want to
be permutation-equivariant so that if I shuffle the nodes, my predictions about the nodes get shuffled in the same
way, just like I want translation equivariance if I want to have the output of my convolutional network have the
property that if I shuffle or translate the input image, I will translate the dense set of predictions in the output. I'll
translate the feature map that comes out.

So this is the kind of fundamental symmetry that we're going to be exploiting with graph neural networks. They'll
be appropriate for processing data for which the problem of interest is actually permutation-equivariant or
invariant. Yeah, question.

AUDIENCE: I think I understand why we need to make it invariant, but is that under the assumption that all graphs could be
made into this invariant form? What are some problems where the nodes are just not able to become invariant?

PHILLIP ISOLA: Yeah, we'll see, at the end of the class, some cases where you wouldn't want permutation invariance. But if, for
example, you live in a world where molecules always come in some orientation, like the heavier-- the blue is a
heavier atom and it always lives on-- it has a position, a canonical position, that you're always going to observe,
then you'd want to use that information.

But in our world-- yeah, . Yeah, I'll have to think a little bit more about a good example, but we're going to see
one at the end of the class. One more question. Yeah?

AUDIENCE: [INAUDIBLE] invariance, why is the output a single vector? Does that [INAUDIBLE] have anything to do with the
entire graph itself, or is there a reason why that output's a single vector?



PHILLIP ISOLA: Yeah, for permutation invariance, the output could be more than one vector. It could be any dimensionality. It
just means that if I permute the inputs, then I get the same output no matter what. And that's going to be most
appropriate if I'm making some prediction about the entire graph. If I'm making predictions about a single node in
the graph, I want my prediction for the nth node in the graph to always be in the nth output row of my output
matrix if I'm predicting a matrix as output or a set of vectors-- vector embeddings per node as output.

So let's, again, make the connection to graph neural networks-- sorry, to convolutional neural networks. So
ConvNets are graph nets applied on a grid. We said that ConvNets are appropriate for grid-structured data. And if
we're processing an image, which is one of the main applications of convolutional networks, then we'll have a
grid of pixels or patches. And we can think of that as just a graph of nodes, and the edges between the nodes are
the weights of the convolutional filter.

And in a graph net, it's just the same idea, except generalized to non-grid topologies. So if I want to process
something about the node in the center of that green region, I'm going to look at all my neighbors and aggregate
information from all of them, just like in a ConvNet, we're going to run a filter that's going to look at all my local
neighbors in a patch around a pixel, or around a node on a grid graph, and aggregate information to make a new
representation of that location in the image.

So one question for you. So graph nets look a lot like ConvNets, but now they're on arbitrary graphs, as opposed
to just on a grid. So what are some of the interesting differences between a ConvNet and a graph net? What is
the new problem you might encounter with a graph that you won't encounter with a ConvNet? Yeah.

AUDIENCE: The neighborhood of a vertex is not the same shape all the time?

PHILLIP ISOLA: Yeah. So the neighborhood of a vertex is not the same shape all the time. So you need a architecture that can
handle having variable numbers of neighbors. It's not going to be something that's always, like, a 3 by 3 patch.
And this is going to have hardware implications, right? It's going to mean that I can't just have baked onto my
hardware that I'm going to look at, a 3 by 3 grid. I'm going to have to make that flexible enough that if the node
has a lot of edge neighbors, then I will be able to aggregate over a bigger set. Any others? Yeah.

AUDIENCE: There is no structure in the neighborhoods. All these should be treated equally.

PHILLIP ISOLA: Yes, excellent. There's no structure in the neighborhood. All should be treated equally. So in a convolutional
network, there is this kind of spatial dimensionality to it, where left and right have a different meaning than up
and down, and I might want to treat left and right differently than up and down. And in a graph net, we actually
are going to represent the operation that updates the node representation given the neighbors in a way that is--
doesn't depend on, spatially, where those nodes land. So the structures are more abstract than the spatial
structure of a ConvNet.

So there are a few important differences, but there's also a lot of commonalities. So here's a few of the
commonalities. One is that both of these architectures are based on local operations. So we run local
convolutional filters to update our representation of the data at that location. And we graph local computations
where every node in the graph is going to get input from just its neighbors. And the way you make a global
decision or you propagate information across the entire graph or the entire image is just by stacking those local
operations.



So you can filter an image over and over again, and the receptive fields gets bigger and bigger and bigger. And
that location in the image aggregates information from farther and farther away. It's the exact same in a graph
net. If I update a node based on its neighbors, then if I repeat that operation, I will-- every time I repeat it, I will
hop one more neighbor away, and eventually, I'll cover the entire graph, and I'll globalize.

Another idea that's shared between these things is that just like a ConvNet is chopping up the image into patches
and operating on each patch independently and identically with the same parameters, a graph net will also chop
up graphs into little local regions and operate on each local region independently and identically. And it's going
to share the same parameters to update each region that-- each region of that graph.

And another interesting property is that ConvNets can operate functionally on any size input image. They just
slide that filter over as much as they need to go. And a graph that can operate on any size graph. You just
continue running that local operation at every node in the graph. So that's a big difference from MLPs, which
require a fixed dimensional input. OK, one question.

AUDIENCE: Are we sharing the weights across different depths or only on [INAUDIBLE]?

PHILLIP ISOLA: Yeah, so we're going to get into that in a minute. So are we sharing the weights across depth? And the answer is,
that's an option. You can, or you don't have to. But we'll see that in just a second.

So here's one more, just pointing out the exact relationship between a graph. Net and a convolutional network.
So this is a CNN visualized like a graph net, so every single node in the graph is going to be connected to its
neighbors, and every node will have this gray-- let me try to get my mouse back. OK, there we go. I don't know
why my mouse is not showing up. Anyway, It's fine.

So the gray columns are meant to be the node attribute vectors. But what would the name of those gray columns
be if we were working with a CNN? Anyone want to say? I think it's on the slide.

AUDIENCE: Embeddings [INAUDIBLE].

PHILLIP ISOLA: Embeddings or channels, yeah. So in a CNN, every point in the grid has this column of channels underneath it,
and that's equivalent to the node vectors in a graph neural network. So maybe some CNN review questions very
quickly. In this convolutional network, what is the kernel size?

AUDIENCE: 3 by 3.

PHILLIP ISOLA: 3 by 3. OK, great. And what is the stride? The stride is 3. So why is stride 3? Because I didn't draw edges
between-- if you look at the pattern of edges, it's like I'm taking that pattern, that template, and moving it over
by 3 to get the next filter's application. OK, cool. So CNNs are GNNs. But now let's look at GNNs more generally
and get into the exact equations of how they operate.

So the way I'm going to present this is that there's two steps. One step is we're going to pass messages from
each node to its neighbors. And the next step is we're going to aggregate all of those messages to update the
representation of each node.

So every node has a vector associated with it, and that vector's going to be modified layer by layer through my
graph net in order to come up with a better embedding that then makes a prediction at the very end of the day,
just like in a ConvNet, how every layer modifies the set of channels underneath every spatial location.



So here's the general form of one layer application of a graph net. So going to look at a really tiny graph here. I'm
going to highlight that middle node and ask, how does that middle nodes node vector get updated after one
application-- one layer of processing? So what does one layer of processing-- so we call this-- in each round k, in
each layer k, we're going to do two things. We're going to aggregate and then update.

So the aggregate function is going to be a function that takes the node vectors denoted as h of all of my
neighbors, and it's going to produce a message, m, from that set. And importantly, aggregate is going to be a
function that is permutation-invariant. So if I reindex into my neighbors, then I shouldn't get any different output
message, m.

OK, so the italic n is the set of neighbors of a vector of a node v. And I'm going to take the attribute vectors, h,
from all my neighbors in that set. And I'm going to then somehow aggregate them.

Now, once I've gotten that message, which is now just a vector-- it's a D-dimensional vector, let's say. Then I will
update the red node, node vector, using another function called Update. So I'll take the messages from my
neighbors. My neighbors told me something about what they know about the graph and about the world. And I'll
combine that information with what I know about myself to update my own representation.

And now I can repeat this process k times. And as k gets larger, it's like going in depth in a neural network where
I'm just updating my representation to be better and better and better, until finally, at the end, I make a
prediction.

So every application of those two steps is going to essentially increase my receptive field by one. So that red
node is going to get information about the green nodes if I run this algorithm twice. So I get a message that's
passed from the green node to the blue node, now to the red node on the second round.

So some of you will be familiar with message passing algorithms and hidden Markov chains and so forth. And
that's one perspective on this. But I'll try to give a few different perspectives. So what is the aggregate function,
and what is the update function? OK, let's make it a little bit more precise.

So the aggregate function is going to be any set function. That means it takes as input a set of items where the
ordering doesn't matter. So it's permutation-invariant to the ordering. And it produces an output vector. Now,
technically, we would call this a multiset function because the set of inputs, which are the node vectors, h, could
potentially have duplicates. So multiset is just the technical name for a set that can potentially have duplicate
items. So if you come across this in the reading and so forth, they'll call it a multiset function. But unless you're
deep into set theory, then it's just a function from a set of items to a vector. The set of items can have duplicates.

So let's look at some examples of aggregate functions. So one example would be summation. A summation takes
a set of any length, and it produces a vector. So summation-- and also is permutation-invariant. It doesn't matter
how you order the items in that set. So summation is a multiset function that produces a vector m as output. And
that will be the message that is passed to the red node.

And another one could be average. So on the left here, I have summation. But then in gray, I'm dividing by the
number of neighbors, So. Would be the average, as opposed to the sum. It has interesting different properties.
We'll get into that in a bit. And on the right is just another popular aggregation function, which is normalizing by
the number of neighbors that both you and what are the messages coming from have. So just another variation
on the same thing.



So the key property is that aggregate is not a universal function, and it can't represent everything. Aggregate is
constrained. Aggregate is a multiset function that's permutation-invariant. It maps a set of items to a vector, and
the ordering of the set doesn't matter.

Another interesting aggregate function that satisfies those rules is max or min. This is a lot like the pooling
operations in convolutional networks. So max will just take the largest item in the set. It produces a fixed-length
vector regardless of the size of the set. So it's a multiset function. Min, same property. And there's some
interesting things you can do when you start to look at different aggregate functions.

So here's a graph algorithm that can be implemented with min aggregation. And this is the shortest-path
Bellman-Ford algorithm. So a lot of you will have seen this in Intro to Algorithms. But in case you don't remember,
to find the shortest path with Bellman-Ford, what you do is you assign to every node in your graph an attribute
vector, which is just going to be the distance to the target node you're trying to reach.

So I'm trying to find the shortest path to the target. So every node will have an attribute, which is just a scalar.
It's just the distance-- my estimate of the shortest distance or the cost of the shortest path to get to the target,
and I'll initialize those vectors, d, with infinity. And then I will run this recurrence over and over again until I
converge, where I'm trying to say- I will say that the attribute vector for the target node is 0, and everything else
is infinity.

And then as I run this, I'll look at all of my neighbors, and I will see if the distance between myself and the
neighbor, plus the estimate that the neighbor has of the distance to the target-- I'll see what that is, and I'll take
the minimum over that. And that will give me the shortest path.

If I kind of propagate out, now, from that target, these distances initially it will be 0, and everything will be
infinity. And then all the neighbors of that target will be 1, if the cost is 1 to go one hop in the graph. And then
this will propagate outward, and this will tell me the shortest-- the cost of the shortest path to that target. Yeah.

AUDIENCE: So because the aggregate function is constrained, how-- I guess this is more of a question of designing a problem
to then use a graph-- a graph network. How do you know that your information needs to be permutation-
invariant? Or how do you classify a set of problems to where you say, OK, I need to just aggregate my
information together, and it doesn't matter what order they come in? How do when to classify a problem like
that?

PHILLIP ISOLA: Yeah, so the question is, how do when you want permutation invariance? And I think that's a good question. It's
going to depend a lot on the domain. But yeah, so any problem where the ordering of inputs doesn't change the
optimal thing you want to do, the prediction you want to make is going to be something you want to apply this
constraint to being permutation-invariant to. And we're seeing a lot of examples where, structurally, that actually
does make sense. Like, the shortest path in the graph has that property.

I think that maybe a clearer example of a case where you wouldn't want permutation invariance is if I'm doing
image processing, and I know that the top of the image is more likely to be sky than the bottom of the image. If I
have a graph which has these local patches that I'm processing, I want to know where I am in the image. And I
think Sarah talked about adding positional encoding to tell you where you are in an image if you don't want this
translation invariance. So translation invariance is one type of permutation invariance, but permutation
invariance is a more general version of that. OK. Yeah, question.



AUDIENCE: Yeah, quick clarifying question. You mentioned the output of the aggregate function is a vector. Can you just
quickly just say what the dimensions of that vector are?

PHILLIP ISOLA: Yeah, so the output of the aggregate function is a D-dimensional column vector. So yeah, on your problem set,
you'll have some questions about this shortest-path computation. So you'll get a little bit more intuition of it. But
it's just a construction to demonstrate that you can represent classical graph problems, like graph search and
shortest path problems, with these aggregate and update operations.

In this particular case, Bellman-Ford can be implemented just as a GNN that only does aggregate, and the update
is trivial in this case. So Bellman-Ford is on the left, and the equivalent graph net is on the right. The graph net--
the aggregate is going to be a min for Bellman-Ford rather than the sum. And the computation of-- the node
embedding of your neighbor plus this cost could be represented as an MLP, which just adds 1-- adds the cost of 1,
if we're assuming that every edge in the graph has length 1. So you'll work through that a little bit more in your
problem set.

So one question you might have is, well, sum seems like a fine aggregation function. Min seems like a fine one. Is
there a family of aggregation functions that are universal in the sense that any multiset permutation invariant
mapping can be represented in that family? And the answer is that, yes, this family of aggregation functions is
universal in that sense.

So take my neighbor's node embedding or my neighbor's node vector, and take my own node vector, pass those
through an MLP, then sum up over- sum of that operation over all of my neighbors, and then pass the output
through another MLP. This is a universal approximator of the family of multiset functions.

And one question you might have is, wait a second. Didn't we say that MLPs on their own are universal
approximators? And they are if I increase the width to infinity. But here we're, not trying to approximate all
functions. We're trying to only approximate-- we want to have an approximator that can't fit functions that are
not multiset functions.

So the sum is the thing that makes it so it's one of these multiset functions, that the ordering of the edges--
sorry, the ordering of the neighbors doesn't matter because we're just going to summate over them. So this has
the property that it is a universal approximator to the family of multiset functions, but it can't represent other
functions. So that's good. It's a constrained family.

The other thing that we need is what we call an update function, and the update function will take our messages
from our neighbors and combine them with our current node vector and update that node vector to be a better
representation of the graph, of the information that we're trying to process.

And for this one, we're just going to use a very-- a simple update, which is going to be an MLP, just a tiny, one-
layer MLP. It goes linear transformation of my each of my neighbors. Oh, sorry, linear transformation of myself,
plus linear transformation of the message coming from my neighbors, plus a bias, pass through sigma, which is
going to be a pointwise non-linearity. That could be a ReLU. That's a canonical update function. So once we have
those two things, then we have a graph net.



That will give me updated node embeddings, and I can apply that over and over again to get my node
embeddings into a better and better state. And then at the very end of the day, I could just take those node
embeddings as my prediction about properties of the nodes. But if I want to instead predict something about the
entire graph, I just do one more step, which is very simple, which is I aggregate the node embeddings into a final
prediction. So here is my mapping from a graph to an embedding, and it requires this final step, which we call
readout.

There's other ways that you could've decided on the conventions of how to break down the pieces of a graph net.
I'm just giving you one that makes some of the analysis simple and clean. But we're going to define this extra
layer at the end, which is going to take all of my node embeddings.

So it's going to be a multiset function again. It's going to take a set of node embeddings, possibly with duplicates,
and it's going to output a vector. And this will be how I get a vector embedding of an entire graph. It's just
another aggregate operator. It has exactly the same form as aggregate, but it's over all nodes in the graph, as
opposed to the neighbors of a node.

So this is the message-passing view of graph. Net that connects to classical theory of message-passing
algorithms in graphs. But I actually think that there's a better and simpler way of understanding all of this, which
will connect very intimately to what we'll see soon, which is transformers.

So here's how I like to think of it. So if I unroll those message passing iterations for k steps, I can just think of
every step as taking a set of node vectors and updating them. And here's my set of node vectors at the input.
That's my input data, the observed data about the nodes in the graph. Again, if they're drugs, it might be the
name of the drug. If the graph is a molecule it might be the atom, like is it carbon or is it hydrogen. If it's a social
network, then the input could be a description of the user profile for every person in that graph.

OK, I take that set of node vectors, and now I will do aggregate. So what is aggregate going to do? I'm trying to
make it so that the vertical aligned nodes are corresponding to each other. So my message that's going to be
passed to the red node-- it's going to be that black vector, which is the second one. And as you can see, the red
node in the graph gets input from the teal, the blue, and the yellow node. So the message is going to be coming
from them.

And aggregate is going to take all the node vectors from those three neighbors and combine them into a single
D-dimensional vector. And that's my message that will be used to update the red nodes' node embedding. And
then I will run Update, which is going to take the red nodes' node embedding plus the message from those
neighbors and provide an updated representation of the red node.

So what does this look like? This now looks a lot like a neural network MLP. Just like we saw before, we would
have a set of neurons as input, and then we would take a linear combination, some aggregation of them. And
then we would do a pointwise nonlinearity. Now we have a set of vectors as input. For every output vector, we're
going to aggregate information over the neighbors that it connects to.

And we're going to do a pointwise non-linearity, but it's going to be a node-wise non-linearity. It's going to be this
update function which will apply the same vector-to-vector mapping to every single node in our graph. And then
we'll repeat the process again on the next step of this message-passing algorithm.



But if we unroll it like this, it just looks like an MLP. The only difference is that the neurons in this MLP are going to
be vectors. They're going to be node embeddings. And that means that the pointwise operation will be a vector-
to-vector mapping. The aggregate operation will be a vector-- a set of vectors to a vector operation. But
topologically, it looks very similar to just a regular old neural network. OK, a few questions. Let's go here.

AUDIENCE: How is this different from an attention head and how it--

PHILLIP ISOLA: Yeah. So how is this different from an attention head? So this perspective is the connection between graph nets
and transformers. And transformers are a special kind of graph net, so we're going to talk a lot more in detail
about that, and we'll get to attention then. Attention is just a special aggregation operator. It's a particular kind of
aggregation operator.

AUDIENCE: Is update always nonlinear, and why?

PHILLIP ISOLA: So you need to have some nonlinearities in here. And in graph nets, you can have nonlinearities in the aggregate
and/or the update. And I think typically, they'll both be nonlinear. But theoretically, you probably can prove
universal approximation even if only one is nonlinear. I have to think about that a little bit more. Yeah.

AUDIENCE: So [INAUDIBLE] the optimal number of iterations per k, which is [INAUDIBLE] k?

PHILLIP ISOLA: So is the question, how should you set k? What is the optimal k? Yeah, so typically we will-- k is like your depth.
Now, in graph nets, the interesting thing is that we could choose to share parameters. We could choose to do the
same message-passing algorithm at every iteration. Or we could choose to say that my aggregate function has
the superscript k, so I use a different set of parameters for every iteration of that aggregate function.

Now, aggregate is going to be some parametrized function, psi, here. We said it could be in this form of an MLP.
And we could choose to make it time-dependent, dependent on k, and use different parameters per k. Or we can
choose to make it-- use the same parameters for every single layer.

If we choose to make it time-dependent, then we'll have to pick a fixed depth, k, that we're going to unroll to and
train for that depth because we'll have a different set of parameters for each of these operations. But if we
choose to make it not depend on k and share parameters across time, across depth, then you can just run this as
long as you want, and it will keep doing computation. And you might want to ensure that there's good asymptotic
properties, like, if you run it forever, it will converge to a good value. And those are two different settings that
can be interesting to look at. Let's go in the back over here.

AUDIENCE: Can you explain the intuition behind the update formula again? And specifically, I'm curious why we use different
weight matrices for the self and the neighborhoods.

PHILLIP ISOLA: So what is the intuition behind the update formula? Why do we use different weight matrices? So I think what you
could do is you could always just concatenate h, your node embedding, with the message from the neighbors,
with m, and then have one big W. And then it will just look like a linear followed by ReLU layer. It's just separated
here for notational clarity, I suppose. OK, one more, and then I'll move on. Yeah.

AUDIENCE: How do you pass information if you have edge information, for example, the distances between the nodes?



PHILLIP ISOLA: Yeah, that's a great question. So what if you have edge information? So I said you have node attributes, and you
just send messages based on which edges connect to which nodes. So the edges only tell you about who your
neighbors are to send messages to you. There's no other weight on the edge or information on the edge.

And so I won't get into it in detail, but you can also have edge attribute vectors and then have a generalization of
a GNN that has node attributes and edge attributes. And then the update and the aggregation is going to also
take into account the edge attributes. Yeah. OK.

So this is the picture how I like to think about GNNs. And you might be wondering, wait a second, where is
backprop coming in here? Is this message passing? Is that an optimization algorithm? No, the message passing in
this propagation-- that's the forward pass through the network. It's taking data about the graph and updating the
representation of the nodes over and over again until finally having a readout at the end that makes a prediction.

So how would you train that? You just backpropagate through this computation graph. Nothing different. So these
message-passing steps are just a new computation graph that looks like that when unrolled, and I can backprop
through the whole thing. So same exact algorithm that we saw for training any other neural network. OK, cool.

OK, this might be a slightly tricky question. But I said that convolutional networks can be represented as a graph,
and then you can observe-- you can just treat them like a graph net. It's a graph that has this grid connectivity.
What is the graph net for an MLP? What does it look like? What does the graph look like for an MLP? Somebody
who hasn't spoken. Did you speak? No. OK. Yeah, in the back there.

AUDIENCE: [INAUDIBLE]

PHILLIP ISOLA: Yes. Just a chain. So in particular, what does the graph look like? It's really just a node because the message-
passing algorithm-- so remember that an MLP takes a vector of neurons as input and then does linear,
[INAUDIBLE], nonlinear, linear. So a node in a graph net comes with a vector. So that has the generality of being
the vector of inputs to an MLP.

And then if we unroll the message-passing algorithm. It's just this. It's just a chain of, take that vector, update it.
And in this case, there's only one vector, so the aggregate function is trivial. It can be identity. And the update
we said is just W times my node vector, right? Here's what we said for the update. There's no neighbors, so it'll
just be W self times my node vector h, Pass through a ReLU or a pointwise nonlinearity. That's an MLP. So an MLP
is just a graph net that's a single node. ConvNet is a graph net that is a grid.

OK. So throughout this class I'm going to try to point out connections between different things because I think
sometimes when you first learn about deep learning and just any topic, it'll seem like everything is different, but
really, everything is the same. Really, everything is densely connected to all other concepts, and it's just like--
you can cast one concept as another concept with small manipulations. And I find this really helps me to get
inside and understand how these things work. OK.

So there was a question about edge attributes, and I'm not going to go into details on that. But yes, you can add
vectors describing the information that an edge carries as well. We could have not just like a single message-
passing algorithm, but maybe k-- or n different message-passing algorithms in parallel that are passing different
types of messages. There's a lot of variations and riffs on these general themes.



One of the most important ones is that we can aggregate with a operation which is not just summing or
averaging, but instead is called attention, which is like a summation that's dependent on the value of your node
embeddings. We're going to talk a lot more detail about that because the name for that system is called a
transformer. So transformers are graph nets with attention as the aggregation operator. And you can read up on
some of these other variations, too, but I'm not going to go into detail on them.

The reading that we assigned for today is a chapter on graph nets, but if you continue reading forward from the
part that we assigned, you'll see that there's a lot-- a lot more in that document. It's a very good-- almost a book,
really-- manuscript.

So in the last section of this lecture, I want to talk a little bit about the theoretical properties of graph nets, what
types of-- what types of problems can they solve, and what types of problems can't they solve, and it's going to
be related to approximation theory. So to set this up, I'm going to give one more perspective on how graph nets
are operating, and this is the tree perspective of what a node will see.

So here, we have a node of interest, node A, it has neighbors B, C, and D. And the message-passing algorithm,
layer by layer, will do the following. This gray box is the aggregate function. It's going to take messages from all
the neighbors, combine them, aggregate them together, and send a message to node A. And so node A only is
learning something from these neighbors.

But if we run multiple steps of message passing or we unroll this graph net deep-- so two steps, so two-layer
graph net, essentially-- now we'll get messages not only from B, C, D, but also from A and C, going into B, and so
forth. So the information flow from the perspective-- suppose you're standing on the graph at node A. This is
who's talking to you, and this is the funnel of information coming into you. And every iteration of the message
passing will increase the depth of this tree by 1.

So the layer 2 representation of A is going to be messages passed from the layer 1 representation of these other
nodes, which is going to be messages passed from the input, raw layer 0 node vectors for those nodes. Question.

AUDIENCE: How do you know- of I guess when you're starting to train your graph, your GNN, do you start with all the
different nodes densely connected, and then you set some sort of parameter to be connected to the certain
nodes, or does it start where none of the nodes are connected or--

PHILLIP ISOLA: Great question. So how do the connectivity of the graph? Do you start with a fully connected graph? Do you
prune it? The vanilla answer for GNNs is the-- the data tells you the connectivity that you're going to have to use.
Like, the molecule that you're going to be making a prediction about-- it has a particular graph structure, which is
just given by the data. If it's some hydrocarbon, it will have hydrogen connected to a few carbons. And so forth.
And that's not something you're going to optimize. That's given to you. So the graph structure is given to you,
and then you try to process that graph. It's like that's the data.

Now, you're alluding to, could I somehow take nodes and learn the graph structure that makes me able to make
good predictions? This is a meta-- this is another problem, but we're not going to get to that today. So for now,
you're given the graph structure, and that tells you how to send messages to process information on that graph



So this tree structure is important. Oh-- and additionally, we're going to just understand that every single
aggregate function is the same. So we're sharing the weights. All those gray boxes are the same function. They
could be different functions at different layers, but in parallel, across all operations of aggregation within one
layer of the message-passing algorithm, are going to be using the same function.

So that's the weight sharing idea, and that has some really nice properties. That means that if we add more
nodes to the graph after having trained-- so we're learning the parameters of these gray boxes, learning the
parameters of the Aggregate and Update functions.

But after we've learned those parameters, we could run the same GNN with the same aggregate function on a
graph that has a different shape because in order to aggregate over a different set of nodes, we just use the
same function again on those new set of nodes. Just like in ConvNets, I can train on a small image and run the
filters on a big image because I'm going to use the learn filter, but just on a different set of inputs.

OK, so that means that graph nets can be trained on graphs of one size, but they'll generalize to graphs of other
size. Statistically, they might only generalize to graphs of a slightly different size because they'll have maybe
overfit to the training data which came in a certain size. But functionally, they can process-- they can just repeat
the same operation no matter how big the graph becomes.

So we're going to get to the theory that makes use of these trees in just a second. But let's quickly make sure we
understand how to set up a GNN and train it on a problem. So let's say I want to train a graph net on some
problem of interest, like predicting the toxicity of molecules. So what would a data point be? What would a
training data point look like? So who can tell me what a training data point would look like for classifying toxicity
of molecules? Let's go to somebody new. Over here, yeah.

AUDIENCE: [INAUDIBLE] the different molecules [INAUDIBLE], and each [INAUDIBLE] molecule would have an embedding. So
one data point would be like a set of node embeddings, as well as a set of edges defining that molecule. And
then you would have a label for the toxicity?

PHILLIP ISOLA: Yeah. So I think you're roughly saying what I wanted to say here. If I have a supervised learning problem where I
know the desirable prediction I want to make for every node, like, the label of every node, then I would have
node and label pairs, and that would be my training data. If I want to predict a property of the whole graph, like I
was saying, the toxicity of that entire molecule, it'd be the whole graph plus the label, is it toxic or not, maybe a
binary label.

So that's what my training data looks like. So molecule, toxicity, or a social network, and for every single node,
every single person in the social network, a prediction of what music they like to listen to. And that would be a
label of what music they truly like to listen to if I'm going to fit to that data.

OK, so then what do we do? How do we train on that? What do we have to specify? We have to specify the
aggregate function, the update function, and the readout function, the loss function. If it's a classification
problem. Maybe I'm going to have a cross-entropy loss between the predictions at each node and the ground-
truth labels. And then we'll train this with backpropagation, stochastic gradient descent. Yeah, question

AUDIENCE: For clarification, for the node label pair, how do you [INAUDIBLE]?



PHILLIP ISOLA: Oh, for the node label pair, we'll also take as input the adjacency matrix. So a single data point would be a graph
with a target ground-truth label for every node, and additionally, the connectivity structure of that graph because
that's going to be used in the algorithm, too. Yeah.

AUDIENCE: And how is that different from the graph label pair?

PHILLIP ISOLA: The graph label pair would just be the graph-- the same input, but then the target output would be a label for the
entire graph. Yeah. So I suppose I should have said node, comma, adjacency matrix, comma, labels. But every
node has a label is the point there, and then you'd also need that other information. OK, one more question here.

AUDIENCE: Why do you color these areas blue? So does that mean that some nodes cannot have labels?

PHILLIP ISOLA: Yeah, that's really just meant to refer to-- we are isolating one node and looking at its set of neighbors. And yeah,
don't read too much into the visualization. OK. Sorry. This wasn't the best visualization

OK. So I think I'm going to skip past this. This is just giving an example of, in that paper that I showed at the
start, how they can use-- how they can set it up as a GNN to predict something about molecules. And you can
see on the left over there that we have these boxes, which are aggregating information from all the different
proteins and pharmaceuticals that are interacting in this system. You can read that more if you're interested.

This is the same. We can set up our Google Maps problem. And there's a lot of connections for you to read up on
if you're interested. So of course, graphs come up everywhere. So signal processing and probabilistic graphical
models and inference, and graph nets are intimately connected to these, and here's a few examples.

But let's get into the final section, which is the theory of what kinds of functions can GNNs approximate. And the
key question here is going to be, which graphs can a GNN again distinguish? And we'll see that they actually
can't distinguish all possible graphs from each other. There will be these equivalent sets where there'll be two
different graphs where a GNN will necessarily have to make the same prediction, because according to GNN,
those are the same graphs. So what is the equivalent set.

So here are a bunch of graphs. And you can imagine that from the perspective of certain types of algorithms,
certain sets of these graphs will be seen as the same. And we want to ask, which sets of graphs are going to be
seen as the, same as the graph that cannot make a separate prediction on one graph versus the other graph, if
they're part of the same equivalence class?

So we're trying to understand what types of predictions and functions graph nets can approximate. And the way
we'll do that is by showing that graph nets cannot distinguish between certain types of inputs. So they,
necessarily, would not be able to approximate a function that has to distinguish between those inputs.

So yeah, the theorem is just a formal statement of that, that if a graph net cannot distinguish between two items
in an equivalence class, then clearly, it must incur an approximation error if the function I'm trying to
approximate does distinguish between those two graphs in that equivalence class. So what is the set of
equivalence classes for graph nets? What graphs are considered equivalent to each other?



So the way to understand this is the tree structure. So according to a graph net, that graph on the left-- according
to-- any node that's trying to update its representation based on messages coming in-- what it sees is these tree
structures. So the red node is going to see this neighborhood structure that has that tree. So it's connected on
the first hop to the blue and green, and on the second hop to all the other nodes. And the green node is going to
have that tree structure, and the other green node is going to have that tree structure.

So from the perspective of a graph net, these trees are the entire characterization of that graph. That's all they
can see because that's how the messages get propagated. So if two graphs have the same tree structures for all
the nodes, then those two graphs are equivalent according to the graph net. So this may not be obvious, but it
turns out we can find two graphs that are different and yet have the same tree structure. And those two graphs
will be two graphs that graph net cannot distinguish, cannot make different predictions for.

So here's an example, and you're going to work on your problem set on trying to show some other examples. But
I'm going to show you this one in particular. So first, convince yourself that these are not the same graph.
Structurally, these are different graphs, right? One has these two closed planar regions, and the other has two
regions, but there are triangles. These are structurally distinct graphs.

But let's look at the tree structure of the top left red node. It has exactly the same tree structure for both graphs.
We can expand those trees going further down, but this is enough to make the point.

So the red node has a yellow node and a red node as a neighbor, and the yellow node has a red, yellow, and red
node as neighbor. And then we can just keep repeating that process. You'll see they're entirely equivalent. And
yet, they're not the same graph. So two graphs can have the same tree structure but not be the same graph.

That means that if one of these molecules is toxic and the other is not-- let's say these are molecules and one of
them is toxic and the other's not. These are different physical things, and so one of them could be different. It
could be toxic, and then it might not be. A graph net will have to assign the same label to them. Yeah.

AUDIENCE: So if you just gave each node in the graph the one-hot encoding in addition to its node attribute, then you could.

PHILLIP ISOLA: Yeah, so you're giving the answer to a question I was going to ask in a few slides. So if you simply give each node
a one-hot encoding, like, tell it its position in the graph, then the symmetry can be broken. But the power of
graph nets is that you want to be invariant to the ordering of the nodes. And so by breaking that symmetry, you
break the permutation invariance. So it's a trade-off.

Here's another case, a bit harder to see, but these two graphs are equivalent according to a GNN. But they're not
the same graph. So those are equivalence classes according to the GNNs because a GNN can only distinguish two
graphs that have different neighborhood tree structures.

Now, this actually connects to some deep and old theory in graphs, graph isomorphism, where you're trying to
say, how can I tell if one graph is the same as another graph? And GNNs have the same power to distinguish
graphs as this thing called the one WL algorithm? So some of you might have seen this before. I'm not going to
go into all the details. But this is going back to the 1960s. This is really classical graph theory. And the Weisfeiler-
Leman algorithm is an algorithm that takes two graphs and decides if they're the same or different.



And the one Weisfeiler-Leman algorithm can distinguish certain kinds of graphs, and it's the same kinds of graphs
that a GNN can distinguish. And so whatever the Weisfeiler-Leman algorithm can discriminate a GNN can
discriminate. And this is just a connection to some graph theory. So roughly, the way that the Weisfeiler-Leman
algorithm works is you assign colors to the nodes in the graph, and then you do some kind of propagation, and
you'd decide if two graphs are the same if they result in the same coloring of the nodes.

And let's see. So yeah, a GNN can, at best, distinguish the same graphs that the one-dimensional Weisfeiler-
Leman algorithm can distinguish. But another interesting thing is that it's not only, can best. It's actually, you can
achieve this. So for any size graph, there exists a GNN such that you can distinguish two graphs that are
distinguishable by the WL algorithm.

So we have universal approximation within this family-- a universal ability to discriminate within this family of
graphs that can be discriminated by this classical theory. And just giving you the gist of why you get universality
within that family is-- it's a two-part argument. The first part is that a arbitrary, nonlinear, some nonlinear
function is a universal approximator of any multiset function, and MLPs are universal approximators to arbitrary
nonlinear functions.

So MLP-- some MLP is a universal approximator to multiset functions. And then, yeah, you can essentially show
that the aggregate in this form that can take on a multiset function can distinguish exactly the same class of
algorithms as the WL algorithm. Yeah.

AUDIENCE: How common is it?

PHILLIP ISOLA: Yeah, great question. So how common is it to find two graphs that cannot be distinguished in this way? I think
that last year, I said, oh, it's an edge case. It's not too common. And then I realized I don't actually know. So it's
hard to come up with them on pencil and paper. My guess is that this is a theoretically important thing. It's like
an adversarial-- a worst-case thing. Like, this could exist, and then all your machinery breaks.

But it would be really interesting to know if actual molecules that you're trying to classify the toxicity of would
ever have this issue. Would there ever be like a benign and a toxic molecule that would be indistinguishable,
according to graph net, but actually have different effects on the body? And the answer is, I don't know. But I
imagine that for health and safety-critical applications, this is important to understand. So this is a worst-case.
I'm not sure how common it is in practice. Yeah. OK.

So I do want to bring this back to empirical practice to show that this really does make an important difference. If
you understand the theory of what are the appropriate aggregation functions that will lead you to be able to
approximate all the functions you care about within the set of multiset functions, well, is that theory actually
important in practice?

So let's look at this example. So here's a paper where we have training accuracy on the y-axis, and we have the
epochs of learning on the x-axis. And higher is better. So the red line is using an aggregation function, which is
MLP, some MLP. So the Gs are an MLP for the red line. And I stated that that is a universal approximator to any
multiset function.

And indeed, this is able to get 100% accuracy on fitting the training data. This is just the training accuracy, so
this is just about approximation, not about generalization. Can I fit the training data?



But the interesting thing is that if I use a different aggregation operation-- like, you might be just hacking away in
PyTorch and think, oh, I'm not going to do MLP-- sum, MLP. I'll just do sum and linear ReLU. So linear ReLU is not
a full MLP. It's not a universal approximator. We have to have linear ReLU linear is a universal approximator, but
linear ReLU is not.

So let's say I just decided, I'm going to save some computation. I'm going to skip that line in PyTorch. Well, that's
not a universal approximator. And for this type of data, this protein prediction problem, I don't know the domain
very well. But for this problem, you actually just plateau at a lower level of accuracy. And I suppose that's
because you can't even approximate the data you're trying to approximate because you're not using an
approximation function that has that capacity.

So the theory actually is meaningful here. And sometimes I think that it's hard to see, like, why do we need to
learn all this theory of what kinds of functions can be approximated by what kinds of neural networks? Well, it
actually can matter in practice. And if you use something that does not have the capacity to approximate the
family you care about, you can just be fundamentally limited. The other curves are even worse aggregation
functions.

So here's one really interesting one. Look at this one. That is, I just used-- the blue curve is using the mean as
opposed to the sum. So I believe it's the same as the equation at the top. But rather than taking a sum, I take the
mean. And suddenly, it doesn't work. And you might think, that seems like a tiny, tiny difference. Instead of
taking the sum over my node, my neighbors, I'm taking the mean over my neighbors. Surely that should work.

And you might be coding this way and just said, oh, I bet taking the average as opposed to the sum is going to be
more numerically stable. I'll just do that. Well, the thing would fail completely. Anyone know why taking the mean
is going to lose information that the sum has? Let's see if we can go-- right back here. Yeah.

AUDIENCE: Maybe you can't calculate how many neighbors [INAUDIBLE].

PHILLIP ISOLA: Yeah, so maybe you can't calculate how many neighbors. So taking the sum knows something about the total
number of neighbors, because it gets bigger with more neighbors. Taking the mean divides by the number of
neighbors, so it loses information. And by losing that information on this problem, you just get-- you can't
actually learn the true function because you required knowing the number of neighbors. So these tiny little
details can actually make a big difference, and it's important to know that.

So here's a few other properties of graphs that cannot be learned with a conventional GNN as I've described it so
far. So you can't estimate the longest cycle in a graph. You can't estimate the diameter of the graph. These are
things that, no matter how much training data you have, the graph net is-- there's going to be cases where you'll
get arbitrarily large error on these estimates because you can construct two graphs that are isomorphic
according to the GNN, two graphs that have the same neighborhood structure but different diameters.

OK, so there's fundamental limits to what GNNs can do. But how do we get around these fundamental limits? We
heard the answer already. But anyone want to shout it out again? What would be a way of making a graph net
that is not going to be invariant to permutations of the nodes?

AUDIENCE: One-hot coding?



PHILLIP ISOLA: One-hot encoding. Yeah. So more generally, positional encodings. So just like we can make a convolutional
network which is not translation-equivariant, we can make a graph net that is not invariant to permutations by
adding-- telling each node where it is, what position it's at. And this allows you to break some of these
symmetries with these equivalence classes of two graphs that have the same neighborhood structure because
now we actually can see that the nodes have different positions in the graph.

And one of the common ways of doing this-- remember that Sarah talked about adding a sinusoidal positional
encoding, where every position in your image is going to get-- it's going to get a vector that tells us where it is. Is
it upper left? Is it middle? Is it right? Well, in a graph, we can get a kind of generalized version of where you are
in the graph using the eigenvectors of the graph Laplacian. So I'm not going to talk in detail about that. But this is
just a generalized coordinate system for your location of a node within a graph.

And if you add those to your graph node inputs, the node vectors of the input layer to the graph net, then you will
break some of these symmetries. And that can be good or bad because now you might not generalize to new
permutations, but you will be able to discriminate things you couldn't discriminate before. So it's a trade-off. So
yeah, that's just like positional encoding in CNNs, which we saw on the previous day.

So I'm going to end there. We saw that graph nets are appropriate for processing graph-structured data. It turns
out that a special case of the graph net is called the transformer, and that's just the dominant architecture these
days. And we're going to hear a lot more about that in a week or so. And I can take questions up here at the end,
but you're welcome to all leave now. Thank you.


