
MITOCW | mit6_7960f24_lec07.mp4

[SQUEAKING]

[RUSTLING]

[CLICKING]

JEREMY

BERNSTEIN:

I'm going to start. Thanks, everyone, for coming to the seventh lecture. So in the lecture, this is the plan. I'm
going to introduce what the deep learning optimization problem looks like, which I think you already know. I want
to cover some classical approaches towards optimization.

And these are things that, oftentimes, people in deep learning know about them and want them to work, but in
practice, we don't use these things really to do deep learning optimization. So you want to introduce them, and
how we think about them, and then think about maybe why we perhaps don't use them. And then towards the
end of the lecture, I'll talk a bit about making the training really scalable and making the optimization algorithm
scalable as you scale the architecture of your neural network.

And then at the end, I just want to talk a little bit about-- because this is of my research area-- also working on it
with Phillip. So I want to just tell you a little bit about some of the things that we're thinking about. But you can
be a little skeptical or ask the difficult questions, because that's what you should do.

So this is a reminder that, so far, we've looked at this puzzle. And I think we've looked at the first piece of the
puzzle approximation and the third one, generalization. So these were the questions of does there exist a neural
network in my model family that fits the training data? If it does exist, can I find it? And does it do well on unseen
data?

But a perspective people have at the moment-- we could it may not be true, but just for the sake of argument.
People are kind of like, approximation, we've kind of solved that now because you just use a transformer for
everything-- really big transformer. Generalization we've kind of solved, because you just get so much data that
everything generalizes.

If you have the whole universe of training data, you'll never overfit. And something-- well, probably those are
slightly too extreme positions, but just for the sake of argument. And for the sake of argument, the thing that we
can improve upon is optimization. And this is the mindset if you're at a deep learning startup and you just want
to make the optimization as efficient as possible, and then you just throw the big neural network at the problem
and collect lots of data. But maybe two-- what's the word-- caricature of a thing.

But anyway, this lecture is just going to talk about the second question optimization. So I wanted to write it down
in a formal way, where we have a neural network, which is a function f. And it takes inputs and weights, and it
gives you an output. And we have an error measure, which I'll call L. And you think of this as cross-entropy or
square error. And you think of y hat as your prediction and y as your target. And it somehow just measures the
difference between them in some way.



And then we collect here training data. So here, I'm thinking about paths of data with inputs and targets. And
capital N is the number of data points in my data set. And then I'm going to write down an example of a classic
machine learning or deep learning loss function, which is something like the average over the data set of-- let me
just call it Li to be the error on the i-th data point.

And Li would be-- what that means-- it's shorthand for the loss between the output of the neural net on example i
with weight w. And it's the discrepancy between that and the i-th target. So this is kind of what a loss function
oftentimes looks like in machine learning.

And you pick f-- these days, we pick f to be a really big transformer. N, we make it really, really large. And then
we just try to find the W that minimizes this loss function. So there's two features I want to point out at this
stage. One is that the loss function has a kind of compositional structure, where we have an error measure and a
neural network, and we glue them together.

So there's two things that-- the error measure in the neural network and that composed with each other. So
that's an interesting part of the loss function. And the other is that we average over the training set. And this is a
picture of what we're doing. So we set up this loss function. And we start at some weight setting that has a large
loss. And then we try to move the weights to the place with the small loss. And we think about going downhill on
this. And we compute the gradients. And we try to get closer and closer, and eventually stop at this point
hopefully. And so that's just saying that we iterate this gradient descent operation.

Oops. Let's see. And this is the learning rate or the step size, which I just call eta. And this is the gradient. So
what makes this hard-- in a sense, it's not hard, because we do it all the time, and we can train really big
machine learning models. And it doesn't seem to be-- we can do it. But what are some of the things which make
this like challenging in a way-- some of the examples are There are lots of weights. It's really high-dimensional
optimization.

Another thing is the neural network may be very deep. It has lots of layers, and that can make-- for a while, we
couldn't train really, really deep neural networks. But with some advances, now we can. What else is hard?
There's lots of data. So usually, we do stochastic gradients. We compute gradients on a handful of data points.
And then on the next iteration, we pick another handful of data points. So that means that we just have noisy
estimates of the full gradient across all the data points.

For the purpose of this lecture, I actually kind of want to ignore this problem. And these two first problems are
already kind of-- if you just think about those ones, there's really a lot of interesting things to say and things to
think about. So in other words, for the sake of this lecture, let's just assume that we're in the full batch setting,
i.e., we can evaluate the true gradient of the whole loss function on all the data at every step. Let's just assume
that we can do that.

So towards the end of the lecture, I want to talk a little bit about some of the problems that we have when we do
scaling-- when we scale up or scale up our neural network. So I want you to think that this is a neural network
where I pass in an input here, and I get the output. And I'm either going to be interested in scaling the width, like
making the network wider, or potentially scaling the depth and making the network deeper.



And we kind of run into two nuisances when we do this if you do it naively. And the first one is actually a little bit
explored in this homework. So this is a plot of training loss. And I'm training networks with a range of learning
rates on the x-axis. And the different curves are increasing width. So as I go down, it's getting wider.

And what you typically see is that if you make your neural network wider, you see that the best loss you achieve,
you see it kind of-- you get a better loss as you make the network wider, which is good. That's why people want
to scale their network, because it improves the performance.

But you see that on the other hand, if you look at the learning rate, which gets the best loss, it changes. As I
scale my model, the best learning rate changes. So that means like, typically, if you train a neural network, you
don't run this full sweep of learning rate. You just pick a learning rate, and then maybe you try to scale your
model, and you try to run the training again. And you find, oh, my training isn't working. Because just because I
made my neural network bigger. But then you have to retune the learning rate at the large scale.

So this is just like a kind of nuisance that, as we scale the whole lost kind of landscape as a function of step size
is kind of drifting. That's a nuisance. And similarly, if we scale depth, and we make the network deeper-- so it's
the same. The different curves here are, as I go down it's increasing depth. And we're plotting training loss
against learning rate. And something you can see-- if you do this naively, you just find that performance gets
worse as I make my model deeper, which is-- that's undesirable. Yeah?

AUDIENCE: Isn't that the optimal learning rate? Because it looks like the training loss kind of drifts, but it maintains the same
shape. So the optimal learning rate and finding that minimum be the same [INAUDIBLE] loss exists.

JEREMY

BERNSTEIN:

Yeah, let's just pick two points and just compare them. So let's say that we're at width 32. The best loss is about
here on the dark blue curve. And that corresponds to this learning rate, which is if we're at a larger width, 1,024,
the best loss occurs here. And it just corresponds to a different learning rate. So it's the fact that the minima
occur at different points on the x-axis. That's what I'm trying to point out. Yeah?

AUDIENCE: Do we have any intuition of why the optimal learning rate changes as we scale the width.

JEREMY

BERNSTEIN:

Yeah, that's at the end-- towards the end of the lecture, I'll try to explain why. Oh, yeah?

AUDIENCE: So I'm just curious-- in practice, people use deeper neural networks. But if you're just looking at this graph here,
you would not use one because the loss is worse if [INAUDIBLE]. So how do you reconcile?

JEREMY

BERNSTEIN:

Yeah, so this is basically pre, let's say, 2015. The max depth people went to was, let's say, 16 or something. And
then people figured out techniques. And now, you can train a network with thousands of layers. So I'm just saying
if you do things very naively-- if you don't know that much about deep learning, this is like-- you would see this
type of behavior. Then, as you learn more and more, then you know how to fix these problems. So I'll talk a little
bit about how to fix some of these problems.

AUDIENCE: [INAUDIBLE] with those fixes, that you can bring loss back down [INAUDIBLE].



JEREMY

BERNSTEIN:

Yes, essentially, the fix for depth is use a residual architecture and set up the residual blocks in a good way. And
you could use a residual architecture and set up the residual blocks badly, and you'd still see this kind of
behavior, or set up the interaction between the optimization algorithm and the residual blocks. So if you solve at
least enough of the problems, you can fix this behavior. And if you solve all the problems, then you can fix it in a
really nice way where everything-- the optimal learning rate always transfers across scale and so on.

AUDIENCE: And that's the same on the left where you can eliminate the drift?

JEREMY

BERNSTEIN:

Yeah. The point on the left is that even with all the latest fixes prior to 2021, it had that drift. But then if you know
all the literature from 2021 until now, then you can fix it for sure. So anyway, these are just some examples of
some problems how things can go badly when we scale.

And if you're trying to scale massive transformers, you may not even have the resources to tune all the
hyperparameters of a really big model. So you may be like in this regime where you can only tune things at small
scale and then try to transfer them. So that's one of the applications of fixing this type of problem.

That was just a kind of teaser for the end of the lecture. Now, I want to just-- let's go back to basics and just how
should we think about designing optimization algorithms and solving optimization problems? So I want to look at
a couple of different types of methods. The first is first order methods, which only use first derivatives. So they
basically only use gradients, which if you think about it, is kind of what we do in deep learning.

And I'm going to use this symbol g as a shorthand for the derivative of the loss with respect to its weights. So g is
always going to mean the gradient of the loss with respect to the weights, i.e., the thing that you get by doing
back propagation. And then there's also second order methods which, in addition to first derivatives, they also
use the second derivatives of the loss function. So they're called second order methods.

And this symbol h is going to be a shorthand for the second derivatives of the loss with respect to the weights. So
it's a big matrix of second derivatives. So you can think of the gradient as being one big vector. The Hessian is a
matrix of second derivatives corresponding to all pairs of second derivatives.

And the thing that I hope to get at is to explain the modeling assumptions that different approaches make and
then also think about potential shortcomings of those modeling assumptions. So you should always ask-- if I
present something to you, you should always say, well, why don't we do this? Why don't we actually do this in
practice? That should be the question that you have.

So all of these different methods, I would argue, start by Taylor expanding the loss function. So different classical
approaches to optimization take the Taylor expansion as a starting point. And I'm writing this Taylor expansion
like this. But because we introduce the shorthand, I can rewrite it like this. So the first order term is gradient
inner product delta w. And then the second order term is-- it's this Hessian term.

So the Taylor expansion up to second order is like a quadratic form. And then it's like a multivariate Taylor
expansion. So again, this is the loss evaluated at a kind of perturbed weight vector, or weight vector plus a delta
w. And then we can just write out the Taylor expansion. And I want to give-- these two terms, I want to give them
a name. And we'll call them the linearization of our loss function.



And then all the higher order things we'll call the nonlinear part. And again, we're using this shorthand. The
gradient is this, and the Hessian matrix is this thing. And I just wanted to just visually give you a picture. So the
gradient we can think of as this big vector. And the Hessian we can think of as a big matrix.

If there are d parameters in the whole neural network-- the size of the weight space is like d dimensions, the
gradient is d by 1, and the Hessian is d by d. So it's a d by d matrix. So our first method that I want to talk about
is called Newton's method.

Do people already know-- is it something that people have heard about? Well, let's just quickly talk about it. So
the idea of Newton's method is we kind of drop-- or remember there were all those higher order terms in the
Taylor expansion. We just kind of forget about them. Let's just ignore them and take the Taylor expansion up to
first order.

And then we're going to think about picking our optimization step as choosing a delta w. We think of w as our
current weights. And we're going to pick a delta w to add to them. And the way we're going to do that is we're
going to minimize this quadratic form with respect to the weight perturbation delta w. Wait, does anyone know
how do I minimize that quadratic form? Can someone tell me how do I do it?

AUDIENCE: Take the derivative of [INAUDIBLE].

JEREMY

BERNSTEIN:

Yeah--

AUDIENCE: That's what [INAUDIBLE].

JEREMY

BERNSTEIN:

Exactly. So we differentiate it with respect to delta w which gives me lambda over 2 times 2, h delta w. And then
these cancel. And then we set the derivative to 0. That's that thing that we all did once upon-- yeah. And then we
just solve for delta w by rearranging, and we get like this thing.

And we just call this Newton's method. And people describe this as you get your gradient. And then they talk
about preconditioning it with the inverse Hessian. But it basically means you take the Hessian, you invert it, and
then you multiply it with the gradient. And we call this Newton's method for-- it's an optimization algorithm that
uses first and second order information. So I just rewrote that here. So what are the problems? Why don't we
actually use Newton's method to train neural networks? What are the--

AUDIENCE: [INAUDIBLE]

JEREMY

BERNSTEIN:

Yeah. So problem one is that the Hessian is d by d matrix. And d may be billions in a large neural network, so you
can't even store such a large matrix. And if you could, you could invert it. And you just basically-- it's just too big.
Another problem with Newton's method is, if you think about how we derived it-- are we sure that this procedure
is giving us a minimum of the quadratic form? Do we know-- all we did is--

AUDIENCE: It's one level.

JEREMY

BERNSTEIN:

It's just the first-- yeah, so what do you mean? Could it be a minimum, or could it be something else? It could be a
maximum. It's just finding a critical point of the quadratic form. If it's close to a max, it could find a maximum. So
it's not even necessarily doing gradient descent. It could be doing gradient ascent.



And there are ways to fix these type of things. There's something called cubic regularization, which adds a cubic
penalty to the quadratic form. But people don't use that. And any time we present a method, there's always like
attempts to make it practical. And like there's a literature on that method. But then in practice, we just use Adam
to train neural networks.

So that's Newton's method. Now, we're going to look at something called Gauss-Newton method, which is a little
bit different. And it starts with something called the Gauss-Newton decomposition. So here, we suppose that we
have a composite objective function. It's the composition of two functions, which is-- remember, we actually have
that in machine learning, because we have an error, and we have a neural net.

So we're actually in this situation. That's what this is saying. So let's derive the Gauss-Newton decomposition. So
we start with the gradient, which is dL by dw. Because we have a composite we can do the chain rule. So we get
dL by df, df by dw. So that's just the chain rule.

And now, let's say we want to know about the Hessian. This is the second derivative of the loss with respect to
the weights. Well, now, we just need to differentiate the gradient again. But we recognize now that we have a
product. So we can do like the product rule. And let me just remember how to do the product rule.

d-- so this is like the derivative of this with respect to w, and then one application of the chain rule. And then
there's this term, which is just like this term. And I haven't differentiated it. And then we have to do the second
thing, which is-- like, I don't differentiate this one, and I do differentiate this one. So I get dl by df, D squared f by
dw squared.

And so what I hope to have shown you is that if you just have a composition of two things, you can derive a
formula for the second derivative, and it splits up into two pieces because of the product rule. And we just call
that the Gauss-Newton decomposition. So I wrote it out. So what this is saying is that the full Hessian of a
composite decomposes into these two pieces.

And we think if we think of this as being the curvature, it's like the second order information about the whole
objective function, you can break it up into the second order information about the error with respect to the
model, and the second order information about the model with respect to the weights. So it's like decomposing
curvature into one piece from the error and one piece from the model. That's called Gauss-Newton
decomposition.

So then what people do is they say, let's pretend that our error measure is the squared error. And we know that
for the squared error, the second derivative with respect to the model is just basically one or some-- yeah. So
then, basically, we can drop this term. We just say that that's 1.

And then they say, let's just ignore the curvature of our model, and let's just ignore this term. It's just an
assumption that people make. They say, hey, I don't really know how to deal with this term, so let's just ignore it.
So under those like steps, h which is d squared, l by dw squared, is just equal to somehow the product of df by
dw and df by dw.

So then, if I want to do a Newton method but using this form of the Hessian, what does Newton's method look
like? It's delta w is minus h inverse g, which is now minus df by dw df by dw inverse g. If you go through this,
you'll realize that all of these things are tensors and you need to be careful about all the indexing. But that's
something to just check.



And we call this thing the Gauss-Newton, method because it uses-- it started with the Gauss-Newton
decomposition. And it's just another way of deriving an algorithm which looks some kind of iterative weight
update.

And I've just rewritten it here. So this is thing that we're calling the Gauss-Newton method. And remember, these
are the derivatives of the model with respect to the weights. So it's not the same thing as the regular gradient
that you usually think about. It's a different gradient.

And this is just to remind you about the assumptions that the method made. One is just drop this term, and the
other one is like set this one to 1. So what do people think of-- what's the problem? Why don't I actually do this?

AUDIENCE: For deep learning, you may have a low rank Gaussian approximation.

JEREMY

BERNSTEIN:

Oh, so that could be a reason why I would want to do it. Is that what you're saying?

AUDIENCE: No, why you wouldn't want to.

JEREMY

BERNSTEIN:

Oh, because you're saying if it's low rank, I can't invert it? Yeah, I need to think more about that, but you might
be right. Oftentimes, people will always just-- if they want to invert something, they'll add a little bit of identity
matrix to it to give it better conditioning, and then they'll just invert that.

Yeah, that's a great point. Basically, what I wanted to say is it involves inverting a matrix. It involves forming an
extra matrix and then inverting it. And not only that-- it also involves computing these extra derivatives. Not only
do you have to compute the regular gradient, which is this one. You have to compute these extra derivatives.

And people are not going to want to do that in practice unless they're really convinced that there's a really big
improvement to using this method. And basically, nobody's convinced them of that, so they just don't use it.
That's the kind of practical reason why people would not use this. But there's a lot of research trying to make this
type of thing practical. So I'll just write like extra gradients that you've got to compute, and then inverting
matrices. These are the kind of things which count against it a little bit. Yeah, go ahead.

AUDIENCE: I just don't get why you have to compute gradients. Isn't the partial derivative of [INAUDIBLE]?

JEREMY

BERNSTEIN:

It is, but because you do the gradient by backpropagation, you never explicitly form df by dw. If you think about
how you actually calculate g, you'll realize because you start from the end of the network and work backwards,
you never compute df by dw. But it is implicitly there, but you're not computing it. But if you did forward mode
automatic differentiation, then I think you would get both of them. But it's much more expensive to do forward
mode automatic differentiation.

So that was Gauss-Newton method. This one is called steepest descent. So now we're in-- I'm not sure whether
you should think of Gauss-Newton as being first order or second order because-- oh, yeah?



AUDIENCE: I was wondering, could you give us an intuitive for how much more expensive the inversion would be or the
gradient of [INAUDIBLE]? Because when I hear [INAUDIBLE] matrix, I'm like, well, we're already training a neural
network, so how much [INAUDIBLE] would it be?

JEREMY

BERNSTEIN:

Yes, for Gauss-Newton, I'm not-- let's just talk about Newton, so let's pretend it's the full Hessian. I'm not an
expert on all these. And I think isn't it cubic-- the cost of inverting a matrix is basically equivalent to computing a
singular value decomposition? And I just have an intuitive sense that you never want to do those. They're much
more expensive than computing a forward pass or a backward pass. That's the--

AUDIENCE: Are forward passes and backward passes quadratic or linear in the input?

JEREMY

BERNSTEIN:

In the-- so how do they scale with the dimension? That's the question. Well, they're somehow linear in the number
of layers. And then you need to ask what is the cost of doing a forward on an individual layer. And then you also
have factors-- this is a good thing to think about. I'm not going to give you the answer because I don't have it.

But the other factors that are involved are GPUs are great at doing matrix multiplication. They're basically
designed to do forwards on layers and to do backwards on layers, but they're not designed to invert matrices or
do singular value decomposition. So these are things that, if you just get a Colab notebook and start playing
around, very quickly, you can get a sense of how these different algorithms compare against each other in terms
of complexity. But these are the right-- yeah, they're the right questions to ask or the right things to think about.
Sorry.

AUDIENCE: For the last slide where you mentioned that we need to compute the partial f, partial w explicitly, and we're not
doing that from a backward pass, is it because for backward pass, we're actually computing the gradient for each
module, like a sub-part of all parameters? But here, you really need a big matrix including the gradient
[INAUDIBLE] with respect to all the parameters in one matrix?

JEREMY

BERNSTEIN:

Yeah, let me just give you an intuitive sense of why we're definitely not computing those derivatives doing a
regular backward pass with that. Maybe that would answer the question. But think g is the derivative of the loss,
which is a single number with respect to all of the weights, whereas the output of the network, it could be
outputting a tensor.

And df by dw is, for every component of that tensor, it's 1 derivative. It's d-- the d-- sorry, it's the derivative of the
first component of that tensor with respect to all the weights. It's the derivative of the second component of that
tensor with respect to all the weights. So it's just a bigger tensor than the gradient.

And you really want to avoid explicitly forming that. And backpropagation allows you to do that, because you only
ever track derivatives with respect to the loss, which is a single number. Yeah thinking through-- just actually
implement backprop for yourself is a really good exercise that forces you to-- it forces you to think about these
things. And because PyTorch and because the packages we have are so automated, you can actually have a
whole career without ever implementing backprop or thinking about what gradients look like. But it's a really
good exercise to do that, I would just say.

I think I'm doing OK on time, so yeah, don't be afraid if you do have questions. So the next one is called steepest
descent. And again, we get this Taylor expansion. So always get this Taylor expansion. And this time, we're going
to-- again, we're just going to throw away the nonlinear part, and we're just going to replace it with lambda over
2.



So lambda is a number. It could be 5. And then we choose our favorite norm. And we measure the norm of delta
W And we square it. So steepest descent-- what I'm saying-- is a technique where you just-- you say the nonlinear
part-- I don't even know what that nonlinear part is. Let me just replace it with something which I know very well.
And actually, a lot of optimization methods actually have that flavor of just take the thing that I don't even know
how to deal with it, and just replace it with something that I like. Yeah?

AUDIENCE: But what's the rationale behind this replacement? Will you choose this specific replacement or something else?

JEREMY

BERNSTEIN:

That's a great question. I'll try to answer it, but let me just first show you what the implications are of different
choices. And then we can try to think about how we would actually make this choice. So the point is, what are
some of people's favorite norms? I'm going to start-- Euclidean norm. Someone else?

AUDIENCE: Frobenius.

JEREMY

BERNSTEIN:

Frobenius. So that's if we have a matrix-- if we have a weight matrix, Frobenius norm. What's another one?

AUDIENCE: Max.

JEREMY

BERNSTEIN:

Max, the infinity norm. Is that what you meant? Yeah. One more.

AUDIENCE: LP norm.

JEREMY

BERNSTEIN:

Pardon?

AUDIENCE: LP.

JEREMY

BERNSTEIN:

Say--

AUDIENCE: LP norm.

JEREMY

BERNSTEIN:

The LP norm?

AUDIENCE: Yeah.

JEREMY

BERNSTEIN:

Yeah, which P equals 2 is Euclidean. One-- some of the-- yeah.

AUDIENCE: Is the KL divergence kind of different--

JEREMY

BERNSTEIN:

Yeah, it's actually not a norm, but let's just add it. It doesn't satisfy all the properties. It's not symmetric. It's not
something. So it's actually not a norm, but it's another-- that's a measure of distance, but it's technically not a
norm.



So the point to illustrate is there's a lot of norms. And so there's a lot of steepest descent methods because
there's a lot of norms. And there's many more norms than what we talked about. So let's just start with L2 norm
or Euclidean norm. Now, we're considering this a model because we threw away what our loss function actually
is, and we're just modeling the nonlinear part.

And just to remind you that a ball of fixed Euclidean norm is a circle or a sphere. These are two balls of fixed
Euclidean norm. And we're going to do our favorite thing of minimizing the right-hand side. How do we minimize
it? Can someone tell me how do I minimize it?

AUDIENCE: You could [INAUDIBLE].

JEREMY

BERNSTEIN:

Take the derivative, set it to 0. And it's g plus-- you need to work out how to take a derivative of a squared
Euclidean norm. But it's just lambda delta w is equal to 0. And I rearrange it, and I get delta w is minus 1 over
lambda times the gradient.

And so then I recognize this. I say, hey, this is just the most vanilla form of gradient descent with a particular step
size-- like, a step size of 1 over lambda. I make the penalty larger by increasing lambda, and my step size gets
smaller. So it's like, it's kind of interesting that there's some connection between regular old gradient descent
and L2 geometry on your optimization space.

So let's do another example. So this time, we put the infinity norm. And remember, the unit ball in the infinity
norm is not really looking like a ball anymore. It's more of a kind of square. So infinity norm is just measuring the
maximum size of a vector across the coordinates. I can just write that.

And the absolute value. So has anyone done the homework already? Does anyone know the answer? If I minimize
the right-hand side, what is it? Does anyone know?

AUDIENCE: It's [INAUDIBLE] 1 over lambda [INAUDIBLE] max something.

JEREMY

BERNSTEIN:

Yeah-- see, this is on the homework. So if you just solve this-- it's not quite as simple as just differentiating
because of the-- because a max is not really continuous in some sense. But the solution is like the L1 norm of the
gradient divided by lambda times the sine of the gradient, where the sine is plus or minus 1.

It's plus 1 if the thing is positive, and minus 1 if the thing is negative and you apply that across the coordinates of
the vector. So it's like, oh, I set my norm to infinity norm. And now, I get this sine gradient descent algorithm.
Interesting. And there's a reading that we posted, and it's a blog post that talks a little bit about this, if you want.
And it has some interactive visualizations if you want to visualize some of these things.

And I still want to get-- that question of how should you choose a norm in practice is the right question to ask, but
we still haven't answered that question. I'm just showing if you pick this norm, you get this algorithm. If you pick
this norm, you get this other algorithm. The question we should ask is, how do we pick such a norm?

But before that-- and I guess-- yeah, let's just look at how this looks for a general norm. And even though it's a
general norm, we can still actually say something about it. And what you can show, and I think this is also on the
homework, is to show that it-- the solution to this thing can be transformed into this other thing.



And we can think of this as like-- we think of this as being the step size or the learning rate. And we think of this
as being the direction-- say, the step direction. And we can separate the solution of the steepest descent problem
into two pieces. One is computing the step size. The other is computing the direction.

And this funny thing is called the dual norm. Every norm has a dual, which we call it dual norm, and it appears in
this-- anyway, this is on the homework. And this is something that you can show. So there's a general
formulation of the solution to the problem. Yeah, go ahead?

AUDIENCE: I see the [INAUDIBLE], but there's-- I mean, [INAUDIBLE]. When we arrive at a certain delta w, there is no
guarantee that the above approximation still holds when we plug in the delta w [INAUDIBLE].

JEREMY

BERNSTEIN:

There's no guarantee that--

AUDIENCE: That the approximation either the second or the third--

JEREMY

BERNSTEIN:

Yes, there is no guarantee. Yeah, there's no guarantee about this at all, because I said take your loss function,
throw away the nonlinear part, and just replace it with your favorite norm. So that doesn't sound like the kind of
thing that's going to give you a guarantee. It sounds kind of random. But it's a framework for thinking about
deriving different optimization algorithms. For the framework to actually apply, what you would want to do is you
would want to-- yeah, let's just talk about this because of the fact that we can--

AUDIENCE: In a sense, we control how much we deviate from the actual weights, right?

JEREMY

BERNSTEIN:

Yes, the larger and larger lambda is, somehow the better the model should be, in a sense. Is that what you're
saying? Because yeah, you never move too far. If you make lambda infinite, you never move anywhere, so you're
always within the linear region, and then the model holds. But it's like, you wouldn't know how big you need to
make lambda to be for that to work. That's the problem. Exactly.

Let's just think a little bit about how we could really pick such a norm. So you remember that-- let's just go back
to get the Taylor expansion. So this is the Taylor expansion. Assuming that the loss function is an analytic-- which
it's not always, but let's assume it is-- then this Taylor expansion really holds.

But what if we could do the following thing? What if we could upper-bound the Taylor expansion with the linear
piece, and we could produce a lambda and we could produce a norm such that this was really an upper bound? If
we could produce such a lambda, then we could get the kind of guarantees that you're talking about.

And actually, on the homework, you're going to do this. Although it's a bonus question, so maybe you're not going
to do it. But if you want to, you can do it. And for the case of a linear model a linear predictor in the square loss.
And then the hope of putting that on the homework is that you would then think, what if I don't have a linear
predictor? What if I have a two-layer neural net? How would I do it then? What if I had a five-layer neural net?
How would I do it then? And that's essentially what I'm trying to do in my research at the moment, is try to
answer that question.



Anyway, so that's the end of classical methods for optimization. And now, I want to think about, on a purely
heuristic and purely intuitive level, how to make the training really scalable. And then if there's time at the end,
which it seems like there might be, we can start trying to think about how to build a more formal theory around
this type of thing. Does anybody have more questions?

AUDIENCE: So for the infinity norm, do we update all the components of w at the same time?

JEREMY

BERNSTEIN:

Yeah--

AUDIENCE: So with the same kind of magnitude of [INAUDIBLE].

JEREMY

BERNSTEIN:

Exactly. That's why the sine function appears, because the sine of a vector maps a vector to another vector,
where all the components have the same magnitude.

AUDIENCE: Can you just repeat the questions for the--

JEREMY

BERNSTEIN:

Oh, sorry. To repeat the question, it was a question about, does the solution to steepest descent have the same
magnitude update across all the different coordinates? And the answer was yes.

AUDIENCE: Sorry, can we go-- for the general steepest descent-- because you decompose into step size and step direction.
And for the step direction, if you look at the dot product, then the direction we're going to maximize is exactly the
gradient direction. I just don't know what's the intuition behind why imposing the-- imposing a constraint on the
norm of your self-direction is going to help.

JEREMY

BERNSTEIN:

So if the constraint is the-- sorry. The question was, under a Euclidean norm penalty, the solution is to always
point the step direction in the same direction as the gradient. And that's kind of an intuitive thing. But what
seems less intuitive is if I put a different norm penalty. The optimal direction may change, and it may point in a
different direction from the gradient. And the question is why? Why would that ever be a good thing to do?

AUDIENCE: Yeah, [INAUDIBLE] want to consider a norm like this? Why would I want to impose a norm constraint on my step
size direction?

JEREMY

BERNSTEIN:

That's exactly the question-- that's the right question. Why would I want to do that? Why would I want to impose
a different norm other than the Euclidean norm? So I'm trying to say that, implicitly, by-- I'm trying to put it upon
you that, implicitly, when you say the best direction is the gradient direction, I'm trying to say that you're
thinking Euclidean.

So the question-- why would another norm be better, which would tell you to go in a different direction? Well, the
rough intuition is, what if all the axes in my space are not equal with each other? Imagine you get a map of the
US, and then you take the map and you squeeze it.

So you get the corner in Photoshop, and you squeeze the corners together so it becomes very-- and then you-- so
taking a step of 1 centimeter East-West would correspond to moving like 10,000 miles, 2,000 miles, whereas
taking one centimeter step North-South might correspond to going 10 miles just because you stretch the map in
a weird way.



And when you say that it's natural that going in the same direction as the gradient is the right thing to do, you're
assuming that you have a very isotropic map of the United States, where taking steps of equal-- and what I'm
trying to-- the idea is that you might not be so lucky that the loss function-- because of-- in deep learning,
because of the architecture of the network and so on, it may not have that property that different directions in
the weight space are equal to each other-- may be a very non-isotropic space.

AUDIENCE: So you're saying that there's actually some-- doing different norms somehow equivalent. I'm scaling each
coordinate-- I'm basically using a preconditioner matrix to scale each coordinate at a different rate?

JEREMY

BERNSTEIN:

That's one example. Yes, so like that-- you could take a norm-- I can say that I'm going to build this new norm. So
remember the Euclidean norm is like sum over i wi squared. And I could say, well, I want to build a new norm,
where I take positive constants, and I just scale the different coordinates differently.

I could do that. And I could derive a steepest descent algorithm under this new norm, and it would correspond to
some reshaping of the gradient. But that's just one example. And another example is the infinity norm, or the
Frobenius norm, or the-- and they're all ways of measuring-- of saying that different coordinate directions or
different directions more generally have different weightings.

And maybe one more thing to say about that is why is it different weightings have different-- another intuition is
if I've used the linear piece, like the first order term, I need to know for how far that linear piece is valid. Maybe if
I move too far in that direction, the linear piece broke down. And it may break down at a different rate going in
different directions. So the idea of building a norm is to capture at what rate does the linear piece break down if I
move in this direction or this direction. It may not be the same.

So now, we're going to forget that for a little bit and just thinking about scaling. So the intuitive question that I
want to ask is, how large should the weight updates be when I do gradient descent? And I want to think about
this kind of Goldilocks step size. Because if it's too big, intuitively, you're going to break your neural network. And
if it's too small, you're not going to be training very efficiently because your steps are too small.

So you want to find that nice middle. And someone already had this observation. The observation is that a neural
network is built out of matrices. It's not one big vector. The weight vector is like matrix 1, matrix 2, matrix 3. So
can we think about that matrix structure? And this is where I wanted to say, perhaps we could try a matrix norm.
And the one example was the Frobenius norm.

So the idea is-- oh, yeah, I forgot to say. Whenever anyone talks about too big or too small, you should always
ask in which norm? It's analogous to if someone just says something's really big, you have no idea what they're
talking about, because you always need some kind of reference, like a scale. And if you look at a map, there's the
scale at the bottom, which says five centimeters corresponds to 1 mile or something.

So if anyone ever says that something is big or small, you should always ask, what's the scale that you're
measuring it on? And for tensors, the notion of scale is what's the norm. So that's a good thing to think about. So
in particular, when we say that we want the update to not be too big or too small, we want to choose a norm, and
say it should not be too big or too small in that norm. And then we're going to say a neural network is built out of
weight matrices. Maybe we can try a matrix norm. Does anyone know any other matrix norms?

AUDIENCE: But you can also take the largest singular value that's also a norm.



JEREMY

BERNSTEIN:

Exactly. We call it the spectral norm, or it has also some other names. Does anyone else know any other ones?
Just wait. In fact, I think I pretty much knew just the Frobenius norm until maybe three years ago. So spectral
norm is the largest singular value.

There's a bunch of other ones. One is called the nuclear norm. There's a general class of norms called the
Schatten p-norms. And just wanting to point out, there's actually a lot of ways to measure how big a matrix is,
which kind of makes sense because it's got a lot of different coordinates. So there's presumably a lot of different
ways to measure size of a matrix.

This is where I want to introduce-- so just to summarize, we want to ask how big should our weight update be?
And we've said, well, we kind of need to pick a norm in order for that question to be a meaningful question. And
now, I want to introduce you to this new perspective in thinking about a neural network.

So remember that maybe when you first think about a neural network, you think about neurons, and there's
nodes, and they're connected by edges. And then you go a bit further, and you learn a bit more. And then you're
like, oh, I recognize this. This is a weight matrix. And if I have a layer with a single output, then its weights are
just a vector.

And now, I'd start to describe my neural network as like matrix multiplications. And I think of this as the tensor
perspective. And then what I want to say is you go even further, and you realize that there's this kind of spectral
perspective on neural networks, where every weight matrix has something called a Singular Value
Decomposition, or an SVD, which is like a generalized eigenvalue decomposition.

Not every matrix has eigenvalue decomposition, but every matrix has a singular value decomposition. And we
can think about taking my neural network and decomposing each matrix into its SVD. I'm not saying we should
actually go ahead and do that to train it in its spectral representation or something like that. I'm just saying that
mentally, you can always do that. It always exists, that decomposition.

I just wanted to introduce-- a way that I think about stable training is I kind of imagine my spectral decomposition
of all my weight matrices. And one thing I think is that probably the singular values should not change too
drastically from step to step. That would be bad. But if they change too little from step to step, that would be also
bad because I would be training too slow.

It's like, another way to think about what stable training means is, maybe you don't want your spectral
decomposition to be going haywire when you're training, and maybe you don't want it to just change a teeny tiny
bit-- something in the middle seems good. That's a thought. And then as somebody mentioned, there's the
spectral norm.

So if I want to compute, let's say the spectral norm of this weight matrix, I compute its singular value
decomposition, and then I just take the largest singular value. And that's like a way of computing the spectral
norm. So that's another way of measuring the size of a matrix, which you'll also come across in the homework.

So I wanted to talk a little bit about the spectral norm. How do we think about this thing? And I drew this picture.
And the idea is the spectral norm tells if I feed a vector into a matrix, and I get something that comes out, it tells
me how big the thing that comes out can be given that I knew how big the thing that went in was.



So we can write that. I'm going to write it. So I'll use this notation. The spectral norm of a matrix M is the max
over input vectors with unit L2 norm of the L2 norm of MV. So does this make sense? It says, I feed in a unit
vector to the matrix, and I get out a vector. How large can that vector possibly be? That's the spectral norm.

I think that that's a nice idea, because when you train a neural network, you're putting vectors into matrices, and
matrices are coming out the other end. Actually, something about this norm is descriptive of what's actually
happening during training. So maybe that's a good potentially that could be a good norm for us to think about
when we measure the size of the matrices. That's the idea. And so there's a fact, which I have not proved, but
the spectral norm is equivalent to the largest singular value of the weight matrix.

But there's something arbitrary here. And what I hope to point out as arbitrary is, why would we care about the
L2 norm of the inputs? That was an arbitrary decision. And why would we care about the L2 norm of the outputs?
That also seems arbitrary. We can actually change this to be arbitrary, let's say, LP norm here and L2 norm
there. And you can change this definition to involve any norm on the input space and any norm on the output
space.

And then we would refer to the thing that we get as the, let's say, the q to p norm on the matrix. It's called
inducing-- we call this inducing a norm on a matrix given a norm on the input space and a norm on the output
space. So we call this an induced operator norm.

And this seems kind of helpful, because in my neural net, maybe I don't care about the L2 norm of my
activations, and maybe I don't care about the L2 norm of the outputs of a layer. Maybe I care about some other
norm. And that's where we come to this thing that we're going to call the RMS to RMS operator norm. I'm not sure
if anyone remembers about the RMS norm? Does anyone remember what RMS norm is from my other lecture?
It's related to the L2 norm. Does anyone remember? It was on one of the--

AUDIENCE: The norm scaled by the number of coordinates.

JEREMY

BERNSTEIN:

Exactly. Yeah, so we define this RMS norm of a vector v to be the 1 over square root d, if d is the dimension,
times the 2 norm of the vector. So it's just a rescaled Euclidean norm. But does anyone know about-- if you know
much about transformers or neural architectures that people use, we often make a big effort to normalize all of
the activations of the layer in the RMS norm.

And this is referred to either as RMS normalization, or layer normalization, or layer norm. It's a standard thing
that, if you actually implement a transformer-- I think at some point you'll do this-- you'll probably use layer
norm. So it's like I want to make the argument that for a layer in a neural network, a really natural norm to equip
it with for an activation vector is the norm, not the Euclidean norm.

And another way to put this is what does it mean if the norm of a vector is 1? If v RMS is 1, it implies that each Vi
is around 1. So if you normalize the vector to have unit RMS norm, you're normalizing all the coordinates to be
around 1, which is kind of nice for neural networks. It means that the feature vectors or the activation vectors are
all well-behaved.



So we go ahead and then we just induce the operator norm kind of like we described. So on a matrix n, we define
the RMS to RMS operator norm to be the max over vectors inputs such that the RMS norm of the input is one. So
the average input size across the coordinates of the input is 1. And then we measure the RMS norm of the
output.

And so this is inducing-- using a vector space with an RMS norm, and then there's a matrix, and then there's
another vector space with the RMS norm. We induce the operator norm on the matrix. And that's what we call it
the RMS to RMS induced operator norm. And as an exercise, what you can show-- you can prove that this is
equivalent to the spectral norm, but with a dimensional factor.

So it's just a rescaled spectral norm with a particular dimension of prefactor. And this is also on the second
question of the homework. You just need to use this. You don't need to even understand necessarily. You just
need to be able to normalize something in that norm.

What is the payoff? Why did we spend so long talking about different norms and how to define them? Well, what I
claim is that defining that particular norm is the thing that solves the width scaling problem. So once I know
about that norm, and I use it to normalize my training, I can fix this problem.

So what's the claim? The claim is to remove drift in the optimal learning rate as I vary the width of my neural
network, I should do two things. I should initialize my weight matrix at layer L such that its RMS to RMS operator
norm is around 1. And then I should update by a delta w at layer l such that the RMS to RMS operating norm of
my update is also around 1.

Intuitively, that means it-- the fact that I normalize the input-- the initial matrix, sorry. Because I normalize my
initial matrix in this norm, if I pass in features that are coordinate wise 1 or on average 1, I can only get out
features that are at most coordinate wise 1. So that's why it's a good initialization. It controls RMS norms as you
move through the network.

And then why is it good to normalize my updates like this? Because it ensures that the amount that the features
change by from one step to the next. We call it feature learning-- or the amount that the activation vectors can
change from step to step is controlled in precisely the same way. Does anyone have questions about that? I feel
like I'm just-- yeah, sorry.

AUDIENCE: Oh, it seems like you're really constraining the ability of the neural network to be expressive by controlling
exactly what values the feature vector can take on. So how do you do this but not lose the approximation
capacity?

JEREMY

BERNSTEIN:

That's a great question. So to repeat the question, it seems like constraining these properties would somehow
damage the expressivity of the network, and how do we stop that? In what I just presented, we're only controlling
the property at initialization, and then between consecutive steps. But over many steps, things can change much
more. So I think that that's probably why it doesn't harm the expressivity. Sorry, any more questions?

AUDIENCE: This is more like an empirical observation. Like, we do the same [INAUDIBLE] more stable training where they
actually have similar [INAUDIBLE]?



JEREMY

BERNSTEIN:

So in some sense, it's an empirical observation. And actually, the second homework problem on the homework is
playing with it empirically. But in another sense, there's a lot of theoretical things to support it, the simplest of
which is kind of actually just like the definition of this operator norm.

If you just think really hard about this operator norm, it tells you that things have to behave in a good way in a
certain sense, but only in terms of an upper-bound. It says that the features of the particular layer cannot change
more than by this amount. And it's nice to know that. But it doesn't tell you the features definitely will change by
this amount.

This is precisely how the internals of the-- and there is also a theory to talk a little bit about that, but it usually
makes infinite width limits. So I have some references on the final slide. It's like an active topic at the moment,
and there's a lot of experiments, and there are a lot of theory. But it's still a not fully resolved kind of question.

But what I was hoping, for the purposes of the lecture, is to get across that there's quite an intuitive idea of just
how big should things be, and in what norm should I measure that? And I'm trying to make this claim, which is a
sort of vague claim at the moment. But if you're really careful about that, then you can make the training much
more stable.

AUDIENCE: Can you help provide intuition for why this code is true? So I'm having trouble bridging the gap with why not
changing the feature vector a lot actually eliminates the drift [INAUDIBLE].

JEREMY

BERNSTEIN:

One way to put it is that as I change the dimension of my layer, which is what we're scaling when we're scaling
width-- either the input dimension, the output dimension, or both-- the RMS norm is a dimension, it's-- in some
sense, it's a non-dimensional norm. My system is behaving well when the norm is 1. That would mean that all my
activations are around 1.

What's the alternative? It's like, the alternative is either I scale the dimension, and the size of each activation
either grows with dimension or shrinks with dimension. That would be bad scaling. And if you ensured that
Euclidean norms were controlled, and then you trace back what that means for individual coordinates, you would
see that either the-- I'm not sure which way around, but either the individual coordinates are growing or
shrinking. The nice thing about this norm is it keeps the size of the individual coordinates actually invariant to the
width, or the amount that the coordinates are changing is also invariant to the width. So that's the consideration.

AUDIENCE: And for the first position, but for the second one, why are we constraining the updates given that we are going to
multiply them by learning rate anyway?

JEREMY

BERNSTEIN:

Yeah, so the goal is the learning rate should be independent of width-- the optimal learning rate should be
independent of width. So we're trying to package all the dimension dependence in the right way into the norm so
that then the learning rate-- after I normalize the updates in that norm, the learning rate, I don't need to change
it with width anymore. So if you don't normalize the updates in a particular norm, then the learning rate itself
needs to account for the dimension dependence.

It may be clearer, because the second homework problem you implement a normalized version of gradient
descent, and you compare two for-- one without an explicit normalization, one with an explicit normalization. So
it's something maybe-- let's just finish the lecture, and we can talk about this more



The last one is depth scaling. And I kind of wimped out a little bit. And also it's like an open research topic, so it's
OK. But remember, the problem was that if I scale the depth, the performance can get worse unless I'm kind of
careful about things.

And what I wanted to do is to think about this expression. Maybe I should have erased that and asked you. But
does anyone know what this-- oh, wait, you can't see what I'm pointing at-- sorry-- what this evaluates to? Does
anyone recognize that? Yeah, it's e to the x. Oops.

And so what I want to make is an analogy, where this is like a compound system. It's a big product of many,
many, many things. But I scale the internals of that thing in a nice way, such that even when I take the number of
terms in the product to infinity, the thing doesn't blow up, and it doesn't go to 0. So that's what I call that kind of
well-scaled depth limit. That's something that many of us know from just math, I guess.

And the crucial thing is that we take x-- we think of this as the input-- and we divide it by L, which is the number
of terms. And then we're going to take a product of L things. And it's really nice that because I divide x by L, this
thing converges to e to the x. But if I put a different factor here-- if I put L squared, I take the limit-- I would get 0.
And if I put square root of L, I take the limit-- it would blow up.

And so it's really thinking about what factor you should put there so that if I take the depth, i.e, the number of
terms to infinity, it remains stable. That's the same of consideration you need to have if you want to train a
residual network, and you don't want the dynamics to either blow up or go to 0 as you take the depth infinity. So
just to write a little suggestion about that, think of a residual network as being a-- think of a single block in a
residual network as being a function which takes x and gives back x plus the block of x.

And the block could be like a little MLP, or it could be an attention layer. It could be some other neural layer.
What do I want to put in front of the blocks such that if I have an infinite number of these blocks, it's still a nice
function. Probably I want to divide by the number of blocks, which I'll call L. So intuitively, you can think of a
residual network a bit like this is one block. And then I can think about raising it to the power L, but that really
means composing it with itself L times. And you really want to be very careful about the block multiplier.

I'm happy to talk-- there is a little more to the story, so I'm happy to talk more about it if anyone wants to talk
about it. And then I put this caveat here, because it's still-- it's not completely-- there's different papers saying
different things. It's not completely the end of the story. Yeah.

AUDIENCE: So does this have anything to do with as your depth increases, your complexity increases given a certain width
as-- yeah, as your depth increases?

JEREMY

BERNSTEIN:

So the question was, does this have something to do with how the capacity or the complexity increases as depth
increases?

AUDIENCE: Yeah, as you increase your depth, your training loss scales up.

JEREMY

BERNSTEIN:

Yeah, so what I'm saying is if-- what I'm trying to convey is if you set up your residual block, and you're not really
careful about it, you can see performance gets worse as you make the depth larger. But I'm trying to say, here's
a way to be more careful about it, to try to stop that problem. And if you look at a transformer code base, which I
think later in the class we actually do, you'll see that a standard transformer block actually doesn't put a 1 over L
multiplier.



The standard thing is actually to put 1 over square root L. And the argument is that the blocks are somehow
incoherent and random with respect to each other at initialization. And if I add up lots of incoherent random
things, it's a bit like doing a random walk. And a random walk moves a distance like square root number of time
steps in the walk, so I should divide by square root that number of things.

So that's the rationale. And it's unclear whether that's the right thing to do or whether just to divide by L is the
right thing to do. But it's really a thing, which is part of a transformer code base, is what block multiplier does
your residual block have? If people have more questions, I'm happy to stay a little at the end and talk about
them, but I think I should just get to the end of the lecture.

So the last thing I wanted to talk about is something that I'm-- I'm working on at the moment. So again, you can
be very skeptical and feel free to not believe me. But the way that we're thinking about scaling and, more
generally, optimization for neural networks is the idea of wanting to build a very modular theory. So I want to--
what does that even mean?

The problem with deep learning is that there's such a zoo of architectures that people want to consider-- that
how can you build an optimization theory that covers all of them? Because someone can always produce a new
architecture, and you're like, I have no idea how to deal with that.

But what if we could bake the construction of the optimization theory into the process of building the architecture
so that whenever you build the architecture, you also get an optimization theory? That would be kind of cool. So
the idea is to build the theory with the neural network. And we have this-- to actually formalize that and think
about that, we have this idea of a module.

And PyTorch already has modules. So if you know a lot about PyTorch, you can think about PyTorch module. But
a module just means something with weights in a weight space, inputs in an input space, and outputs in an
output space.

And notice that that's an abstraction, which can handle an individual layer in a neural network or a full neural
network. They're all members of this class of things. So even the ReLU, you can think of it as having an empty
weight space, so it's also a module. But also a full transformer is also a module.

And the idea is that we're going to write a library. Think about this as writing your own deep learning package,
and it's going to have a module class. And then we're going to write a library of what we call atomic modules.
And these are things like ReLU, linear, Conv, like convolution, embedding. These are like the basic layer types
that are part of the library.

And as you may have seen on the homework potentially, you better write the forward and backward functions for
these things. You better write those by hand for the basic things. You just got to do that. So the forward is the
function the thing expresses, and the backward is its derivatives basically.

But what we say is we're also going to equip our module with something else, which is a norm, which is going to
be a function from its weight space to the real numbers. And we're going to say that, actually, we kind of know
how to do that for the basic layers. As we said, for a linear layer, the good norm is this RMS to RMS operator
norm.



ReLU actually doesn't have weight, so it doesn't need a norm. And you could imagine that maybe we could come
up with a good way to equip the other layer types-- the basic layer types with norms. And we do that with pen
and paper and by hand. And then we're going to write these combination rules.

So we're going to think about if we've got two modules from our library, we're going to have a way of composing
them to give us a new module. And so you may have thought about forward function. It's obvious how to
compose them. It just means compose the forward functions-- do function composition.

The backward, we're just going to do the chain rule. If we compose functions, we know how to compute the
derivative. It's like the chain rule. And then the question is, how should we combine the norms? And I'm just
going to leave this as a question, but it's something we've been thinking about.

So remember that module 1 has its own norm, and module 2 has its own norm. And then we need to find a way
of combining them to give us a norm on the composite or the composed module. And it comes back to that
question of how do we pick our norm?

Do you remember we were talking about steepest descent? And the big question is, how do you pick a norm
that's a good match for your loss function? And it seems horrendous for deep learning because you can have any
architecture that someone can come to you with, and how are you supposed to give them a norm so that they
can do steepest descent? But what if there was an automatic way? What if there was a way to assign norms to
the basic things in the library? And then when people compose them, it automatically gives them a norm on the
composed thing. It would solve the problem in a way. So that's what we're trying to do.

And I'll just quickly tell you-- because someone asked-- you asked is that theory for, or is it all just kind of
heuristics? And that is, and it's a range of things. You notice that the first two references are about infinite width
limits. So people love to study how things behave as the network becomes infinitely big and to try to keep it
stable in that limit.

The third paper is the paper from my collaborators-- also with Phillip-- where we're not trying to do those limits.
And then the fourth one is, I think, a really interesting paper as well. That's the end of the lecture, but I can stick
around if anyone has questions. Thank you.


