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CHAPTER 3: ANTENNAS 

 Antennas couple propagating electromagnetic waves to and from circuits and devices, 
typically using wires (treated in Section 3.2) or apertures (treated in Section 3.3).  In practice 
complicated solutions of Maxwell’s equations for given boundary conditions are usually not 
required for system design and analysis because the antenna properties have already been 
specified by the manufacturer, and must only be understood.  Section 3.1 characterizes these 
general transmitting and receiving properties of antennas, which are derived in subsequent 
sections.

3.1 BASIC ANTENNA PROPERTIES 

 Most antennas reversibly link radiation fields to currents flowing in wires at frequencies 
ranging from sub-audio through the far-infrared region.  Aperture antennas that link radiation 
fields to materials can operate in microwave, infrared, visible, ultraviolet, X-ray, gamma ray, and 
even higher energy regimes.  The design of lens and mirror systems for coupling radiation 
directly to materials is generally called “optics”, and the use of these optical techniques for 
coupling radiation to wires or waveguides is often called “quasi-optics”.  For the most part, all of 
these systems can be characterized by the definitions that follow. 

 A transmitter with available power TP  will radiate TRP , where the antenna radiation

efficiency TR T  P P 1, and typically is close to unity for most antennas.  Ideally, this power 
would be radiated exclusively in the intended direction, but in practice some fraction is radiated 
instead to the side into sidelobes, or to the rearward 2  steradians in the form of backlobes.

 The ability of an antenna to radiate energy in a desired direction is characterized by its 
antenna directivity, D(f, , ), which is the ratio of power actually transmitted in a particular 
direction to that which would be transmitted had the power PTR been radiated isotropically; 
therefore, directivity is sometimes called “directivity over isotropic”.  The directivity is defined 
as:

   
TR

P f , ,
D f , ,   

P 4
  (3.1.1) 

where P(f, , ) (watts/steradian) integrated over 4  steradians equals TRP .  Therefore 

   
4

D d 4   (3.1.2) 
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 A more common characterization is antenna gain G(f, , ), which is the ratio of the power 
actually transmitted in the direction ,  to that which would be radiated if the entire available 
transmitter power PT were radiated isotropically.  That is: 

   
R T

P f , ,
G f , ,   D f , ,

P 4
 (3.1.3) 

Sometimes the term “gain over isotropic” is used to facilitate memorization of the definition. 

 In cases where the absolute values of the gain or directivity are no of interest the antenna
pattern T(f, , ) is often used, where it is the same as the gain or directivity normalized so its 
maximum value is unity. 

 These simple definitions already permit us to calculate interesting quantities.  For example, 
consider the MIT Haystack radar antenna which has an approximate gain of 73 dB at a 

wavelength of one centimeter.  The flux density Wm 2 incident on various targets when one-
megawatt radar pulses are transmitted can be calculated using: 

   2 T
2

P
P Wm G ,

4 R
  (3.1.4) 

Radar pulses directed toward the moon, Jupiter, and the star Antares at distances R 3 108,

1012, and 3 1016meters yield fluxes of 10 5, 10 12, and 10 21 watts/meter2, respectively.  
Note that if we have a receiver near Antares with a noise temperature TR = 10K and our 

bandwidth is 1 Hz, then its noise equivalent power is kTB 10 22 watts, which is one tenth the 
power of the incoming Haystack radar signal incident upon a one-square-meter patch of 
receiving aperture.  As we shall see, receiving apertures capturing far greater areas are readily 
built, and so interstellar communications is quite practical provided we are content with a 
propagation delay of a year or more and the costs of installing the remote station. 

 The receiving properties of antennas are characterized by the antenna affective area
A(f, , ), where the available power at the output of the receiving antenna Pr (f ) is the product of 
the effective area of the receiving antenna in direction ,  and the flux density S(Wm-2Hz-1)
incident from that direction; i.e.: 

   1
r 4

P f A f , , S f , , A f , , I f , , d WHz  (3.1.5) 

For our Antares example, the received power would be 10 17 W on Antares if the antenna there 

had an effective area A(f, , ) of 104m2 in the direction of Earth.  If kTB 10 22 watts then the 
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1-Hz SNR 105 and the 410 -Hz SNR = 10, which, as we shall see, is adequate for 
communicating good voice and acceptable music signals. 

 As we shall prove for the case where reciprocity applies, the receiving and transmitting 
properties of antennas are simply related:  they both have the same antenna pattern.  This can be 
derived from the principle of detailed balance, which applies for reciprocal antenna structures.  
Consider an arbitrary antenna radiating power P(f, , ) within the small solid angle d , as 
suggested in Figure 3.1-1. 

Figure 3.1-1 Antenna system exhibiting the principle of detailed balance 

The principle of detailed balance says that the power received within each d  matches the 
power radiated by an antenna into the same solid angle d  when that antenna is driven by a 
matched load in thermal equilibrium with a radiation field at temperature ToK.  This power 
radiated into d  is: 

   radP f , , d df kTdf 4 Gd  (3.1.6) 

Using the definition of antenna effective area, the power the antenna receives within the solid 
angle d  is: 

   B
r 2

2kT ,1P df  A f , ,  d
2

 (3.1.7) 

where the factor of 1/2 results because only one polarization can received by an antenna 
connected to a single-mode TEM transmission line, and the total blackbody radiation associated 
with the brightness temperature TB T  in the Rayleigh-Jeans limit is given by (2.1.28).  If we 
equate (3.1.6) and (3.1.7) in accord with the principle of detailed balance, we obtain the very 
important and general equation: 

   
2

4G f , , A f , ,   (3.1.8) 

This expression assumes that hf << kT and that signals arriving from different directions are 
uncorrelated so that their powers superimpose.  Detailed balance also assumes system reciprocity 
or the absence of magnetized plasmas or ferrites. 

T°K Zo Zo

d  TB (f, , )

P(f, , )
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 These expressions for the receiving and transmitting properties of antennas can be combined 
to yield the performance of radio links such as the one illustrated in Figure 3.1-2 

Figure 3.1-2 Radio link

Our received power Pr  is simply the product of the effective area Ar of the receiving antenna 
and the transmitted flux [Wm-2] incident upon it; i.e.: 

   t
r t r2

P
P G A    Watts

4 r
  (3.1.9) 

The system designer maximizing Pr  might be tempted to let the separation r between the two 
antennas approach zero, which would suggest received powers approaching infinity.  The 
solution to this paradox is that the distance r must be greater than some minimum for (3.1.9) to 
be valid.  For example, let Pr Pt  at this minimum distance rmin , and let the effective areas of 

the two antennas be equal to 2 2D m .  Then follows from (3.1.9) that: 

   
4t r t r

2 2 2 2 2
min min min

G A A A D1
4 r r r

  (3.1.10) 

where we have also used (3.1.8).  This suggests 2
minr D , although in practice we usually 

require that 2r 2D  in order to use (3.1.9) with confidence, as explained later. 

 Although power is usually the parameter of interest in communications or radar systems, 
antenna temperature is often preferred when passive sensors for radio astronomy or remote 
sensing are of interest.  Equating the power received by an antenna (3.1.5) to the Rayleigh-Jeans 
power in a transmission line (2.1.16), and integrating over all angles, we obtain: 

Pt Pr

Gain = GT
r

r r2
4G A



101

   -1
A

4

kT W Hz A( , )I( , ) d  (3.1.11) 

where the intensity I( , ) and effective area A( , ) both apply to the same specific polarization, 

and the units of intensity are 2 1 1Wm Hz ster .  If the antenna can intercept both polarizations, 
then each polarization would yield its own separate TA .  Substituting the Rayleigh-Jeans 

expression for intensity 2
BI 2kT , divided by two to reflect the fact that only one 

polarization is involved, yields the desired expressions for antenna temperature: 

   A B2
4

1T A( , )T ( , )d   (3.1.12) 

   A B
4

1T G( , )T ( , )d4
  (3.1.13) 

These expressions assume that the power arriving from different directions can be superimposed, 
which requires that signals arriving from different directions be statistically independent.  
Typical exceptions to this might include coherent transmitted signals that arrive at the receiving 
antenna by different paths and interfere constructively or destructively, depending on frequency-
dependent phase differences. 

 Often the target of interest subtends a solid angle small compared to the beamwidth of the 
antenna.  Then the integral over angle in (3.1.13) responds principally to the average brightness 
temperature TB of the source: 

   
S

B Bo o
A s s 2

S

G T A T1T G( , )T ( , )dB4 4
 (3.1.14) 

where s is the source solid angle as viewed from the antenna; Go and Ao are the on-axis 
antenna gain and effective area, respectively.  This configuration is illustrated in Figure 3.1-3. 
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Figure 3.1-3 Antenna viewing a small thermal source 

 Equation 3.1.14 for source antenna temperature can usefully be interpreted as the average 
brightness temperature of the source BT  times a coupling coefficient less than unity.  A simple 
expression for this coupling coefficient results if we define the useful concept of beam solid 
angle A  so that : 

   o A r
4

G G d 4   (3.1.15) 

where this relation between G( , ) and A  is suggested by Figure 3.1-4(a).  The beam solid 
angle A  (steradians) usually approximates the solid angle contained within the antenna beam’s 
half-power contour.  The solid angle s  of an unresolved source is related to A  as suggested 
in Figure 3.1-4(b), so that (3.1.15) becomes: 

   s
BA R

A
T T   (3.1.16) 

where the factor of s
R

A
 in (3.1.16) is the coupling coefficient between source brightness BT

and AT .

average source TB source solid angle

small source, s << BGo

B sT ,
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Figure 3.1-4 Antenna beam solid angle in relation to (a) the antenna pattern 
and (b) source solid angle 

 There are three standard ways to characterize small thermal sources.  The most complete 
description is TB ( , ,f ) for each of two polarizations, which may be reduced to two average 

brightness temperatures BT .  The third characterization is the source flux density
2 1S f Wm Hz  for each polarization, which is the integral of the source intensity over the 

source solid angle: 

   2 1

s

S f Wm Hz I(f , , )d  (3.1.17) 

The utility of the source flux density is that it is independent of the antenna used to observe it.  
The international scientific unit for flux density is the Jansky, which is defined as 

10 26 Wm-2Hz 1.

3.2 WIRE ANTENNAS 

 To accurately compute the electromagnetic properties of wire antennas it is necessary to 
solve Maxwell’s equations subject to boundary conditions imposed by the wires and their 
surrounding environment.  Since this problem is often complicated, it is customary and usually 
adequate to assume the wire antenna is located in free space and to ignore to first order any 
radiative interactions between one part of the wire array and another.  This approximation works 
well for most wire antennas less than a wavelength across.  Since Maxwell’s equations are linear,  
the radiation from such wire antennas can be approximated as the linear superposition of the 
radiation produced by each infinitesimal sub-element of such an antenna.  Such sub-elements act 

(a)

(b)

A

A

Go

sBs ,T
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as short dipole antennas, the properties of which can be derived directly from Maxwell’s 
equations, as follows. 

 First it is useful to review Maxwell’s equations, which govern the electric field 
E(volts/meter)  and the magnetic field H(amperes / meter) .  Their related variables are the 

electric displacement 2D E (Coulombs/meter )  and the magnetic flux density 

B H (Teslas) , where  is the permittivity of the medium and in vacuum is 
12

o 8.8542 10  farads/meter, and  is the permeability and in vacuum is o 4 10 7

henries/meter.  One Tesla is defined as one 2 4Weber / meter 10 gauss.  Maxwell’s equations 
and their static limits are: 

Maxwell’s
equations

 Statics Complex Maxwell’s 
equations

BE
t

=0 E j B (3.2.1)

DH J
t

-2J a m H J j D (3.2.2)

D -3C m D (3.2.3)

B 0 = 0 B 0 (3.2.4)

where J  is the current density (amperes/meter2) and the  is the charge density 
(Coulombs/meter3).  The dell operator is defined as: 

     x x y y z zˆ ˆ ˆ   (3.2.5) 

where x̂, ŷ,  and ẑ  are unit vectors in Cartisian coordinates. 

 Consider the problem suggested by Figure 3.2-1, where a source within volume Vq
produces fields observed by a person at point p, which is separated from any particular point q in 
the source by the distance rpq .
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Figure 3.2-1 Source and observer of electromagnetic radiation 

Since the radiation expressions closely resemble the static solutions to Maxwell’s equations, it is 
useful to begin with the static solutions themselves. 

 In the static limit, since E 0 :

   E    (3.2.6) 

where  is the electrostatic potential, which is a position-dependent scalar variable.  Similarly, 
since B 0 ,

   B A    (3.2.7) 

where A  is the vector potential. 

 The electrostatic potential p at point p may be found by combining (3.2.3) and (3.2.6) in 

several steps to yield: 

   

q

q
p q

pqV

1 dv  [volts]
4 r

  (3.2.8) 

Similarly, (3.2.2) and (3.2.7) can be combined in the static limit to show: 

   

q

q
p q

rqV

J
A dv   [Tesla m]

4 r
  (3.2.9) 

rpq

vq volume of source 

p

q
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Thus in the static limit it is simple to solve for the electromagnetic fields E  and H  by first using 
(3.2.8) and (3.2.9) to relate the source charge density distribution q  and current density 

distribution qJ  to their corresponding potentials, and then to differentiate these potentials by 

using (3.2.6) and (3.2.7). 

 The dynamic solutions to Maxwell’s equations can be derived in a similar manner by noting 
the divergence of B is zero so that, as before: 

   B A    (3.2.10) 

It can then be shown that the dynamic solutions to Maxwell’s equations for the vector potential 
at point p are: 

   

q

q pq
p q

pqV

J t r c
A (t)  dv

4 r
 (3.2.11) 

where we integrate over the entire volume of the source region Vq .  It is interesting to note that 

the  dynamic solution for vector potential (3.2.11) is the same as the static solution (3.2.9) except 
that the result depends not on the instantaneous current density, but rather on the current density 
as it existed pqr c  in the past, where c is the velocity of light.  That is, the dynamic solution is 

the same as the static solution except that we must wait while the information about the current 
density at any point q propagates to the observer at point p.  The velocity of light in vacuum is 

8 -1
o oc 1 3 10  ms .  In the sinusoidal steady state (3.2.11) reduces to: 

   
pq

q

jkr
q

qp
pqV

J e
A dv

4 r
  (3.2.12) 

where the propagation constant k is: 

   o ok / c 2 /   (3.2.13) 

 Determining the electromagnetic fields radiated by dynamic charges and currents is then 
straight-forward.  We may first use (3.2.12) to calculate the vector potential pA  from the given 

source current distribution qJ .  The magnetic field B r  can be found from the vector potential 

distribution A r  using (3.2.10).  The electric field distribution E r  is: 
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   E H j t   (3.2.14) 

which follows from (3.2.2). 

 We may now use this simple approach to find the electromagnetic fields radiated by an 
elementary dipole antenna, often called a Herzian dipole.  The typical Herzian dipole appears in 
Figure 3.2-2 where a sinusoidal current oI  in a short wire segment of length d radiates fields 

detected by an observer at point r >> d. 

Figure 3.2-2 Herzian dipole antenna 

Conservation of charge uniquely relates the current Io to the oscillating charges Q at the ends of 

the short dipole, where we assume that these two charges have a zero sum.  Simple expressions 
are obtained in the spherical coordinate system where the dipole is aligned with the z-axis at the 
origin and the angles  and  are defined to be zero along the z- and x-axes, respectively.  The 
electromagnetic fields produced close to the dipole in the near field, where: 

   r
2

   (3.2.15) 

are called quasistatic fields because they approximate the electromagnetic fields produced by 
static current and charge distributions.  They vary slowly in time and are proportional to Io and 

Q, respectively, which are necessarily 90  out of phase.  Superimposed on these quasistatic 

electromagnetic fields are the radiated fields, which dominate only in the far field where: 

z

d

Q(t) 

-Q(t) 

y

x

S E H

E

oI

r
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   r
2

   (3.2.16) 

In the near field of a Herzian dipole the time-average electric energy storage dominates the 

average magnetic energy stored.  In the far-field region where r
2

, the radiated fields 

dominate the quasistatic fields.  This far field is distinct from the “far-field” region associated 
with antenna arrays or aperture antennas where r is sufficiently great that the antenna pattern is 

no longer a function of distance from the antenna; there r 2D2 , where D is the maximum 
dimension of the antenna or antenna array, as discussed further later. 

 In the far field of a Herzian dipole the radiated electric field is approximately: 

   jkr
o

kId sin ˆE j e   
4 r

  (3.2.17) 

where o o o 377 , and is called the characteristic impedance of free space.  Using 

(3.2.1) we can readily find: 

   jkrokI d sin ˆH j e
4 r

  (3.2.18) 

 The radiated power density (Wm-2) is generally characterized by the Poynting vector, which 
is defined as: 

   S(t)  E(t) H(t)   (3.2.19) 

   S  E H   (3.2.20) 

where the time-average power density is: 

   21S(t) Re S Wm
2

  (3.2.21) 

For a short dipole antenna: 

   
2

o oI d sin 
ˆS(t, ) r

2 2 r
  (3.2.22) 

which corresponds to a doughnut-shaped radiation pattern with a null along the z-axis, as 
suggested in Figure 3.2-3. 
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Figure 3.2-3 Antenna pattern of a z-oriented Hertzian dipole 

By integrating over all angles ,  we can find the total power transmitted: 

   
2

o
t e

4

I d1 ˆP R S r d  watts
2 3

 (3.2.23) 

Combining the definition of antenna gain 2
tG S(t) P 4 r  with (3.2.22) and (3.2.23) yields 

the gain of a short-dipole antenna: 

   23G sin  
2

  (3.2.24) 

 Any antenna coupled to a linear reciprocal electromagnetic environment exhibits a complex 
impedence Z(f )  as seen from the antenna terminals where: 

   rZ(f ) R (f ) jX(f )   (3.2.25) 

where R r is the radiation resistance of the antenna and jX is its reactance, as illustrated in 
Figure 3.2-4. 

Figure 3.2-4 Equivalent circuit for an antenna 

z

y

S

jX

reactance

+

-

oI Rr = radiation resistance V
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The radiation resistance is simply related to the drive current Io and the resulting total 

transmitted power Pt , which can be found from (3.2.23): 

   2
t ro

1P I R
2

  (3.2.26) 

Thus any antenna as seen from the circuit to which it is connected, has a resistive component 
Rd R r , where Rd consists of any dissipative losses in the antenna structure itself, and the 
radiation resistance R r corresponds to power which is radiated away and dissipated remotely.  
The reactance of the antenna jX is positive imaginary if the near fields of the structure are 
predominantly inductive, i.e. if magnetic stored energy exceeds electric stored energy, or 
negative imaginary if the structure is predominantly capacitive. 

 The equivalent circuit of a short-dipole antenna can be readily computed.  Consider the 
short-dipole illustrated in Figure 3.2-5, where the antenna is connected to the external circuit by 
wires joined at its center. 

Figure 3.2-5 Short-dipole antenna and its current distribution 

The wires connect to the circuit by a small TEM line that does not radiate or significantly alter 
the electromagnetic fields produced by the short-dipole antenna itself, because those fields are 
perpendicular to the TEM line.  The current distribution on a physical short-dipole antenna must 
necessarily go to zero at the ends of the wire.  The reasons for the approximately triangular 
current distribution I(z) will be explained shortly.  The expression for a Herzian dipole (3.2.17) 

+

–
d

Io
I(z)

0
deff

z

oI

v
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assumed a uniform current oI  over the length d of the the dipole and therefore must be modified 

when the integral (3.2.12) for pA  is computed; that is: 

   effo oI d I d I(z)dz   (3.2.27) 

where the dipole effective length effd d 2  because of the triangular current distribution which 

results when d << /2 .

 When we substitute into (3.2.26) the expression for the total power transmitted Pt  by a 
short-dipole antenna, we obtain the radiation resistance for a short-dipole antenna: 

   2
r o eff

2R d  ohms
3

  (3.2.28) 

 Simple examples illustrate some of the problems associated with the practical use of short-
dipole antennas.  Consider an AM radio station broadcasting at 1 MHz (  = 300 m) with an 
antenna of effective length deff 1 meter ; then (3.2.28) yields R r 0.01 ohms, which is very 
badly mismatched to typical amplifier impedances of 50-100 ohms.  Equation 3.2.28 suggests the 
effective length should be somewhat greater than one-quarter wavelength in order to achieve 
high radiation efficiencies, but at these lengths (3.2.28) is beginning to lose validity because we 
assumed d << /2 .  To mitigate this impedance matching problem most sensitive long-
wavelength radio receivers employ resonant structures or transformers to match the antenna to 
the input amplifier. 

 Wire antennas of arbitrary shape can be analyzed if we assume their current distributions are 
known.  Often this is a good approximation because the current distribution is approximately that 
of a TEM transmission line.  When the current distribution I r  is known we can use (3.2.17) to 

find the far-field E( , ) .

 Consider the arbitrary antenna in Figure 3.2-6, which radiates towards a person at point p at 
an angle ( ) which is a function of position  along the wire antenna.  The antenna current I( )
and distance r( ) to the observer are also functions of position along the wire. 
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Figure 3.2-6 General long-wire antenna 

The far field produced by a general long-wire antenna of length L is: 

   jkr( )
ff

L

jk ˆE ( ) I( )e sin  ( )d
4 r

 (3.2.29) 

from which the total transmitted power and radiation resistance can be computed. 

 The circumstances under which the current distribution on wire antennas can be reasonably 
estimated using the TEM approximation is suggested by the observation that the electric and 
magnetic fields in the immediate vicinity of a wire antenna contain most of the energy associated 
with the current I , and therefore control the velocity of propagation and the ratio of current to 
voltage.

Figure 3.2-7 Similarity between the TEM fields in a coaxial cable and 
those surrounding free-standing wire antennas 

Consider the similarity between a coaxial cable and an isolated wire over a ground plane, as 
illustrated in Figure 3.2-7.  In a coaxial geometry both the electric and magnetic fields decay as 
1/r and the stored electric and magnetic energies decay as 1/r2; therefore most of the energy near 
a wire antenna is stored within a few wire radii.  Farther from the wire the fields weaken and 

oI
+
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v
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bend to satisfy boundary conditions imposed by the surrounding environment.  These more 
remotely stored energies are too small to control the current distribution within the antenna itself, 
which closely approximates that of a TEM transmission line. 

 Perhaps the most popular wire antenna is the half-wave dipole, which is a center-fed straight 
wire antenna of length /2, as illustrated in Figure 3.2-8(a).  Since the currents at the ends must 
go to zero it follows that they have a cosine form. 

Figure 3.2-8 Current distributions on (a) half-wave and (b) full-wave antennas 

Provided the antenna is isolated in space and the wire diameter is much smaller than the antenna 
length L, then R r 73  and the reactance X is approximately zero for L 2 .  The reactance 

X of a full-wave antenna for which L , as illustrated in Figure 3.2-8(b), is also approximately 
zero, while the radiation resistance is somewhat greater than 73  because it radiates slightly 
more total power into two conical lobes. 

 The general expression for a center-fed wire of length L is: 

   
jkr

o
ff

j I e kL kLˆE cos cos  cos  
2 r sin 

 (3.2.30) 

which, for L = /2, reduces to: 

   
jkr

o
ff

j I eˆE cos cos  
2 r sin 2

 (3.2.31) 

The antenna pattern for the half-wave dipole is suggested in Figure 3.2-9.  The radiation from a 
half-wave dipole is slightly more directive than that of a short dipole because signals radiated 
closer to the z-axis tend to cancel, particularly when contributions from the two ends one-half-
wavelength apart are considered. 

2
I(z)

z

oI oI(a) (b)

I(z,t)
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Figure 3.2-9 Antenna pattern for a half-wave dipole 

 The TEM model for current distribution on wire antennas permits approximate 
understanding of other standard configurations such as the off-center-fed wire antenna of Figure 
3.2-10.

Figure 3.2-10 Current distribution on an off-center-fed wire antenna ~0.7  long 

The antenna in Figure 3.2-10 is fed a small fraction of a wavelength from one end so that the 
input current Io is much smaller than the peak current distribution 2Io one-quarter wavelength 
from the open-circuit end of the long wire.  This current distribution follows directly from the 
TEM-current-distribution assumption and the location of the current feed relative to the two ends 
of the antenna.  By placing the feed point even closer to the left-hand end of the antenna, the 
ratio between the peak current and the drive current can be made even greater than the illustrated 
ratio of two.  Thus this off-center-fed antenna exhibits transformer-like qualities.  Because most 
of the power in this antenna will be radiated as if from a half-wavelength dipole carrying 2Io, its 
radiation resistance is greater than that of a half-wave dipole, although its reactance X is 
capacitive as a result of the excessive electric energy stored to the left of the current null near the 
feed point. 

 The TEM model for current distribution breaks down when different parts of a wire antenna 
system interact strongly, or when radiation itself begins to alter the current distribution.  For 
example, the long-wire antenna illustrated in Figure 3.2-11 radiates sufficiently well that the 
TEM wave traveling from the feed point to the right toward the long end of the antenna decays 
approximately exponentially.  The result is a standing wave in the one-half wavelength segment 

o2IoI

I(z)
z

oI

E( )

short dipole, d << 2

d 2
d

z z
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at the left end, a traveling wave portion to the right, and a standing wave portion near the right-
hand end where the decaying wave is reflected. 

Figure 3.2-11 Currents on a long-wire antenna 

 An antenna array consists of N antenna elements for which the element antenna patterns in 
isolation are identical and similarly oriented, as suggested in Figure 3.2-12.  Sometimes antenna 
arrays are comprised of sub-arrays which may be oriented or radiate differently.  Assume the 
phase lag between the ith antenna element and the observer at point p is i2 r , and that the 

electric field contribution at p from element i in the ,  direction is o ij ( , ) j ( , )
i oA E ( , )e ;

that is: 

   o i

N
j ( , ) j ( , )

p o i
i 1

E E ( , )e A e  (3.2.32) 

where the current feeding the ith antenna is i oA I .  The gain of the antenna array is proportional 

to the square of (3.2.32) or: 

   i

2
2 2 j ( , )

o i
i

G( , ) E E , A e  (3.2.33) 

This antenna array equation (3.2.33) shows how (3.2.32) can be factored into an element factor 
2

oE ( , )  that characterizes the presumably identical directional properties of the elements, and 

an array factor that characterizes the directional effects of the relative positions and current 
amplitudes iA  associated with each of the separate elements i.  This useful expression simplifies 

understanding the radiation properties of groups of antenna elements, and also of single elements 
for which the current distribution has repetitive qualities. 
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Figure 3.2-12 General antenna array 

 Although the array factor is often designed to produce only one main lobe, sometimes the 
antenna elements are spaced more than /2 apart so as to produce multiple grating lobes.  For 
example, consider the case of two identically oriented antenna elements spaced  apart and 
driven in phase.  In this case the array factor will be maximum along the axis joining the two 
elements and also in the plane perpendicular to that axis; in all of these directions the radiated 
contributions from the two elements are in phase.  However, these two equal radiated 
contributions exactly cancel along two conical surfaces at angles of ± 60  with respect to the 
main axis. 

 Wire antennas often operate in the vicinity of reflectors such as the ground, ocean, or planar 
metallic surface.  Consider a radiating current J  terminated in two charge reservoirs, as 
illustrated in Figure 3.2-13. 

Figure 3.2-13 Image currents and charges 

The boundary condition imposed by a perfectly conducting sheet ( ) is that the electric 
fields intersecting it must be perpendicular, and magnetic fields at the boundary must be parallel 
to the surface, as suggested in Figure 3.2-13.  But these boundary conditions for the electric 
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fields are equivalent to those imposed by having image charges and currents on the opposite side 
of the conductor, as suggested in the figure.  Since the electric fields satisfying the boundary 
conditions imposed by the conducting sheet are identical to those produced by the boundary 
conditions imposed by having image charges and currents instead, the electric and magnetic 
fields associated with the image charges and currents must be identical above the ground plane.  
Replacing mirror surfaces with equivalent image charges and currents greatly simplifies 
computing the total radiated fields because those fields can be found by superimposing the fields 
radiated by both the original and image sources.  Superposition of the effects of such similar 
sources is often handled by treating the separate elements as components in an antenna array. 

 An example of the application of the antenna array equation (3.2.33) to long-wire antennas 
is suggested in Figure 3.2-14.  We may consider the full-wavelength antenna as composed of two 
half-wavelength antennas having identical radiating properties, one excited positively and the 
other negatively, or 180  out of phase.  The array factor exhibits maxima along the positive and 
negative z-axis, and nulls in the x-y plane where the contributions from the two elements cancel 
because they are out of phase.  The element factor is simply that of a half-wavelength dipole, and 
is shaped like a doughnut with a vanishingly small hole.  When the dumbbell-shaped  array 
factor  is  multiplied by  the doughnut-shaped element factor the result is the four-lobed pattern 
suggested in Figure 3.2-14.  Arriving at this result is much quicker using the antenna array 
factorization approach than it would be by direct computation. 

Figure 3.2-14 Full-wavelength antenna considered as a two-element array 

 A more elaborate long-wire antenna that can be modeled as an antenna array is the antenna 
used by Jansky in 1927 when discovering cosmic radiation and opening the field of 
radioastronomy.  The basic concept is illustrated in Figure 3.2-15, where a long wire composed 
of 13 half-wavelength straight segments is driven from a single central driving point excited by 
Io.
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Figure 3.2-15 Jansky long-wire antenna 

If we consider the bent wire to be an open-circuited TEM transmission line, we would expect 
current nulls spaced at intervals of /2 relative to the ends of the wire; these current nulls would 
occur at the bends in the wire, and currents in the straight segments would periodically have the 
directions illustrated.  For this instantaneous current distribution, the radiated phasors from each 
of the vertical x-oriented wires would add in phase for radiation in the z directions.  Because 
the electric field in the z directions would be 7 times the field contributed by one element alone, 
the antenna gain in these directions would be 72 times greater than the gain for only one element 
radiating in that direction.  Radiation in the y directions has both an x- and a z-polarized 
component.  There are six z-directed currents in the antenna, and so the z-polarized gain in the 

y directions is 62 times the gain available from one such current element.  In contrast, the x-
directed currents radiate phasors in the  y-directions which cancel, all but one, and so the x-
polarized gain in the  y-direction is exactly that of a single current element.  Calculation of the 
exact antenna gain would require integration of the radiated power over 4  steradians, and 
comparison to isotropic radiation.  The radiation pattern of the Jansky antenna is also suggested 
in Figure 3.2-15.  The actual Jansky antenna employed two such bent wires parallel to one 
another spaced /2 apart so that the y-radiated signals canceled, eliminating all but the two z-
directed main lobes. 

 The long-wire antenna of Figure 3.2-11 can also be considered as an array antenna for 
which the contributions of each resonant half-wavelength segment tend to cancel in directions 
perpendicular to the wire and along the main axis, so the main lobe is conical, radiating at an 
angle of perhaps 20  to the main axis of the wire, as suggested in Figure 3.2-16. 

2

oI

2

x

z
y

x
z

y



119

Figure 3.2-16 Vee antenna composed of two long-wire antenna elements 

The antenna pattern created by the two wires at an angle is dominated by the coherent addition of 
the signals radiated by the two cones in their overlapping central direction, as suggested by the 
figure.  Although such an antenna has many sidelobes, it does have the virtue of a very wide 
bandwidth, simple construction, and substantial directivity for very long wavelengths.  Because 
such antennas are typically suspended from poles above a ground plane, the image of the vee 
antenna doubles the effective size of the array and produces an enhancement at an angle above 
the horizon that depends on the height of the antenna and the wavelength of interest.  Thus such 
antennas are effective at launching long wavelengths toward the ionosphere for long distance 
communications.

 Another common use of mirrors is shown in Figure 3.2-17.  In this case the current Io drives 

a half-wavelength dipole located /4 in front of a parallel reflecting mirror.  The mirror produces 
an out-of-phase image current /2 from the driving current so that the two radiated components 
add coherently in the forward z direction.  The overall pattern can be understood as the product 
of the array factor, which has a broad lobe in the +z direction, and the element factor, which is 
the doughnut-shaped antenna pattern of a single half-wavelength antenna with a vanishingly 
small hole oriented along the axis of the radiating dipole.  the product resembles the array factor, 
which is non-zero only in +z direction. 

Figure 3.2-17 Half-wavelength dipole positioned /4 in front of a mirror 
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 Another common use of a mirror is with a short-dipole wire antenna mounted perpendicular 
to the conducting surface of an automobile, as illustrated in Figure 3.2-18.  In this case the 
vehicle surface approximates a ground plane through which a wire of length D extends at right 
angles; a radio receiver is connected to the base of the wire antenna and to the ground plane.  The 
image current corresponding to the effects of the ground plane is in the same direction as the 
current flow above the ground plane, as suggested in the figure, so that the combined currents are 
those of a short-dipole antenna of physical length 2D and effective length D, yielding a 
traditional doughnut-shaped short-dipole antenna pattern.  Such antennas are commonly used for 
automobile radios in the broadcast band near 1 MHz ( =300m) and have a length of ~1 meter.  
In the FM band a one-meter wire is approximately /2 long for channels near 100 MHz.  The 
irregular shape of most cars and their windows effectively “blurs” the equivalent image charge 
with limited consequences. 

Figure 3.2-18 Short-dipole automobile antenna 

 Most wire antennas are very simple structures for which analytic methods give acceptable 
approximate solutions.  Recent computer tools have advanced in power so that they are generally 
used instead.  These software tools now permit reasonably complex antennas to be analyzed with 
useful accuracy.  In general, the more highly reactive and complex the antenna structure and the 
greater the total length of wire to be studied, the less accurate are the resulting computed antenna 
pattern and impedance predictions, particularly in the nulls or low-amplitude sidelobes. 

 A representative modern antenna design technique is that of genetic algorithms which can 
produce antennas of almost random configuration.  Genetic algorithms optimize with respect to 
some desired performance metric, which typically includes a cost for deviations from the desired 
target pattern and impedance, plus a cost for the mass of the resulting structure.  Current 
commercial software computes antenna patterns with sufficient accuracy to permit genetic 
design of wire antennas of a few wavelengths if they are not too reactive.  Genetic algorithms 
randomly vary a vector that characterizes the antenna so as to optimize the performance metric. 
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Figure 3.2-19 Example of a wire antenna designed using a genetic algorithm 

Vector parameters might include, for example, the lengths of each straight segment of the 
antenna quantized in units of /16, and the angles between successive elements, similarly 
quantized.  Experiments typically yield rats-nest configurations similar to that of Figure 3.2-19 
that agree reasonably well with physical verification units.  In general, constraining the 
configuration to design families or symmetries known to perform well can accelerate this 
optimization process. 

 Antennas can also be constructed of multiple wires, one combination of elements being 
connected to the transmitter or receiver, and the others being freestanding elements that 
coherently scatter radiation to produce the overall antenna pattern.  Scattering can be understood 
as reception by a short-circuited dipole, followed by re-radiation by the induced current, as 
discussed later 

The receiving properties of dipole antennas are also extremely important in their own right, and 
are derived below, beginning with the open-circuited short-dipole antenna illustrated in Figure 
3.2-20.  The results can be generalized to any reciprocal antenna The figure assumes a uniform 
plane wave is incident from  = 90  with linear polarization in the z direction. 

ground plane
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Figure 3.2-20 Electromagnetic fields and potentials near a short-dipole antenna 
intercepting a plane wave 

Because this structure is much smaller than a wavelength, the electromagnetic field solution will 
be quasistatic, free from the complexities imposed by dynamics or radiation.  That is, we can 
assume that a uniform electric field applied to the short-dipole originates from positive and 
negative charges at infinity, as illustrated.  The symmetry of this configuration mandates a planar 
equipotential surface at the midpoint between the two halves of the dipole and perpendicular to 
the applied electric fields, as illustrated.  If the wires are sufficiently thin, similar planar 
equipotentials located at (a) and (b) bisect each of the two wire elements.  These two 
equipotentials differ by the open-circuit voltage vo.c.  at the antenna terminals.  Other 
equipotential surfaces are parallel to the first, but must deflect around the conductors, also as 
illustrated.  Once these equipotential surfaces are established, it is easy to visualize the associated 
electric fields, which must be everywhere perpendicular to the equipotentials.  Far from the 
dipole antenna the electric field is straight and parallel to the z-axis, while closer to the dipole it 
becomes more sinuous.  Some of the electric fields lines actually intersect the metallic elements, 
but always perpendicular to their perfectly conducting surfaces.  If the distance between the 
planes (a) and (b) is deff, then it is easy to see from the figure that: 

   o.c. eff effˆv E z d E sin  d  (3.2.34) 
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where  is the angle between the z-axis and direction of arrival for the incidental plane wave.  
Thus o.c.v  is maximum when the incident electric field is parallel to the dipole axis. 

 Equation 3.2.34 can be combined with the equivalent circuit for a passive short-dipole 
antenna to yield the maximum power that can be extracted from the incident wave.  Figure 3.2-
21 illustrates how such an antenna equivalent circuit might be matched to receivers so that the 
maximum power can be extracted. 

Figure 3.2-21 Equivalent circuit for a short dipole antenna matched to maximize received power 

The receiver reactance should cancel that of the short-dipole antenna, and the real part of the 
impedance should equal the radiation resistance R r of the antenna as given by (3.2.28).  When 
the load is matched to the antenna the maximum power received is: 
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where the open circuit voltage is divided across the two resistances. Equation 3.2.36 follows 
from 3.2.35 by substituting the radiation resistance expression (3.2.28) for a short-dipole antenna 
and utilizing the fact that the effective length deff for a transmitting short-dipole antenna  is the 
same d/2 obtained here in the thin-wire limit.  Equation 3.2.36 represents the product of the 
incident flux density (W m-2) and a factor that is a function only of the antenna and incident 
wave geometry; this second factor is the effective area Ae( , ) of the short-dipole antenna: 
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where G( , ) (3/ 2)sin2  (3.2.24).  This very important result, which relates the gain and 

effective area of a short-dipole antenna by a simple factor 2 4 , can be extended to all 
reciprocal antennas, as follows. 

 Equation 3.2.37 applies only if the antenna is reciprocal, which is generally the case if there 
are no magnetized plasmas or ferrites in its vicinity.  Equivalently, if we regard a set of antennas 
linked by a reciprocal electromagnetic medium as a single N-port network characterized by the 

impedance matrix Z  or an equivalent scattering matrix S , then these matrices must equal their 
own transposes.  This is true if the permeability, permittivity, and conductivity matrices 
characterizing all media in the vicinity of the antenna also equal their own transposes. 

 To prove that (3.2.37) applies to an arbitrary antenna of effective area A1 and gain G1,
consider it as radiating towards a receiving short-dipole antenna characterized by A2 and G2 in 
the direction of the transmitting antenna, as illustrated in Figure 3.2-22.  The figure also 
illustrates equivalent circuits for both the general antenna and the short-dipole antenna, where the 
mutual impedance coupling these two antennas is 21 12Z Z , assuming reciprocity. 

Figure 3.2-22 Equivalent circuits for two coupled antennas 

The power Pr1  received by antenna 1 from antenna 2 can be characterized in terms of their 

equivalent circuits and also in terms of the gains and effective areas of the two antennas, as 
follows: 
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where Pt i  is the power transmitted by antenna i.  By dividing (3.2.38) by (3.2.39) we obtain: 
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If we again divide (3.2.39) by (3.2.38), but this time using the circuit descriptions, we obtain: 
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if Z12 Z21.  Substituting (3.2.42) into (3.2.41) we obtain: 
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Thus, if all media in or near an antenna are reciprocal so that the permeability, permitivity, and 
conductivity matrices equal their own transposes, then (3.2.43) applies.  This is an extremely 
useful result because, as we have seen, computing the radiating properties and gains G of most 
antennas can be straight-forward if their current distributions are known. 

 As an example consider the effective area of a short-dipole antenna that is matched to its 
receiver.  Since the maximum gain of a short-dipole antenna is 1.5, (3.2.37) implies the effective 
area must be less than 3 2/8 , which is approximately ( /3)2, independent of the effective length 
of the short-dipole antenna.  This implies that the capture cross-section or effective area of a 
short-dipole antenna can be vastly larger than the physical cross-section of the antenna itself, as 
suggested in Figure 3.2-23.  In the 1-MHz AM radio band where  300 m, this maximum 
theoretical effective area is larger than a football field even though most radios and their 
antennas fit in the palm of a hand.  In practice the effective areas of these antennas are much 
smaller than this maximum, but still substantially larger than the radio itself.  One reason these 
extremely large effective areas can seldom be achieved in practice is that we have assumed the 
antenna is matched to the receiver.  But (3.2.28) yields very low values of radiation resistance for 
such antennas, and therefore any matching circuits must be extremely reactive and narrow band.  
Such perfect matches are generally not obtained in practice.  On the other hand, a cell phone 
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operating at 900 MHz can use a half-wavelength dipole six inches long and be perfectly matched 
with an effective area up to 4 inches in diameter. 

Figure 3.2-23 Nominal effective area of a matched short-dipole antenna 

 In multi-conductor antennas often only one wire is connected to the receiver or transmitter, 
and the others are parasitic wires.  These wires scatter radiation in their immediate vicinity.  
Consider a short-circuited dipole and its equivalent circuit, as illustrated in Figure 3.2-24. 

Figure 3.2-24 Equivalent circuit of a short-circuited short-dipole 
antenna at frequency f 

The equivalent circuit of a short-dipole antenna has a shunt capacitance associated with electric 
charges that aggregate on the wire surfaces with increasing charge density towards the central 
antenna terminals.  Although the illustrated circuit lumps this capacitor at the output terminals, in 
fact it is distributed across the radiation resistance and is difficult to model accurately.  If we 
restrict ourselves to a half-wavelength dipole for which the reactance is zero, then the scattered 
power might be related to the power dissipated in the radiation resistance R r in Figure 3.2-24.  
That scattered power is: 
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where the incident flux is: 

   2
inc oS E 2   (3.2.45) 

This can be compared to the power received by the same short-dipole if it were matched: 

   2
r inc rTP S A V 8R   (3.2.46) 

Comparison of (3.2.44) and (3.2.46) reveals that the scattering cross-section is approximately 4 
times that of a matched half-wave dipole or 3 2/2 , corresponding to an approximate diameter of 
0.7 .

 A half-wave dipole stores most of its average electric and magnetic energy, which balance at 
resonance, within a few wire radii.  The resonator Q of the half-wavelength resonance can be 
computed using the standard formula: 
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P
  (3.2.47) 

where the resonant frequency o 2 c , WT  is the total stored energy in the vicinity of the 

resonant dipole, and Pd  is the power dissipated in the resonator or, in this case, the power 
radiated.  For typical wire diameters and lengths the computed Q is approximately 10, and is 
defined as the number of radians before the average un-driven resonator current drops to 1/e of 
its starting value. 

 One simple example where this phenomena was used involved placement in low earth orbit 
of large numbers of half-wavelength needles designed to scatter centimeter-wavelength 
communication signals should the normal ionosphere become more highly ionized in a nuclear 
conflict so as to block traditional wavelengths.  A surprisingly small payload of needles is 
adequate to provide a reflective belt circling the earth along the trajectory of a single launch 
rocket.

 Resonant wires may also be used to substitute for a reflecting mirror, as suggested in Figure 
3.2-25.
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Figure 3.2-25 Resonant half-wave dipoles used as reflectors in antenna arrays 

Although multiple resonant wires reflect better than a single resonant wire, they cannot equal the 
reflectivity of a solid planar surface.  Nonetheless, useful reflections can be obtained close to the 
resonant frequency of an isolated reflecting half-wavelength dipole.  By slightly lengthening or 
shortening that isolated free-standing wire, its current will slightly lead or lag the phase of the 
current that would flow at resonance, as can be seen for a RLC resonator: 

   zjV Z R Ls 1 Cs Z e  (3.2.48) 

This equation corresponds to the circuit and phase response illustrated in Figure 3.2-26.  If we 
lengthen the wire to reduce its resonant frequency o, then the phase lag of the induced current 
can be increased up to a maximum of 90 , whereas shortening the wire permits a phase lead up 
to a maximum of 90 .  Reasonable fractions of these maximum phase shifts are achieved when 
the frequency is offset by o Q .  The resonator Q and the sensitivity of phase shift to antenna 

length can be increased by increasing the ratio of stored energy Wt  to power radiated by using 
thinner wires. 
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Figure 3.2-26 Resonator circuit and its frequency-dependent phase relationships 

 In some cases the phase relationships between the driven and parasitic currents are readily 
determined.  For example, consider the antenna pictured in Figure 3.2-27a for which the parasitic 
wire is a short distance from the driven current.  The two closely spaced wires form a TEM line 
which is open-circuited at the ends so that the parasitic current 2 1I I  and their radiated fields 

approximately cancel in all directions.  The impedance at the antenna terminals is approximately 
a short circuit, which is the TEM impedance /2 from an open circuit, consistent with the 
inability of this antenna to radiate strongly.  Figure 3.2-27b portrays the situation when the 
resonant parasitic /2 dipole carries the induced current 2I , which radiates to the left in phase 

with the signal radiated in that direction by 1I .  This maximizes the gain in that direction relative 

to the gain in the rear direction; such an isolated wire behind the driven element is called a 
parasitic reflector.

 Elements called parasitic directors are typically positioned a distance D in front of the 
driven element, as illustrated Figure 3.2-27c.  The phase shifts introduced by the distance D and 
by the detuning of the parasitic element, accomplished by shortening it slightly, act together to 
partially cancel the two signals radiated to the left, and to superimpose them positively for 
radiation to the right.
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Figure 3.2-27 Half-wave dipoles driving parasitic wires:  (a) insufficient radiator, 
(b) reflector, (c) director 

 Figure 3.2-28 illustrates a popular configuration called a Yagi antenna, which typically has 
multiple reflectors and directors, all cut to slightly different lengths to maximize the front-to-
back gain ratio over the desired bandwidth.  Originally the design of Yagi antennas was largely 
an art reinforced by experiment.  Today computers can solve Maxwell’s equations with sufficient 
accuracy that Yagi antennas can more readily be optimized with respect to their directivity, 
sidelobes, and reactance over the desired bandwidth. 

Figure 3.2-28 Yagi antenna 

 Another very popular wire antenna is the half-wave folded dipole antenna illustrated in 
Figure 3.2-29, which has two parallel wires very close together that behave as a TEM line.  The 
line is short circuited at both ends so that at the antenna terminals both /4 sections of antenna 
behave as open circuits and no equal-and-opposite TEM currents can exist on the antenna.  That 
is, A BI I , which is the “common mode” of propagation for a TEM structure, and involves no 

TEM currents.  Because the relationship between the terminal current oI  and the current AI  is 

the same as for the standard half-wave dipole, and since the radiated power now is quadrupled in 
every direction because the total drive current equals A B AI I 2I , the total radiated power and 

input impedance is quadrupled relative to that for a half-wave dipole driven by oI .  Thus the 
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input impedance of a half-wave folded dipole is approximately 300 ohms, where this higher 
impedance is sometimes desired in practice. 

Figure 3.2-29 Half-wave folded dipole antenna 

 Small alterations are often made to folded dipole antennas to compensate for the fact that the 
propagation velocities for the TEM mode and the common mode are different because the 
balance between electric energy storage inside and outside the dielectric which supports the two 
wires is different for these two modes.  The electric field distributions for the TEM and common 
modes are shown in Figure 3.2-30a and b, respectively.  If the dielectric constant of the plastic 
supporting the two wires is greater than unity, then the TEM mode, which has more of its 
electrical energy inside the plastic and therefore interacts more strongly with it, will propagate 
more slowly than the common mode, for which the electric field exits the plastic more rapidly.  
As a result the length of the resonator for the TEM mode will be slightly less than the free-space 
resonant wavelength corresponding to the common mode currents.  This discrepancy can be 
resolved by making both the TEM and common mode structures simultaneously resonant 
through use of a “pig-tail” extension at the ends of the antenna, as illustrated in Figure 3.2-30c. 

 Another widely used wire antenna with useful directivity is the helical antenna, illustrated 
in Figure 3.2-31.  The dimensions of the helix--D, L, d-- are chosen so that the waves radiated by 
each turn of the helix will add in phase in the forward direction because their contributions differ 
in phase by an amount just equal to the propagation time between turns.  If we assume the 
antenna current propagates along the helix in a nominal TEM mode at velocity c, then we want 
the propagation time for one turn, related to the hypotenuse of a triangle, to differ from the 
distance between turns by an integral number of wavelengths, i.e.: 
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Figure 3.2-30 Half-wave folded dipole antenna with pig-tail. 

   2 22 R d d n   (3.2.49) 

For the special case where D=2d, then d must equal 
1 22n 4 1 1 , or ~ /2.3.  When the 

antenna is viewed from the front, as suggested in Figure 3.2-31b, all the contributions add in 
phase from each portion of the circle.  Currents on one side of the circle will be 180  out of 
phase with those on the other, thus they point in the same direction, creating an effective dipole 
source that rotates in the direction of the helix at f Hz.  If the helix is too short then the 
reflections of I( )  from the open end of the wire will produce standing waves that weaken the 
intended radiation pattern; for this reason more than 5 or 10 turns are commonly employed so 
that the currents reaching the end of the helix are relatively weak and less disruptive.  The mirror 
effectively doubles the length of the helix, and the image currents radiate in phase with the 
directly radiated signals.  Because of interwire interactions the optimum values to D, L, and d 
may vary from their idealized values. 

“TEM” mode  > oE

wire

Common mode 
( E  sees less )  > o

E

/2 common 
mode radiates /2  TEM mode

forces IA = IB

pig-tail

(a) (b)

(c)



133

Figure 3.2-31 Helical antenna (a) side view (b) view from front 

 Very broad bandwidth wire antennas can be obtained with log-periodic structures, such as 
the dipole array illustrated in Figure 3.2-32.  The log-periodic half-wave dipole antenna is driven 
from one end with spacings between adjacent dipoles so that the waves radiated in the forward 
direction add in phase while those radiated in the back direction more nearly cancel.  Because 
significant radiation occurs with only two or three such wires fully excited, the dipoles can have 
slowly varying length, as illustrated.  In general, for a mid-band wavelength the dipoles near the 
input are too short to radiate effectively and so they contribute a reactance, and dipoles past the 
resonant active portion of the antenna indicated by the dashed circle in the figure are not 
sufficiently excited to radiate significantly.  Because the active part of the antenna shifts toward 
shorter dipoles at high frequencies and towards longer dipoles at low frequencies, it can be 
shown that the radiation pattern and impedance are approximately frequency independent in the 
limit of a continuum of dipoles.  The resulting pattern is approximately that suggested in the 
figure.  The same log-periodic concept can be applied to helical antennas, which also would be 
driven from the small outward-pointing end; such helical antennas resemble that in Figure 3.2-
31a, but with a conical shape having a base near the mirror.   

Figure 3.2-32 Log-periodic antenna 

 Because half-wave dipoles, folded dipoles, helical antennas, and other radiators are often fed 
by TEM lines and are located in front of a mirror, they often employ additional structures called 
baluns which permit the mirror to be grounded to one of the two feed wires without significantly 
disturbing the radiated pattern, as suggested in Figure 3.2-33c.  A half-wave dipole with an 
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ungrounded mirror is shown in Figure 3.2-33a, and the same antenna simply soldered to the 
mirror is shown in Figure 3.2-33b.  The problem with this soldered configuration is that the 
current which should flow into wire B will flow instead down the outside of the coaxial 
conductor C to the mirror, effectively halving the length of the dipole radiator.  One standard 
solution is to add the wire D as illustrated in Figure 3.2-33c, which runs parallel and close to the 
conductor C, forming a TEM line with it which is shorted at the mirror and therefore presents an 
open circuit /4 away at the wire A.  This open circuit precludes any TEM currents flowing 
toward the mirror on the outside surface of the coaxial tube C and forces those currents to travel 
instead outwards along conductor B. 

Figure 3.2-33 Balun configurations to permit grounded mirrors on wire antennas 

3.3 APERTURE ANTENNAS 

 Aperture antennas are often characterized by a presumed known electric field distribution 
E(x, y)  within a defined aperture, in contrast with wire antennas that are characterized by a 
presumed known current distribution.  The linear character of Maxwell’s equations suggests that 
the radiated fields can be computed by superimposing contributions from each incremental 
source comprising the radiator, as is generally done for wire antennas.  It is easily shown that a 
uniform surface current can radiate a uniform electromagnetic plane wave.  By extension, a non-
uniform plane wave in an aperture can be replaced by an equivalent surface current which locally 
matches the given aperture distribution, and this current sheet can be used to calculate the 
radiated fields in the same manner employed for wire antennas.  The approximate result of this 
calculation relating the x-polarized aperture fields xE (x, y) to the far-field solution E( , ,R)  is 
Huygen’s superposition integral:

   -j 2 r x,y
x x

A

j
ˆE( , ,R) 1 cos  E (x, y) e dxdy

2R
 (3.3.1) 

where R is the distance between the observer and aperture origin,  and r(x,y) is the distance 

between any radiating patch and the observer; the corresponding phase lag is -j 2 r x,ye .
The coordinates are suggested in Figure 3.3-1.  Equation 3.3.1 is written in terms of the x-
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polarized plane wave in the aperture which radiates electric fields polarized in the ˆ x  direction.  
In general, the x-polarized and y-polarized aperture fields produce orthogonally polarized far 
fields that can be superimposed; i.e. they would be computed separately for each polarization and 
the results would be summed. 

Figure 3.3-1 Geometry for aperture antenna 

 The radiation geometry and Huygen’s integral (3.3.1) are simplified for radiation directions 
close to the z-axis (see Figure 3.3-2) such that the phase lag associated with r(x,y) can be 
approximated as: 

   x y x yr(x, y) R x sin y sin R x y  (3.3.2) 

where x , y <<1.

In this far-field limit where (3.3.2) applies, (3.3.1) becomes: 

x y
j2 R

j2 (x y )
x x

A

e
ˆE( , , R) 1 cos  E (x, y)e dxdy

2R
 (3.3.3) 
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Figure 3.3-2 Geometry for aperture far-field radiation 

where the fixed phase lag e j2 R  has been factored out front.  It simplifies notation to define 
the entire factor in front of the integral sign as the complex vector K, in which case Huygen’s 
principle (3.3.3) becomes: 

   x yj2 (x y )1
x y x

A

E , vm K E (x, y)e dxdy  (3.3.4) 

which approximates a Fourier transform.  The inverse approximate Fourier transform is: 

   x yj2 (x y )1
x y x yx x

2

x̂
x̂E x, y vm E , e d d

K
 (3.3.5) 

 The Fourier relationship defined in (3.3.4) and (3.3.5) is extremely useful for understanding 
aperture antennas, and can be represented diagramatically as: 

   
1 1

x yx xE x, y vm E , vm

                                            
 (3.3.6) 

   
x y

2 221 1
E x x y o x yx

R , vm E , vm 2 S ,  (3.3.7) 

The double-headed arrows in (3.3.6) and (3.3.7) indicate the approximate Fourier relationship 
between the two variables, and the downward-pointing arrows indicate the irreversible nature of 
those relationships.  The units of radiated flux x yS ,  are watts/meter2.  Note how the Fourier 

relationship of (3.3.6) permits us to relate immediately the autocorrelation function of the 

aperture field distribution 
x yxER ,  to the squared magnitude of the far-field x yxE , ,

where we define aperture displacement 
x 1 2x x .
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 We can compute the directivity of an aperture antenna by substituting (3.3.4) into the 
definition of directivity (3.1.2): 

   
2

TR

P( , , f ,R)
D( , )  

P 4 R
  (3.3.8) 

where PTR  is the total power radiated by the aperture.  This yields, under the far-field pariaxial 
approximation of (3.3.4), the result: 

   

x y

2
j2 x y

x2
A

x y 2 2 2o x
o A

E (x, y)e dxdy
1 cos  

D ,
12 2R E (x, y) dxdy 4 R

2

     

x y

2
j2 x y

x2
A

2 2
x

A

E (x, y)e dxdy
1 cos  

E (x, y) dxdy
 (3.3.9) 

where the total power radiated PTR  has been computed by integrating over the aperture A the 
flux density passing through it, rather than integrating the far-field power over 4  steradians.  
Because we have assumed the aperture has no reactive power elements, they do not contribute to 
this integral. 

 A useful upper bound on aperture directivity x yD ,  can be found by using the 

Schwartz inequality: 

   
2 2 2fg dx f  dx g  dx  (3.3.10) 

Applying (3.3.10) to (3.3.9) yields: 

   

2
j 2 2

x x
A A A

E e dxdy E dxdy 1 dxdy  (3.3.11) 
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2
ox

oA
x y 2 2 2

x
A

E dxdy A
4 A4

D ,
E dxdy

 (3.3.12) 

where Ao is the physical area of the aperture.  But the effective area of any aperture antenna is 
given by (3.1.8) and (3.1.3): 

   e x y
x y 2

R

A ,4
D ,  (3.3.13) 

therefore the bound on directivity (3.3.12) becomes: 

   e x y R oA , A   (3.3.14) 

where the radiation efficiency R 1.0 .

 The effective area of an aperture antenna is less than the physical area for two principal 
reasons.  Mismatch and dissipative losses reduce the radiation efficiency R  below unity, and if 
the aperture is not illuminated with uniform intensity and phase, then the aperture efficiency A
is also less than unity, where we define A  as: 

   e
A

R o

A (max)

A
  (3.3.15) 

As we shall see, aperture efficiencies typically range between 0.6 and 0.7 for many aperture 
antennas because uniform illumination and unity efficiency are achieved at the expense of higher 
side-lobes, which usually are undesirable. 

 A few aperture distributions lend themselves to simple analytic solutions for antenna 
directivity.  For example, a uniformly illuminated circular aperture antenna of diameter D has 
directivity: 

   
2

2
1

D D
D(f , , ) 1 cos  sin   (3.3.16) 

where the lambda function 1(q) is defined as J1 (q) q  and J1(q) is a Bessel function of the 
first kind.  Because this is an ideal uniformly illuminated aperture with uniform phase, its 

directivity at  = 0 is 2
o4 A .
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 A more general and typical aperture electric field distribution is tapered toward the edges 
and can often be approximated as: 

   

P2

x
2r

E (r) 1
D

  (3.3.17) 

where r is the radius measured from the center of the aperture, D is the aperture diameter, and the 
power P characterizes the degree of tapering, as suggested in Figure 3.3-3. 

Figure 3.3-3 Idealized aperture excitation functions for circular apertures 

The antenna pattern for uniform illumination (P = 0) is illustrated in Figure 3.3-4, which shows 
quantitatively the sidelobe structure. 

 Such antenna patterns are often characterized by a few key parameters.  The full width at 
half power B1/ 2  is 1.02 /D for P = 0.  The first null N1 is 1.22 /D off-axis for P=0, and the 

first sidelobe has an amplitude of 17.6 dB below on-axis directivity.  These parameters are 
tabulated in Table 3.3.1 for three values of P. 

Table 3.3.1 Antenna pattern parameters for circular apertures 

P B1/2 N1 first sidelobe A

0 1.02 /D 1.22 /D 17.6 dB 1.00 
1 1.27 /D 1.63 /D 24.6 dB 0.75 
2 1.47 /D 2.03 /D 30.4 dB 0.56 
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Figure 3.3-4 Antenna pattern for a uniformly illuminated circular aperture 

 Figure 3.3-5 schematically suggests how the main lobe and sidelobes would originate and be 
distributed in space for a circular parabolic reflector having a feed located at the parabolic focus.  
The sidelobes illustrated in Figure 3.3-5 originate primarily from the diffraction pattern of the 
circular aperture, whereas the back lobes generally originate from spillover of energy radiated by 
the feed beyond the lip of the reflector, and additional back lobes are produced when the 
spillover diffracts at the lip of the reflector.  Additional sidelobes may be created by scattering 
from any feed support structure or from other objects in the path of the beam.  A compromise 
often must be made between under-illuminating the reflector (increasing P) to reduce side and 
back lobes, and over-illuminating the reflector to reduce the beamwidth of the main lobe and 
increase the gain.  In practice this compromise leads to aperture illumination functions close to 
those produced for P=1.  In practice B1/ 2 is 1.2-1.3 /D, and the first sidelobe is typically 
~20dB below the main beam. 

Figure 3.3-5 Sidelobe structure and origin for a parabolic reflector antenna 

 Some common types of fixed parabolic antennas are shown in Figure 3.3-6.  Most parabolic 
antennas are circularly symmetric with a point focus that produces a uniform phase front after 
reflection.  The cylindrical parabola has a line focus, which has the added virtue that the antenna 
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can be scanned laterally if the line feed is a phased array.  The off-axis paraboloid is simply a 
segment of a circularly symmetric parabolic reflector, but with a feed positioned so that the 
reflected radiation does not intercept and scatter from it.  This type of antenna has lower 
sidelobes, particularly for compact structures, and is currently widely used for consumer 
reception of direct-broadcast satellite television. 

Figure 3.3-6 Common fixed parabolic reflector antennas 

 Parabolic antennas can be slightly scanned by moving the feed to one side, as suggested in 
Figure 3.3-7, but at the expense of reduced gain and increased sidelobes.  The angle over which a 
parabolic reflector can be squinted depends strongly on the ratio f/D, where f is the focal length 
of the parabola, which is the minimum distance between the focus and the parabola.  For f/D = 
0.5, approximately 3-5 beams with useable gain and sidelobes can be achieved; the gain 
degradation might be ~1 dB.  This assumes the beams cross at their 3-dB points.  The number of 

beams achievable in any direction is n 12(f / D)2, and the number available in two directions 

,  is N 120(f / D)4.  Thus parabolic mirrors used to produce images usually have longer focal 
lengths, as in standard parabolic reflector optical telescopes.  If shorter focal lengths are desired 
for imaging, good lens systems enable many more independent points to be resolved 
simultaneously. 
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Figure 3.3-7 Antenna patterns for off-axis fed parabolic reflector 

 Very large apertures can be scanned without moving the reflector itself.  One approach is to 
use a spherical reflector in combination with a line feed that compensates for the phase errors 
which would be introduced by a point feed, as suggested in Figure 3.3-8.  A spherical reflector 
approximates a parabola only over small angles, where the corresponding focal point is located 
exactly halfway between the reflector and its center of curvature.  Uniform plane waves arriving 
near the center of the aperture are concentrated at this focal point, whereas those arriving near 
the perimeter of a spherical reflector are focused at a point somewhat closer to the reflector itself.  
It is therefore possible to illuminate the entire spherical reflector in phase by using a line feed, as 
suggested in the figure, that directs rays from its top end, located near the classic focus, 
downward toward the center of the reflector, while array elements positioned closer to the 
reflector are phased to transmit or receive radiation more laterally.  For the Puerto Rican Aricebo 
radio telescope, which has a diameter of 1000 feet, the illuminated portion of the reflector for 
any position of the line feed is approximately 600 feet in diameter.  The illuminated portion can 
be repositioned by physically moving the line feed so that it points in the desired direction.  This 
antenna can scan approximately ±15  in any direction relative to zenith. 
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Figure 3.3-8 Spherical reflector antenna with line feed 

 Sometimes rapid scanning of a stationary large parabolic reflector is desired.  One approach 
is suggested in Figure 3.3-9, where a toroidal parabolic reflector is employed which has a 
circular focal line along which a feed can be spun at high speed. 

Figure 3.3-9 Scanned parabolic torus reflector antenna 
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Even when viewing a fixed direction such an antenna does not have a focal point.  Instead the 
focus is distributed over a small aperture that must be phased accordingly using a lens or a 
specially shaped sub-reflector.  A feed illuminating this small aperture and located on the 
circular locus of focal points can be spun on a rotating table so as to scan the beam in a plane 
perpendicular to the axis of revolution z.  Because such a spinning plate is typically large, many 
antenna feeds can be positioned around it so that many frequencies can be observed 
simultaneously.  This structure has the additional advantage that there is no aperture blockage. 

 Parabolic antennas are often fed with a waveguide horn, as illustrated in Figure 3.3-10. 

Figure 3.3-10 Pyramidal horn antenna and its pattern 

The figure illustrates how a rectangular waveguide propagating the dominant mode can be gently 
flared so as to preserve the electric field distribution of the dominant mode in the open aperture, 
which then diffracts as governed by Huygen’s principle.  If the transition to the flare is not 
sufficiently gentle, additional modes may be generated, some of which may reflect energy back 
down the waveguide, introducing loss.  Because the electric field strength in the aperture is 
uniform along the y-axis, and abruptly becomes zero at the top and bottom edges of the horn, as 
illustrated, high sidelobes are incurred because the fields radiated by a boxcar illumination 
pattern approximate a sinc function, which is the Fourier transform of a boxcar.  The sidelobes in 
the x-direction are much lower, ~25dB, corresponding to the Fourier transform of a cosine 
function, which characterizes the electric field distribution in the x direction for the dominant 
waveguide mode TE10.  Carefully designed obstacles can also be placed in the throat of such 
horns to introduce additional waveguide modes which add coherently so as to produce a more 
tapered aperture distribution. 

 An alternate design, the scalar feed, has found wide acceptance.  In this case the waveguide 
is coupled to a conical feed horn that has circular grooves cut in the wall.  These grooves are 
~ /4 deep and are spaced approximately /4 apart, as suggested in the side view of Figure 3.3-
11.  The short circuit at the bottom of each groove is transformed by the /4 section into an open 
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circuit at the top that precludes current flow radially along the horn surface at that frequency.  By 
precluding such currents, the electric field that otherwise would terminate abruptly at the wall is 
forced to approach zero there, thus tapering the aperture field distribution in that direction.  The 
result is a circular aperture field distribution that is tapered in both the x and y directions.  
Because the grooves themselves will produce echoes that return energy to the throat of the horn, 
they are spaced ~ /4 apart so that adjacent echoes cancel.  In practice, other variations can be 
used.

Figure 3.3-11 Scalar feed horn 

 Practical design considerations for these feed horns preclude spacing them sufficiently close 
together to achieve the full benefit of multifeed arrays, such as those illustrated in Figure 3.3-7.  
The problem is suggested in Figure 3.3-12 where it is clear that the aperture excitation functions 
for feeds A and B do not overlap, and therefore their Fourier transforms must also be orthogonal, 
implying a crossover point below 3 dB between the two far-field patterns A and B. 
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Figure 3.3-12 Multiple-horn antenna feeds 

That is, the Fourier transforms of two orthogonal functions must also be orthogonal.  Scalar 
feeds pose an even more serious problem because their aperture excitation functions are not only 
orthogonal, but they also approach zero sooner so that the cross-over point between the 
associated far-field antenna beams can be diminished 6-10 dB or more.  Solutions to this 
problem are suggested in Figure 3.3-13.  For example, the four-array solution uses four close-
packed feed arrays (A, B, C, and D) and their beams are interleaved. 

Figure 3.3-13 Feed-horn arrays 
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 One approach to reducing nulls between adjacent beams is to drive a cluster of antenna feed 
horns in phase so as to synthesize a larger equivalent feed A’.  Each individual feed-horn might 
then be coupled to more than one output waveguide, and the larger synthesized feeds, e.g. A’ and 
B’, would overlap so as to produce cross-over levels substantially better than 3 dB.  
Alternatively, different feed arrays can be focused on the same region in space so that one set of 
antenna patterns fills in the voids of the other.  Figure 3.3-13 suggests both a four-array solution 
and a three-array solution which produce such interdigitated patterns with no deep unobserved 
nulls.

 Sometimes antenna apertures are directed toward one another at distances too close for the 
antenna link equation (3.1.9) to be valid.  The problem is suggested in Figure 3.3-14, which 
illustrates how the uniform-phase-front model conflicts with the radial emission model at a 

distance r such that r( /D)  D.  Only for distances beyond r D2  does the radiated phase 
front begin to become spherical.  For most purposes the far field of an aperture antenna is 
defined as occurring at distances r such that: 

   
22D

r    (3.3.18) 

Beyond this distance the far-field antenna pattern rapidly becomes independent of distance r. 

Figure 3.3-14 Far-field of an aperture antenna 

 Caution must be used when calculating the power transfer between two antennas located 
within the far field distance.  Consider the example in Figure 3.3-15 where an antenna of 
aperture Ao transmits toward a similar aperture of area Ao 3 with a uniform phase front so that 
two-thirds of the power misses the second antenna and propagates past it. 
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Figure 3.3-15 Parabolic antennas coupled in their near fields 

The second antenna clearly intercepts one-third of the power that is transmitted.  By reciprocity, 
it follows that the first antenna would receive only one-third the power transmitted by the 
second, which conflicts with a naive photon model that suggests that all of the photons from the 
smaller antenna would fall within the aperture Ao and be received.  This paradox can be easily 
resolved.

 Consider a horn antenna that is uniformly illuminated when it is transmitting, as illustrated 
in Figure 3.3-16. 

Figure 3.3-16 Mode orthogonality and near-field antenna coupling 

If this horn is externally illuminated with an electric field strength Eo only over its lower half, as 
illustrated, then we can represent the aperture excitation as the sum of a uniform field of strength 

oE 2  plus a second component that resembles a square wave of amplitude oE 2 .  The uniform 
component is perfectly received, and conveys half the power in the incident wave because its 

flux density is one-quarter that of the original wave  2
oE 2 , but over  twice the  truncated 

aperture area.  Thus a uniform wave incident upon only a portion  of a uniformly illuminated 
aperture has a coupling coefficient equal to .  Thus the principle of reciprocity introduced to 
explain the coupling in Figure 3.3-15 also applies to Figure 3.3-16. 
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 Both antennas and uniform plane waves in space can be characterized by their polarization.  
If the radiation is purely monochromatic, any electromagnetic field is partially characterized by 
the elliptical path traced by either the electric or magnetic field vectors.  This polarization ellipse 
can be characterized as suggested in Figure 3.3-17, where the ellipse is defined by the trajectory 
of the tip of the electric vector E(t) . 

Figure 3.3-17 Polarization ellipse for monochromatic radiation 

For a uniform plane wave propagating in the  z-direction the polarization ellipse must be in the 
x-y plane.  For a general electromagnetic field, monochromatic radiation must necessarily 
produce an ellipse in some plane, which we define as the x-y plane.  The ellipse can be specified 
by various groups of three parameters, such as (a,b, ), (a, , ), (vx , v y , ), or others; we also 

need to specify whether the ellipse is being traced in the right-hand or left-hand direction.  The 
parameters (a,b) correspond to the major and minor axes of the polarization ellipse, respectively, 
while (vx , v y ) correspond to the maximum amplitudes of the electric vector along the x- and y-

axes, respectively.  The angles  and  refer to the tilt of the ellipse and its eccentricity, as 
suggested in the figure.  For a uniform plane wave propagating the + z-direction the electrical 
engineering community defines right-hand polarization as suggested in Figure 3.3-17, where the 
thumb of the right hand points in the direction of propagation and the fingers point in the 
direction of electrical vector rotation.  The physics community tends to use the opposite 
definition, although the engineering community has embedded their definition in standards with 
legal force. 

 Most useful signals have finite bandwidth, and so the polarization description requires a 
fourth parameter for completeness.  A narrow-band signal conveyed by a uniform plane wave 
characterized by E(t)  at a given point in space can alternatively be characterized by independent 
amplitudes and phases along each of the x- and y-axes: 
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   x yˆ ˆE(t) x v (t) cos  t+ (t) y v (t) cos t+ (t)+ (t)  (3.3.19) 

For narrowband signals the electric field amplitudes along the x- and y-axes, vx(t) and v y(t), 

are slowly varying and random, and the mean values of , vx , and v y may be non-zero. 

 One of the earliest and most widely used methods for characterizing polarization is the set of 
Stokes’ parameters.  These four scalar parameters roughly represent the total power in the wave, 
the degree to which it is x-polarized, the degree to which it is polarized at +45 , and the degree to 
which it is circularly polarized, as defined below: 

   2 2
o x y oI S v (t) v (t) 2  (3.3.20) 

   2 2
1 x y oQ S v (t) v (t) 2  (3.3.21) 

   2 x y oU S 2 v (t) v (t) cos (t) 2  (3.3.22) 

   3 x y oV S 2 v (t) v (t) sin (t) 2  (3.3.23) 

 If such a narrowband wave is perfectly polarized, then both (t) and the ratio x yv (t) v (t)

are constants so that the ellipse has a fixed shape and a slowly varying size.  In this case it is easy 
to show using equations (3.3.20-23) that: 

   2 2 2 2
0 1 2 3S S S S   (3.3.24) 

Therefore any three Stokes’ parameters specify the polarization of a perfectly polarized wave.  In 
contrast, for a completely unpolarized wave it is clear from this definition that S1 S2 S3 0.  
Moreover, if two uncorrelated uniform plane waves are superimposed, the Stokes’ parameters for 
the combination are the sums of the Stokes’ parameters associated with each wave separately. 

 In general, narrowband electromagnetic waves tend to be partially polarized so that all four 
Stokes’ parameters are non-zero.  Using the fact that uncorrelated waves permit superposition of 
Stokes’ parameters, we can represent an arbitrary wave as a superposition of an unpolarized 
wave of intensity Su with one that is perfectly polarized: 

   0 1 2 3 u 0 u 1 2 3S ,S ,S ,S S ,0,0,0 S S ,S ,S ,S  (3.3.25) 

where:
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   2 2 2 2
0 u 1 2 3S S S S S   (3.3.26) 

The unpolarized power Su can be found by measuring the four Stokes’ parameters and then 
using (3.3.26).  The fractional polarization is defined as 0 u 0S S S .

 Another commonly used characterization of polarization is the coherency matrix J , where: 

   

* *
x x x y

* *o x y y y

E E E E1
J

E E E E
  (3.3.27) 

where:

   j t j t
e ex yˆ ˆE(t) x R E (t)e y R E (t)e  (3.3.28) 

and where the fields are narrowband because E(t)  varies slowly.  It is easily seen from this 
definition that the coherency matrices for x-polarized, right-circular, and unpolarized radiation 
are:

   0x
1 0

J 2 S   
0 0

  (3.3.29) 

   0RC
1 -j

J S   
j 1

  (3.3.30) 

   0u
1 0

J S   
0 1

  (3.3.31) 

 Coherency matrices for two superimposed co-propagating plane waves superimpose, just as 
do Stokes’ parameters.  As a result, when the coherency matrices for two equal-strength 
orthogonally polarized waves are superimposed, the result is twice the coherency matrix for an 
unpolarized wave.  That is, 

   x y RC LC A B uJ J J J J J 2J  (3.3.32) 

where A and B are any two arbitrary orthogonal polarizations and the coherency matrices have 

equal traces.  Thus, given any arbitrary coherency matrix AJ , we can readily find the coherency 

matrix for the orthogonal polarization using (3.3.32). 
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 In general the polarization transmitted by an arbitrary antenna is different in each direction 
, , although antennas are usually designed to exhibit pure and uniform polarization 

characteristics over as wide a solid angle as possible.  We may define the polarization 
characteristics of an antenna in terms of the far fields they would radiate in two chosen 
orthogonal polarizations i jE  and E : 

   
*

ij ij i j
* *

i i j j

E EG ( , ) A ( , )

G( , ) A( , ) E E E E
  (3.3.33) 

where the orthogonal polarizations {i,j} could be {x,y}, {r, }, or any {a,b} where b a.  We 
claim without proof that the total power received by any antenna can be simply represented as 

the trace of the matrix product between the effective area matrix A  and the coherency matrix 

incJ  of the incident wave: 

   
t
increc r

1P T A J Watts
2

  (3.3.34) 

   rec 11 11 12 12 21 21 22 22
1

P A J A J A J A J
2

 (3.3.35) 

In most cases only the A11J11 term is significant.  Since antennas receive uncorrelated signals 
from many directions, the total power received is represented as an integral: 

   
t

rec r
4

1
P T A( , )J ( , ) d

2
 (3.3.36) 

 One way to measure the unknown polarization of an incoming wave is to use four antennas 
making four scalar power measurements Ma, M b, Mc,  Md  where: 

   

a a aa

b b

d

11 12 2221a 11

b 11 1212

c 2111c

d 222211d

A A AA JM

JAM A1
        

JM 2 A
JM AA

 (3.3.37) 

in accord with (3.3.34).  If the 4 x 4 matrix 4A  is non-singular then we can solve (3.3.37) for the 

unknown coherency matrix: 
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1

4Ĵ 2A M   (3.3.38) 

 To determine whether a set of four polarization measurements is complete, we may 

determine if 4A  is singular.  Consider the case where we measure the powers in x, y, right-
circular, and left-circular polarization, for which: 

   4

1 0 0 0

0 0 0 1
A       

1 -j j 1

1 j -j 1

  (3.3.39) 

It is easily seen that the determinant of this matrix (3.3.39) is zero, which we might suspect 
because it cannot distinguish between two otherwise identical elliptical polarizations, one of 
which is tilted to the right and one to the left.  In contrast, if we measure x, 45 , right-circular, 
and left-circular polarization, we obtain: 

   4

1 0 0 0

1 1 1 1
A       

1 -j j 1

1 j -j 1

  (3.3.40) 

for which the determinant is non-zero and all polarizations can be distinguished and measured 
correctly. 

 A wide variety of polarization measurement systems and circuits can be employed, one of 
which was used by Cohen (Proc. IRE, 1, 1958), to measure the instantaneous and rapidly 
changing polarization of solar radio bursts. 
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Figure 3.3-18 Polarimeter circuit 

This system extracts the right- and left-circular polarizations from a single antenna feed and 
beats them down to 30-MHz i.f. frequencies, where their powers are balanced by use of a 
potentiometer on one arm.  They are down-converted a second time at frequencies spaced 1-kHz 
apart, where the powers of the right- and left-circular components are measured separately.  The 
two signals are also mixed together and filtered at 1 kHz to extract the correlation between right 
and left r .  In addition, the phase difference between the product of the right and left 

circular components and the phase of the 1-kHz local oscillator yields the estimated average 
phase difference  between the left- and right-circular components.  These four measurements 

are uniquely related to the four Stokes’ parameters and the coherency-matrix description. 

 As signals propagate from a transmitter toward a receiver their polarization and intensity 
distribution can be disturbed by phase errors introduced along the propagation path.  Some such 
phase differences are large scale and systematic, such as those induced in waves propagating 
parallel to the terrestrial surface in an atmosphere where the humidity and temperature, and 
therefore permitivity, vary with height, thus gently bending the direction of propagation.  Waves 
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generally bend toward layers of slower phase velocity.  Similar phenomena occur in the 
ionosphere.  However, in both the atmosphere and ionosphere there are often sufficient 
inhomogeneities that random phase and amplitude gradients are introduced across the phase 
front.  If these rms phase variations are much less than /2 , the fluctuations are weak and can be 
characterized as discussed later.  If the variations are large compared to /2 , these strong 
fluctuations can introduce some degree of cancellation between rays arriving at a given point 
with differing phases, and therefore produce amplitude variations across the phase front.  If this 
scattering process results in a phase front that is non-uniform but exhibits constant amplitude 
across the region of interest, a thin-screen model for phase variation is often employed. 

 Our expressions for the power received by antennas assume that the rays arriving from 
different directions are uncorrelated, but this may not be true if multipath is present, in which 
case the intensity distribution across the aperture is non-uniform.  In this case both the phase and 
amplitude receiving characteristics for an antenna as a function of angle must be considered 
when calculating the integrated strength of the electric field at the receiver itself; that is, we must 
integrate arriving complex electric field vectors (phasors) over all angles, weighted by the 
complex antenna receiving characteristics, before integrating and squaring, rather than 
integrating the received power over all angles as we have done previously. 

 Most receiving antennas introduce phase errors of their own because of small mechanical 
errors in the structure defining the phase front of the antenna.  These may arise from systematic 
design and fabrication errors, from the transient effects of gravity, wind, and thermal gradients, 
and from systematic offsets in an antenna feed.  Antenna errors may result from machining 
tolerances, natural surface roughness, errors in antenna structural adjustment, and the presence of 
boltheads or uneven wire mesh. 

 An example of these problems is the history of the original 300-ft parabolic antenna at the 
National Radioastronomy Observatory in Greenbank, West Virginia.  This very low cost antenna 
was constructed of wire mesh over a lightweight metal frame that sagged slightly in a systematic 
way.  After many years of use this frame backup structure was stiffened so that the antenna could 
be operated at shorter wavelengths.  Unfortunately workmen left footprints on the wire mesh in 
the form of small indentations, producing phase errors that introduced new sidelobes to the 
antenna pattern.  To remove the effects of the footprints the wire mesh was removed from the 
antenna and steamrolled on a flat concrete surface.  When reinstalled, the previous broad 
footprint-based sidelobes had disappeared, only to be replaced by large narrow ones because the 
steamrolled mesh had expanded in two dimensions, producing long waves in the surface.  The 
ultimate solution was to install new panels with superior tolerances.  To better understand how 
phase errors of different size and shape affect antenna patterns, it is useful to address the problem 
analytically. 

 Consider the aperture illustrated in Figure 3.3-19, for which we wish to compute the effects 
of small aperture phase errors on the antenna pattern in directions close to the z-axis where 
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x , y 1.  The relationship between the aperture excitation function xE (x, y)  and the antenna 

directivity D  can be simply represented: 

   

x

x yx x

2
E x

E (x, y) E ,

                      

R  E D ,  G

 (3.3.41) 

following (3.3.6-7).  To simplify notation we represent the angles  and displacements  as 2-
dimensional vectors rather than writing the two components explicitly. 

Figure 3.3-19 Aperture antenna with small phase errors r

 If we compute the directivity using the approximate Fourier transform of the aperture 
autocorrelation function 

xER , we obtain: 

   
x

2
j

x yE
2 2 A

2
x

A

R e d d

D(f , ) 1 cos  
E (x, y) dxdy

 (3.3.42) 

which has the expected value over an ensemble of such antennas: 

   
x

22 j
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A
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 (3.3.43) 
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where:

   
x o

j r j r
E EE R R E e  (3.3.44) 

oER  is the autocorrelation function of the aperture field distribution in the absence of 

phase errors and: 

    
j r

oxE r E r e   (3.3.45) 

where r  is the random phase at position r .  Under the assumption of spatial stationarity in 

the phase errors, it follows that: 

   
j r j r j o j

E e E e  (3.3.46) 

 To evaluate (3.3.46) it is useful to recall the definition of characteristic function, which is 
the Fourier transform of a probability distribution p(x); it is also called the moment-generating
function.  For example, the characteristic function of p(x) is: 

   j x j xE e p(x)e dx  ( ; x)  (3.3.47) 

Characteristic functions are useful, for example, when we seek the probability distribution of the 
sum of a series of random variables xi .  In this case the probability distribution of the sum is the 
convolution of the probability distribution for each variable separately, assuming they are 
uncorrelated.  That is, 

   
n

i 1 2 n ii 1i
p x p x p x ... p x F F p x  (3.3.48) 

where “F” is the Fourier transform operator.  Thus, 

   1 2j 0 j
1 2E e , ; 0 ,  (3.3.49) 

In general, if 
1 2
,  are jointly Gaussian random variables, then: 
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1 2

* *1
1 1 1 2 12

1 2 1 2 * * 2
2 1 2 2

, ; , e       (3.3.50) 

Thus, to evaluate (3.3.46) we may use (3.3.50), where 1 and 2 are defined as 0  and ,

respectively, and 1 and 2 are defined as 1 and -1, respectively.  Therefore, 

   
j 0 j

1 2E e 1,  1;  0 ,  (3.3.51) 

Evaluating (3.3.50) we see: 

**1 1 1
2

1 2 * *

00 0 1
1,  1;  0 , e        

10
 (3.3.52) 

By stationarity * *0 0 , and (3.3.52) becomes: 

   
* *0 0 0

1 21,  1;  0 , e  (3.3.53) 

therefore:

   
* *

x o

0 0 0
E EE R R e  (3.3.54) 

 We may now use (3.3.54) to determine the expected value of the directivity of an antenna 
with random phase errors: 

* *

o

22 j0 0 0
E x y22

A
A

1 cos  
E D(f , ) e R e d d

E r da
 (3.3.55) 

The nature of the first exponential term in the integral of (3.3.55) is suggested by the sketches in 
Figure 3.3-20. 
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Figure 3.3-20 Functions used to calculate the expected directivity of 
an aperture with phase errors 

The top left-hand curve characterizes the autocorrelation function of the phase errors across the 
aperture as a function of aperture displacement , where we assume the nominal correlation 

length is L.  The mean-square phase deviation 2  is subtracted to give the exponent desired.  
Using this exponent yields the curve in the lower left-hand figure, which resembles a Gaussian 

sitting on a plateau of value 
2

e ; this can be decomposed into a nominal Gaussian of amplitude 
2

1 e  and correlation length L, plus a uniform term 
2

e  as suggested in the lower right-hand 
side of the figure. 

 Using the results developed in Figure 3.3-20 and (3.3.55) we obtain: 

2
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 (3.3.56) 

2

o oE D(f , , ) e D (f , , ) B D (f , , )  (3.3.57) 

The first term in (3.3.57) corresponds to the expected gain degradation due to random phase 
errors across an ensemble of antennas, and it preserves the original shape of the antenna pattern.  
The second term corresponds to an increased sidelobe level due to random scattering from the 
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phase errors, where the angular spread of the new sidelobe pattern is approximately /L, as 
suggested in Figure 3.3-21. 

Figure 3.3-21 Transform relationship between the phase-error autocorrelation function and the 
resulting sidelobes 

 First consider the gain degradation associated with random phase errors.  Let b be the rms 
surface tolerance of a reflector antenna.  The on-axis gain of the average antenna with such phase 
errors is: 

   
2 22 2b 2 b4

o o o oG G e G e G e  (3.3.58) 

which suggests that if b = /4 , ' 1
o oG G e , which is a substantial degradation.  This 

degradation diminishes rapidly as b decreases; b = /16 yields 0.54 Go, and b = /32 yields 
0.9 Go.  Power no longer directed into the main lobe shifts instead into the new sidelobes, as 
suggested in Figure 3.3-22. 

Figure 3.3-22 Power reduction and sidelobe creation effects of phase errors 

 Since b is fixed for any antenna, the wavelength dependence of gain degradation is defined 
by (3.3.58), and has the form suggested in Figure 3.3-23. 
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Figure 3.3-23 Standardized gain degradation as a function of wavelength for 
antennas with phase errors 

The slope of the relation between log G and log  is -2, as shown.  The effect of phase errors is 

to establish a minimum useful wavelength for any antenna, below which the antenna gain '
oG  no 

longer increases.  In practice most antennas are not used at such short wavelengths because 
antenna flexing and other considerations make the antenna pattern less reliable.  It is standard 
practice to evaluate the surface tolerance b of new antennas by measuring their gain as a function 
of wavelength in the vicinity of the minimum useful wavelength.  Examining the growth of 
sidelobes at these same wavelengths also gives an indication of the correlation length of the 
phase errors which are responsible for the degradation. 

3.4 WAVE PROPAGATION 

 For most applications of interest the medium through which electromagnetic waves 
propagate can be characterized by a position-dependent complex dielectric constant or 
permittivity  where spatial variations of the real part are associated with refraction and 
reflection, while the imaginary part is generally associated with loss, which produces absorption 
and thermal emission. 

 Most gases are not ionized, and so electromagnetic waves interact principally with the 
electric or magnetic dipole moments of the gas molecules.  When these interactions cause the 
molecules to spin up or change state, gaining energy, we have absorption, and when the 
molecules lose rotational or other energy they enhance the strength of the electromagnetic field 
by emitting radiation.  Normally such emission is random and thermal in character, although this 
emission can be stimulated by incoming radiation producing coherent emission and maser 
(microwave amplification by stimulated emission of radiation) action. 
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 The two most plentiful gases in the terrestrial atmosphere are nitrogen 2N  and oxygen 2O ,
both of which are diatomic molecules.  Nitrogen in its ground state has no permanent electric or 
magnetic dipole moment and therefore interacts very little with electromagnetic radiation.  Only 
at very high pressures where the transient induced electric dipole moments become important 
does 2N  absorb significantly.  The oxygen molecule, however, has a magnetic dipole moment 
which interacts strongly near a band of resonant frequencies stretching 50-70 GHz and near an 
isolated resonance at 118.31 GHz plus a series of lines at still higher frequencies.  In addition, 
pressure-induced electric dipole moments in oxygen plus the pressure-broadened wings of its 
magnetic-dipole transitions produce continuum absorption that ranges down to 0 Hz and is 
approximately proportional to the square of frequency. 

The permanent electric dipole moment of OH2  absorbs weakly near its resonance at 22.235 
GHz, and quite strongly near its resonance at 183.31 GHz, as well as at a series of resonances at 
still higher frequencies.  Water vapor also has a non-resonant absorption extending to 0 Hz 
which is approximately proportional to the square of frequency.  The shapes of these common 
molecules are indicated in Figure 3.4-1. 

Figure 3.4-1:  Molecular configurations of common atmospheric molecules 

The absorption spectrum of the terrestrial atmosphere is presented in Figure 3.4-2 in the form of 
zenith attenuation, from earth to space, as a function of frequency; only major molecule 
constituents contribute significantly in this frequency band. 

Figure 3.4-2:  Atmospheric absorption spectrum of radiowaves 
at zenith (clear air) same as 20-6 
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 Each of these spectral lines has a resonant frequency f which is associated with the transition 
of a molecule from state i, in which it had energy iE , to another molecular state having energy 

jE , where the energy difference (joules) is: 

   hfEE ji   (3.4.1) 

If the molecular energy decreases as a result of the transition j iE E , then the excess energy is 

radiated as a photon at frequency f.  The probability of this happening per second is: 

   fr BAP   (3.4.2) 

where A is called the “Einstein A” coefficient, and corresponds to the probability of spontaneous 
emission.  B is often called the “Einstein B” coefficient and is proportional to the probability of 

stimulated emission as a result of the ambient radiation intensity 3
f joules/meter .  The 

probability of absorption is the same as the probability of stimulated emission, i.e. fB .  A 
simple ratio links A to B: 

33 chf8BA     (3.4.3) 

The significance of this ratio A/B is that spontaneous emission occurs much more rapidly for 

higher energy gaps hf, i.e. in proportion to 3f .  The implications of this are best understood in 
terms of the energy states of typical atoms and molecules. 

 Figure 3.4-3 illustrates the hierarchical nature of energy transitions in typical molecules. 

Figure 3.4-3:  Typical energy level hierarchy 

The greatest energy gaps involve transitions between electronic states, where these gaps may 
correspond to energies of tens of electron volts or more.  Within any electronic state the 
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molecule may be in a variety of possible vibrational states, between which the energy gaps might 
be on the order of a fraction of an electron volt to a few electron volts, corresponding to photons 
in the visible or infrared region.  A molecule in any particular electronic state and vibrational 
state could then be in any of several rotational states, the energy gaps between which correspond 
to photons in the infrared to microwave region.  For any one of these states, there may be any 
one of many possible nuclear spin states, the energy gaps between which fall in the radio 
frequency to audio frequency range, as suggested in Figure 3.4-3. 

In the radio region the ratio A/B is so small that the lifetime of most molecular states is 
determined by intermolecular collisions, not spontaneous emission.  The effects of such 
collisions on the rotation of molecules and their associated dipole moments is suggested in 
Figure 3.4-4. 

Figure 3.4-4:  Effect of molecular collisions on molecular rotation and spectral linewidth 

The sinusoidal behavior in Figure 3.4-4 is associated with the regular rotation of a molecule with 
an electrical dipole moment, and in a classical sense it would radiate at the rotational frequency.  
However, random (poisson) collisions will interrupt that motion producing a random phase shift, 
as suggested in the figure at the two events marked by dotted lines.  If we now Fourier transform 
this interrupted sinusoid, we get a Lorentz line shape, resembling the line shape shown in Figure 
3.4-4.  The linewidth  is proportional to the number of collisions per second, which is 
proportional to the pressure P if the molecules of interest are a trace gas present in small 

amounts, and is proportional to 2P  if there is only a single gas present. 

Typical linewidths for the atmospheric spectral lines illustrated in Figure 3.4-2 are 2 GHz at 
standard temperature and pressure for oxygen and water vapor resonances below 1 THz.  At low 
pressures these random collisions become sufficiently rare that other physical mechanisms 
determine the spectral linewidth.  If the gas is warm or turbulant, doppler effects will broaden the 
line and control the linewidth at low pressures. 

If the gas is sufficiently cool and quiet, then the spontaneous emission randomly terminates the 
sinusoid illustrated in Figure 3.4-4, yielding the intrinsic linewidth of ~1/T, where T is the 
average state lifetime as determined by the Einstein A coefficient.  Doppler broadening by the 
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random thermal motion of molecules can be determined by noting that the translational energy of 

the molecule is kT/2 in each of three degrees of freedom, or 3kT/2 total, where 23kT 2 mv 2 ,
where v is the random thermal motion of any molecule.  Solving this equation for the rms 

molecular velocity rmsv  yields the rms doppler shift 
rms

0.52
D rmsf v 3kT m .

 The total absorption at any frequency in a gas is normally the linear superposition of the 
absorption associated with all the molecular lines in the gas effective at the frequency of interest.  
In some cases, however, the spectral lines overlapping in some region of the spectrum may be 
physically linked.  An important example of this is provided by the oxygen molecule in the lower 
terrestrial atmosphere where each of the 30 most important spectral lines are associated with 
different rotational states of the same 2O  molecule.  Classical analysis suggests a phenomena 
which is observed experimentally, namely that two physically coupled overlapping spectral lines 
tend to have enhanced absorption between their resonant frequencies and diminished absorption 
outside them, as suggested in Figure 3.4-5.  Coupling is introduced if collisions tend to favor 
certain molecular state changes over others. 

Figure 3.4-5:  Absorption spectrum of physically coupled spectral lines 
exhibiting interference-enhanced and interference–reduced 

absorption relative to spectral lines A and B in isolation 

Developing accurate models predicting the total absorption of physically coupled spectral line 
complexes remains an active field of research, although numerous molecules such as 2O  have 
been largely solved and characterized. 

 Sinusoidal electromagnetic waves propagate along a given z-axis as: 

   zj
oeEE   (3.4.4) 

where  in the atmosphere typically has a real part that controls refraction and an imaginary part 
that controls loss.  The index of refraction n of air at radio frequencies is approximately given by: 
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   )T/e4800p)(T/79(10)1n( 6  (3.4.5) 

where T is K, and p and e are total and partial water vapor pressures (mb).  In the optical region 
of the spectrum thermal and gravitationally induced gradients in atmospheric density are 
responsible for most refractive variations, whereas in the radio region variations in tropospheric 
refraction are controlled primarily by inhomogeneities in the water vapor distribution. 

Refraction, which is the redirection of a uniform plane wave at a planar boundary between two 
media, is characterized by Snell’s law: 

   i t t t i isin sin   (3.4.6) 

where i  is the angle of incidence (measured between the surface normal and the direction of 

propagation) and t  is the angle of transmission; t  and i  are the corresponding permittivities.  

We assume t = i in the atmosphere.  Refractive effects are commonly seen in the turbulant 
images near candle flames, campfires, hot roadways, and wiggling stars.  Optical telescopes on 
mountains typically experience one-arc-sec “seeing” on good nights, where the blur is composed 
partly of rapid (~10-100 Hz) small lateral displacements and distortions in apparent shape, which 
may be of the same magnitude.  Ground-based telescopes at less favorable sites might typically 
experience seeing of 2-10 arc-seconds on good nights and the very best mountains at the highest 
altitudes may approach ~0.4 arc-second seeing.  The absolute refraction, which is dominated by 
the gravitational gradient in atmospheric density, is many times larger and must be compensated, 
particularly when observing targets near the horizon. 

In the radio region refractive effects are often manifest as seasonal variations in the signal 
strength associated with radio or TV broadcasts, and with the occasional trapping or ducting of 
radio waves over long distances by a layer of moist air near the surface which acts like a 
waveguide, permitting radiowaves to bounce back and forth between the ocean and the upper 
boundaries of the moist layer at angles beyond the critical angle associated with total reflection.  
Ducting can also occur in cold or humid layers of air, or in under-ionized ionospheric layers.  
Acoustic ducting can occur in cold air layers next to lakes or in cool or salty layers of the ocean. 

 The atmospheric water vapor scale height is approximately 2 km, which is one-quarter the 
scale height for atmospheric density, so humidity-based refractive effects are mostly a lower 
tropospheric phenomenon.  They can be quite strong, however, and can displace the apparent 
radio position of the sun near the horizon by half a solar diameter or more.  Thermal 
inhomogeneities due to turbulance are most prevalent near convective instabilities and in the 
boundary layer, which is the first few hundred meters of atmosphere or more, depending on 
surface winds and thermal gradients.  Thermal refraction at high altitudes is typically more stable 
and layered.  Thermal layering is particularly evident when radio waves propagate parallel to the 
surface of the earth over long distances so that rays arriving along different paths might 
reasonably cancel, producing strong random and rapidly varying fading. 



167

Ionospheric and space plasmas, which typically have both neutral and ionized components, also 
introduce important refractive effects.  For example, the ionosphere has a free electron density 

en  of approximately 710  to -312 m10  between ~50 and ~5000 km altitude, where the 

maximum free electron density typically falls in the main ionospheric layers 100 – 400 km.  The 
ionosphere plays a particularly important role at radio frequencies below 10 – 30 MHz, which 
approximates the maximum plasma frequency of the ionosphere, depending on location, season, 
and solar wind conditions.  Radio wave propagation in the ionosphere is principally governed by 
its permittivity: 

   2 2
o p1   (3.4.7) 

where the plasma frequency p  is: 
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n q
rs

m
  (3.4.8) 

where m is the reduced mass of the electron, e i e i em m m m m m .  For frequencies above 

the plasma frequency the phase velocity is: 

   
2

p pv c 1 c   (3.4.9) 

and the group velocity is: 

   c1cv 2
pg   (3.4.10) 

Below the plasma frequency radio waves are perfectly reflected from the ionosphere. 

 The principal effects of the ionosphere on radio wave propagation is to trap radio waves 
between itself and the surface of the earth so that at frequecies below ~10 – 30 MHz radio links 
can be established at continental or intercontinental distances.  These links, particularly at the 
highest frequencies, are subject to strong fading.  Observing sources above the ionosphere is 
difficult at frequencies below 10 – 30 MHz, although such observations can occur near 
ionospheric minima at frequencies as low as ~5 MHz.  The ionosphere can also refract waves, 
causing fading, at frequencies many times higher than the plasma frequency.  At frequencies 
above ~1 – 2 GHz, the principal effect of the ionosphere is to introduce a small amount of 
Faraday rotation into the polarization of the arriving radio wave. 

The plasma frequency of the interplanetary medium is generally below a few kilohertz.  Despite 
these low plasma frequencies, and the even lower plasma frequencies of interstellar space, 
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interstellar radio waves are nonetheless impacted by refractive effects which can cause 
frequency-selective fading at frequencies below ~1 GHz.  The plasmas generated around 
spacecraft re-entering the earth’s atmosphere can also impede radio communications between the 
spacecraft and ground for brief intervals. 

 Plasmas can also absorb and emit radio waves as a result of the transient electric dipoles 
created as electrons electrostatically ricochet off positive ions.  These interactions are 
proportional to the number of collisions per unit volume, which is proportional to the product of 
the number en  of electrons per cubic meter and the number of ions, and therefore is proportional 

to 2
en .  Although this is not an important effect in the ionosphere, the greater size of the solar 

corona and photosphere yields larger optical depths and radio brightness temperatures up to 
610~ K, not including much brighter emissions associated with coherent radio effects.  Such 

non-thermal radio emissions produced by coherent motions in plasmas can radiate gigawatts in 
planetary magnetospheres such as that of Jupiter, or substantially greater powers in solar flares. 

 Terrestrial communication links are also strongly affected by hydrometeors in the form of 
fog, clouds, rain, sleet, and snow.  These interactions are often modeled by the interactions of a 
plane wave with a dielectric sphere of diameter D and uniform dielectric constant .  If 

oD 2 , then we are in the Rayleigh regime where the dielectric sphere has an 

induced electric dipole that re-radiates some of the incident radiation in the same pattern as 

would a Hertzian dipole.  The scattering cross-section 2
s m  is much smaller than the 

geometric cross-section in this regime.  If D >> /2 , then the scattering-cross section 
approaches the geometric area of the sphere.  For frequencies intermediate between the Rayleigh 
and geometric regimes, Mie scattering characterizes the interaction which typically favors 
forward scattering accompanied by sidelobes in various other directions. 

 In the Mie scattering regimes the cross-section oscillates in frequency by a maximum of ~12 
dB, as illustrated in Figure 3.4-6. 

Figure 3.4-6:  Scattering cross-section of a nominal dielectric sphere 
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Because rain-drop diameters statistically vary over an order of magnitude (~0.5-5 mm), the 
oscillitory character of s  is blurred and not evident in radio spectral observations of rain.  Non-

precipitating cloud-particle diameters are typically less than 50 microns. 

 In the Rayleigh regime the absorption cross-section of a dielectric sphere is: 

   3
D D   (3.4.11) 

so that the absorption coefficient 1dBm  is proportional to 2Mf , where M is the mass 

density 3kg / m .  The absorption of clouds also has a temperature dependence associated with 

that of the permittivity, so that cloud absorption in the Rayleigh regime is: 

   
0.0122 291 T 6

2
M 10neperes m  (3.4.12) 

where 3mkgM  liquid water,  is the wavelength (m), and T is cloud temperature ( K).

 The scattering cross-section in the Rayleigh regime: 

   6 2
s a   (3.4.14) 

so that the absorption coefficient associated with scattering 1dBm  is proportional to 2 4V f , 
where V is the typical drop volume.  That is, if the same cloud mass density is concentrated in 
small drops it has a much smaller impact on scattering cross-section than if it were reassembled 
into large drops.  Thus precipitation-measuring radars, which respond to scattering cross-section, 
are disproportionately sensitive to the large-droplet population, which can lead to errors in 
measurements of m.  These errors may be reduced by using multiple wavelengths, one or more 
of which lie in the Mie or geometric regimes.  The total fraction of incoming radiation which is 
back-scattered by water clouds is only ~10% and reaches a maximum at frequencies near ~100 
GHz for precipitation.  Most precipitation aloft has, however, elements that are frozen or 
partially frozen, for which the absorption is much less and the effective scattered power is 
increased.  The total power scattered by ice well above the freezing level of the atmosphere can 
exceed 65 percent at millimeter-wave frequencies.  Attenuation of radio waves by rain becomes 
important above ~1 GHz, and can exceed 30 dB above 10 GHz in strong precipitation. 


