Warm-Ups 05

(!) This is a preview of the published version of the quiz

Started: Mar 4 at 12:55pm

Quiz Instructions

Question 1 2 pts

Assume you could be sure of getting a 4% annual return forever on money you invest now; in other words, every dollar invested now will grow to 1.04^k dollars *k* years from now.

You'd like to set up an annuity that will pay you \$10,000 every year, forever, starting a year from now. Which of the following expresses the minimum amount you would need to invest now? In other words, what is the sum of all of these annual \$10,000 payouts, after converting each one to the equivalent value today?

$$\sum_{k=1}^{\infty} 10000 \cdot (1.04)^k$$

 $\sum_{k=1}^{\infty} \frac{10000}{(1.04)^k}$

O \$20,000

0

Impossible. Even with 4% annual growth, no annuity can provide that much value indefinitely.

Question 2 2 pts

Use the formula for the sum of a geometric series (Theorem 14.1.1) to evaluate the sum in the previous problem. What is the required investment? Careful: the formula in Theorem 14.1.1 starts at i=0, but our sum starts at k=1.

O \$240,000 Quiz: Warm-Ups 05

O \$250,000

\$250,000

O \$260,000

O \$20,000

::

Question 3 3 pts

Let
$$f:\mathbb{R}^+ o\mathbb{R}^+$$
 , and define the sum $s=\sum_{k=1}^n f(k)$ and the integral $i=\int_1^n f(x)\,dx$.

If f is weakly increasing, what lower and upper bounds do we get for s from the integral method?

[Select]	$\sim \leq s \leq$	[Select]	•
----------	--------------------	----------	---

If f is weakly decreasing, what lower and upper bounds do we get for s from the integral method?

[Select]	$^{\scriptscriptstyle \vee} \leq s \leq$	[Select]	~
----------	--	----------	---

Question 4 3 pts

Let $s = \sum_{n=1}^{57} \frac{1}{\sqrt[3]{n+7}}$. Given that $\int_1^{57} \frac{1}{\sqrt[3]{x+7}} dx = 18$, what lower and upper bounds does the integral method provide on the sum s?

Lower bound:	[Select]	~
Upper bound:	[Select]	~

Quiz saved at 12:55pm Submit Quiz

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.1200J Mathematics for Computer Science Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>