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Problem Set 5

• Due Date: 11:59pm on Monday 18th March, 2024

• Days Covered: 08, 09, and 10 (including Lecture, Warm-Up, and Recitation)

Problem 1. Fibonacci Divisibility [13 points]

Recall the Fibonacci numbers (F0, F1, F2, . . .) = (0, 1, 1, 2, 3, 5, . . .), where Fn equals Fn−1 +
Fn−2 for every n ≥ 2. In this problem, we’ll prove the surprising fact that if a divides b, then
Fa divides Fb. For example, F6 = 8 is a factor of F12 = 144.

Let a > 0 be a fixed (but unspecified) integer.

(a) [6 pts] Prove by (regular or strong) induction on n that

Fn+a ≡ Fn · Fa+1 mod Fa

for every n ≥ 0.

In other words, when looking modulo Fa, the subsequence

(Fa, Fa+1, Fa+2, . . .)

is congruent, term-by-term, to the original Fibonacci sequence after scaling by Fa+1:

(F0Fa+1, F1Fa+1, F2Fa+1, . . .).

(b) [7 pts] Use part (a), and another induction, to prove that Fa | Fb whenever b ∈ N is a
multiple of a.

Hint: What will you induct on?

Problem 2. Computing Modular Inverses [10 points]

Let’s see a few common techniques for computing modular inverses! Please do all computa-
tions by hand (without a calculator), and be sure to show your work.

(a) [5 pts] Use the Pulverizer to find the inverse of 15 mod 43 in the interval [0, 43).

(b) [5 pts] Use Fermat’s Little Theorem to find the inverse of 15 mod 43 in [0, 43).
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Problem 3. Primality Testing [12 points]

With modern hardware and (publically known) algorithms, factoring large numbers into their
component prime factors seems intractable for integers with more than a few hundred digits1.
It may be surprising, then, that the related task of primality testing—determining whether
a given number is prime or composite—can be accomplished efficiently and practically, using
clever but not complicated randomized algorithms algorithms. Let’s investigate a commonly-
used primality testing algorithm, due to Gary Miller and Michael Rabin, that can test
numbers with hundreds of digits in fractions of a second on a typical laptop2.

For this problem, let n be the integer we wish to test, to answer the question “is n prime or
composite”?

(a) [2 pts] Here is a first attempt, known as the Fermat test:

Choose an integer 1 ≤ a ≤ n − 1, and compute an−1 mod n using the repeated
squaring technique. If this result is not 1, return Composite. Otherwise, return
I don’t know.

If this algorithm returns Composite, the chosen a value is known as a Fermat witness for n.

Prove that a Fermat witness is enough to prove that n is composite. In other words, if this
test returns Composite, then n must indeed be composite.

Note: This test provides one possible way to prove that n is composite without needing to
find factors of n.

One approach is to try many values of a, hoping to find a Fermat witness in a reasonable
number of tries. However, this does not always work: some composite numbers can “fool”
the Fermat test for too many values of a. For example, a composite number n is known as
a Carmichael number iff an−1 ≡ 1 mod n for every a, 1 ≤ a ≤ n− 1, that is relatively prime
to n. For these numbers, the only possible Fermat witnesses are numbers that share factors
with n, which suggests that finding Fermat witnesses for n may be as hard as factoring n.

It is known that infinitely many Carmichael numbers exist. The three smallest Carmichael
numbers are 561 = 3 · 11 · 17, 1105 = 5 · 13 · 17, and 1729 = 7 · 13× 19.

(b) [5 pts] En route to a better test, prove the following lemma: if p is prime and x2 ≡p 1,
then x ≡p ±1. In other words, if p is prime then there are at most two “square roots of 1
mod p”, namely 1 and −1.

Hint: Use Lemma 9.4.2 in the textbook.

(c) [5 pts] The Miller-Rabin primality test is a strengthening of the Fermat test:

1The largest number in the RSA Factoring Challenge that has been successfully factored has 250 digits
(in base 10), requiring approximately 2700 CPU-years of computational power. https://en.wikipedia.

org/wiki/RSA_numbers#RSA-250
2Try it for yourself! Here is an interactive Javascript implemenation https://planetcalc.com/8995/,

and here are some large primes to test https://primes.utm.edu/lists/small/small2.html.

https://en.wikipedia.org/wiki/RSA_numbers#RSA-250
https://en.wikipedia.org/wiki/RSA_numbers#RSA-250
https://planetcalc.com/8995/
https://primes.utm.edu/lists/small/small2.html
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Divide n− 1 by 2 as many times as possible, so that n− 1 = 2e · k where k is odd.
Choose an integer 1 ≤ a ≤ n− 1 as before, and compute the mod n remainders of

x0 = ak,

x1 = x2
0 = a2k,

x2 = x2
1 = a4k,

...

xe = x2
e−1 = a2

ek = an−1.

If xe ̸≡n 1, or if there is a pair of consecutive terms (xi, xi+1) where xi+1 ≡n 1 but
xi ̸≡n ±1, return Composite. Otherwise return I don’t know.

Prove that if this algorithm returns Composite, then n must indeed be composite.

Note: We won’t prove this here, but it can be shown that for every composite number n
(including Carmichael numbers!), at least 3/4 of the values 1 ≤ a ≤ n−1 lead to a conclusive
Composite proof under this test! In practice, you can repeat this with (say) 100 randomly-
chosen a-values. If any say Composite then n is definitely composite; otherwise, you’ll
conclude that n is Probably Prime. The chance of a composite number returning the
wrong answer (i.e., getting unlucky with every randomly-selected a-value) is at most 1/4100;
I’ll take those odds!

Problem 4. Pulverizer State Machine [15 points]

Define the Pulverizer State machine to have:

states := N2 × Z4

start state := (a, b, 1, 0, 0, 1)

transitions := If y > 0, then (x, y, s, t, u, v) →
(y, r, u, v, s− qu, t− qv) (where q = (x div y), r = (x rem y)).

Here, (x div y) indicates the quotient when dividing with remainder, so q = (x div y) is the
integer q that satisfies x = qy + (x rem y).

(a) [7 pts] Define the state predicates

gcd(x, y) = gcd(a, b), (Pres1)

sa+ tb = x, and (Pres2)

ua+ vb = y. (Pres3)

Show that “(Pres1) and (Pres2) and (Pres3)” is preserved by the Pulverizer machine across
transitions.
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(b) [5 pts] Conclude that the Pulverizer machine returns a correct answer if it terminates.
Correctness means that it computes a pair of coefficients s, t satisfying Bézout’s identity

gcd(a, b) = sa+ tb.

(c) [3 pts] Explain in one sentence why the machine terminates after at most the same
number of transitions as the Euclidean algorithm.
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