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Lecture 21: Random Variables 

1 Random variables 

Defnition 1. A random variable (RV) is a total function whose domain is the sample space. 

For instance, let’s suppose that our sample space corresponds to fipping three fair inde-
pendent coins. What are some possible RVs? 

1. The value of the 1st coin (H or T , or we could encode it as 0/1, or however we want). 

2. The number of heads (we’ll call this one R). 

3. The function that’s 1 if all three coin fips match and 0 otherwise (we’ll call this M). 

A 0/1-valued RV is called an indicator. 

RVs naturally give rise to events: for an RV f and a value x, we defne the event f = x 
by the set of outcomes ω in the sample space for which f(ω) = x. (Remember: an event is 
a set. An RV is a function). Vice versa, every event A corresponds to an indicator RV 1[A] 
which is equal to 1 for all ω ∈ A, and 0 for all ω ̸∈ A. 

Another type of event we can defne for an RV: the event f ≥ x, defned as the set of 
outcomes ω such that f(ω) ≥ x. We can write the probability of such an event using the 
sum rule X 

Pr[f ≥ x] = Pr[f = y]. 
y≥x 

Or more generally, if we have some subset T of values in the range of X, we can defne the 
event f ∈ T by the set of outcomes ω for which f(ω) ∈ T . X 

Pr[f ∈ T ] = Pr[f = x]. 
x∈T 

2 Conditioning and independence 

Of course, these events can be conditioned on just like any other event. E.g. 

Pr[R = 2 ∩ M = 1]
Pr[R = 2 | M = 1] = = 0. 

Pr[M = 1] 

We can also extend the notion of independence to RVs. Careful: this notion is a bit diferent 
than what we did for events! 
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Defnition 2. Two RVs X, Y are independent if for all values x, y in their range, Pr[X = 
x ∩ Y = y] = Pr[X = x] · Pr[Y = y]. 

Or equivalently, if for all values x, y, either Pr[Y = y] = 0, or Pr[X = x | Y = y] = 
Pr[X = x]. 

So we’re saying that two RVs are independent if all the pairs of events X = x and Y = y 
are independent. Intuitively, this says that learning a value for Y , no matter what value you 
learn, reveals no additional information about X. 

Example: R and M are not independent! We just showed that Pr[R = 2 ∩ M = 1] = 0, 
but Pr[R = 2] ≠ 0 and Pr[M = 1] ̸= 0. 

Another example: suppose we roll two fair dice to get values D1, D2 (these are our two 
RVs). Let S = D1 + D2. This is an RV too. Let’s defne the r.v. T = 1[S = 7]. This is 1 if 
the two rolls add up to 7, and 0 otherwise. (It’s an indicator!) 

Are D1 and S independent? No: intuitively, if you learn that D1 = 6, it’s impossible 
for S to be any smaller than 7. Or by the defnition, 0 = Pr[S = 5 ∩ D1 = 6] ≠ Pr[S = 
5] Pr[D1 = 6]. 

What about S and T ? Obviously not since T is just a function of S. 

What about T and D1? It turns out they are independent! 

Pr[T = 1 | D1 = d] = 1/6 = Pr[T = 1]. 

This is because for each value of D1, there is always exactly one value for D2 that causes 
them to add up to 7. So it’s caused by a special symmetry of the problem. 

Defnition 3. A collection of RVs X1, . . . , Xn is mutually independent if for all values 
x1, . . . , xn, it holds that 

Pr[X1 = x1, . . . , Xn = xn] = Pr[X1 = x1] . . . Pr[Xn = xn]. 

Note that we don’t need to check all subsets of all size. This is because the condition is 
implied by the above: we can obtain the analogous equations for subsets of smaller size by 
summing over values. E.g. X X 

Pr[X1 = x1, X2 = x2, X3 = x3] = Pr[X1 = x1] Pr[X2 = x2] Pr[X3 = x3] 
x3 x3 

Pr[X1 = x1, X2 = x2] = Pr[X1 = x1] Pr[X2 = x2] · 1. 

3 Distributions, PMFs and CDFs 

For any RV X, defne the probability mass function 

f(x) = Pr[X = x], 
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and the cumulative distribution function X 
F (x) = Pr[X = y]. 

y≤x 

These are two diferent (equivalent!) ways to express the probability distribution of an RV. 
It’s often to describe random variables by their distributions. 

Some common cases: 

• Indicator random variables, which are also called Bernoulli. 

f(0) = p, f(1) = 1 − p, F (0) = p, F (1) = 1. 

• A uniform random variable on {1, 2, . . . , n} 

1 i ∀i ∈ {1, 2, . . . , n}, f(i) = , F (i) = . 
n n 

4 Two envelope problem 

An example of where randomness is useful in solving a task. Suppose I prepare two envelopes 
each containing an unknown integer between 0 and 100 dollars (and suppose the values are 
not equal). I hand them to you and ask you to choose an envelope. What’s your chance of 
choosing the envelope with the greater number Clearly, no better than 1/2. 

Now, suppose I let you peek inside the envelope you chose, learning the number inside 
it. I now ofer you the opportunity to switch envelopes. Should you switch? Sometimes? 
Always? Never? 

Note that I don’t promise to pick the numbers in any predetermined random way. I am 
your adversary : you want to fgure out a way to play this game that will work no matter 
how I selected the numbers. 

If you think about this for a bit, it becomes clear that always and never switching are 
both equally good, and neither does any better than 1/2. For if you were always going to do 
the same thing, you could have done that before you got the additional information about 
the envelope you chose! So you must use the number you observed somehow. 

Here’s another piece of intuition: suppose (by magic) that you happened to know a 
number z that lies halfway between the two numbers in the envelope. Then it’s clear what 
to do: if the envelope you saw is above z, you stay; otherwise, you switch! But how can you 
learn z? 

One strategy: if you don’t know, guess! That is, let z be a uniformly random number from 
some set, and see what happens. Let’s use our knowledge of random variables to analyze 
how well this strategy does. 
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1. Let x0, x1 be the two numbers in the envelopes. We have no idea how they’re chosen— 
it’s some distribution that the adversary controls. 

2. Let z be our randomly chosen threshold. We will choose it uniformly from {0.5, 1.5, . . . , 99.5}. 
Why half-integers? Because we want to avoid z being equal to one of the two amounts. 
(Just think of the z’s as “dividers” on the number line, if you prefer.) 

3. Let r ∈ {0, 1} be the index of the randomly chosen envelope 0 or 1. The player is 
revealed the amount xr. 

4. Our strategy: stick if xr > z, and switch otherwise. 

What’s the chance that this strategy succeeds? Well observe: 

1. If z is between x0, x1, we succeed with certainty. 

2. Otherwise, we succeed with probability 1/2, since in this case we either always switch 
or never switch regardless of the value of r. 

Now what’s the chance that the former occurs? For any fxed values of x0, x1, there’s at 
least 1 value of z that works. So it’s always at least 1/100. So we succeed in this game with 
probability at least 

1 99 1 1 1 · 1 + · = + . 
100 100 2 2 200 

Which is better than random guessing! 

Once you understand the calculations above, it’s worth dwelling on the conceptual nov-
elty of what we just did here. So far in this class, we’ve used probability purely to model 
uncertainty in the world. Here, we used probability to design an algorithm to solve a task! 
This turns out to be an extremely useful technique in many areas of computer science. We’ll 
see more of it in 6.1210 and 6.1220. 

5 The binomial distribution 

An extremely common probability distribution that arises often in CS is the binomial dis-
tribution. This distribution has two parameters : n and p. This models a bunch of things 

1. Flip n independent coins, each of which gives heads with probability p. The random 
variable X that counts the number of heads is binomial. 

2. Suppose you have n components, each of which fails with probability p. The random 
variable X that counts the number of failures is also binomial. 
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What’s the PMF for this distribution? � � 
n 

fn,p(k) = Pr[X = k] = p k(1 − p)n−k . 
k 

Intuitively, each outcome that has exactly k heads has probability pk(1 − p)n−k of occurring, 
and there are n of them.

k 

What about the CDF? 

k k � �X X n 
Fn,p(k) = Pr[X = j] = pj k(1 − p)n−j . 

j
j=0 j=0 

The following was not covered in lecture and is optional: These formulas are 
unwieldy. It is good to use Stirling to approximate them to get a sense of what’s going on. 

n! αn(1 − p)(1−α)nfn,p(αn) = p
(αn)!((1 − α)n)!√ 

2πn (n/e)n 
αn(1 − p)(1−α)n∼ √ p p 

2παn 2π(1 − α)n (αn/e)αn((1 − α)n/e)(1−α)n 

1 1 αn(1 − p)(1−α)n = p p
(1 − α)(1−α)nααn2πα(1 − α)n � �αn 

� �(1−α)n
1 p 1 − p 

= p
2πα(1 − α)n α 1 − α 

1
2(α log p +(1−α) log 1−p )n

α 1−α= p . 
2πα(1 − α)n 

It turns out this formula is also an exact upper bound. The exponent turns out to always be 
negative unless p = α. So the max occurs there. What we get when we plot this is a little 
bump at p = α, which gets exponentially smaller everywhere else. 

If we try this for p = 0.5, n = 100. 

1. For k = 50, f(50) ≈ 0.08—pretty small. 

2. For k = 25, f(25) ≈ 1.9 · 10−7—extreeeemely small! 

We will discuss in the last lecture of term how to get bounds on the CDF, but it turns 
out that the “tails” of this distribution (F (k) for small k, or 1 − F (k) for large k) are very 
small. So it’s more likely, if I fip 100 coins, that I’ll get exactly 25 heads, than I’ll get < 25 
heads! (And both are vanishingly unlikely.) 
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