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Lecture 20: Independence 

1 Basic defnitions 

Suppose I fip a fair coin ten times and get tails every time. Am I now “due for” a heads, if 
I fip it again? No! (This mistaken idea is called the “gambler’s fallacy” and is surprisingly 
common in real life). Each fip of a fair coin has an equal chance of giving heads or tails, 
regardless of the previous outcomes. This concept is captured by the mathematical notion 
of independence. 

Defnition 1. Events A, B are independent if 

Pr[A | B] = Pr[A] or Pr[B] = 0. 

(In the case Pr[B] = 0, the conditional probability Pr[A | B] is not defned.) Alternatively 
and equivalently, A and B are independent if 

Pr[A ∩ B] = Pr[A] · Pr[B]. 

A few examples: 

1. If A and B are disjoint events with nonzero probabilities, then they cannot be indepen-
dent! For Pr[A ∩ B] = 0, but Pr[A] · Pr[B] ̸= 0. Intuitively, knowing that A happened 
yields information about whether B happened. 

2. Suppose we fip two fair coins. Let A be the event that the frst comes out heads 
and B the event the second comes out heads. These are independent—in fact this was 
implicitly part of our defnition of a fair coin that coin fips are independent. In reality, 
with physical coins, it need not be the case! See e.g. https://arxiv.org/abs/2310.04153. 

3. Suppose again we fip two coins. Let A be the event that the frst comes out heads, 
and B the event that both are heads. These events are not independent, for 

1 1 1 
Pr[A] = , Pr[B] = , Pr[A ∩ B] = . 

2 4 4 

Indeed, the events A ∩ B and B are actually identical: knowing that B happened tells 
us that A happened with certainty. 

https://arxiv.org/abs/2310.04153
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4. Once again, we fip two fair coins. Let A be the event that the frst comes out heads, 
and B the event that both have the same result (heads or tails). These events are 
independent: 

1 1 1 1 1 
Pr[A] = , Pr[B] = + = , Pr[A ∩ B] = . 

2 4 4 2 4 

5. We fip two coins which are independent but biased : each coin has a probability p of 
coming up heads and 1−p of tails. The events A and B are as in the previous example. 
Now they are not independent: 

Pr[A] = p, Pr[B] = p 2 + (1 − p)2 , Pr[A ∩ B] = p 2 . 

Or alternatively, using conditional probability: 

Pr[B | A] = p, 

since if A occurs, then the only way the two coins can agree is for both to be heads. 
If p is very small, then Pr[B | A] ≈ 0 but Pr[B] ≈ 1. This is an example where the 
original defnition in terms of conditional probabilities is nicer to work with than the 
product defnition. 

2 Multiple events: mutual and pairwise independence 

What if we have 3 events A, B, C? We say that these events are mutually independent if 

Pr[A ∩ B] = Pr[A] Pr[B] 

Pr[A ∩ C] = Pr[A] Pr[C] 

Pr[B ∩ C] = Pr[B] Pr[C] 

Pr[A ∩ B ∩ C] = Pr[A] Pr[B] Pr[C] 

Is the last equation really necessary? Perhaps we can derive it from the frst three conditions? 
The answer is no, as demonstrated by the following example. Suppose we fip three fair 
independent coins, and let A be the event that coins 1 and 2 agree, B the event that coins 
2 and 3 agree, and C the event that coins 3 and 1 agree. 

Pr[A] = Pr[B] = Pr[C] = 1/2 

Pr[A ∩ B] = Pr[A ∩ C] = Pr[B ∩ C] = 1/4, 

since the event A ∩ B occurs if all three coins have the same result, which occurs with 
chance 1/8 + 1/8 = 1/4 (and likewise for B ∩ C and A ∩ C). So the frst three conditions 
are satisfed. However, the last condition is not: 

Pr[A ∩ B ∩ C] = Pr[all three coins agree] = 1/4 ̸= Pr[A] Pr[B] Pr[C]. 

Thus, A, B, C are not mutually independent. 
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We say that three events that satisfy the frst three conditions (on pairs being inde-
pendent), but not the fourth condition are pairwise independent. Pairwise independence 
occurs frequently in computer science since it’s often a “good enough” substitute for mutual 
independence, and much easier to achieve. 

There are extensions of these defnitions to more than 3 events which are straightforward: 
consult the textbook for the defnitions. 

3 Independence in reality 

Knowing whether events are independent makes a big diference in understanding reality. 
For instance, take the 2016 election, where Trump’s victory was a surprise to many analysts. 
Someone who was unaware of the importance of independence in probability might have 
reasoned as follows: for Trump to win the election, he needs to win all three of Pennsylvania, 
Michigan, and Wisconsin. Polls show that for each state, he has a low chance of winning 
(0.21 for PA, 0.23 for MI, 0.165 for WI). Thus, the chance he wins all three must be the 
product of these, which is very small indeed (0.008). 

This reasoning is incorrect because the events are not independent! There are many 
reasons they could be correlated, such as systematic errors in the polls, or election-day 
events and changes in “voter morale” of each party (for instance, early exit poll results from 
one state may convince voters from another state to show up to the polls). 

Without any prior assumptions on correlations, what’s the highest upper bound we can 
place on Trump winning all three states? The best we can say is 0.165 (the chance of the 
least likely individual event). It is consistent with the information at hand that Pr[PA ∩ 
MI ∩ WI] = Pr[WI]. Note that it cannot be greater, since the event PA ∩ MI ∩ WI is a 
subset of the event WI. 

For a more detailed calculation that tries to estimate the correlations and the probability 
of all three states being won by Trump, check out this discussion: https://chance.amstat. 
org/2018/11/epic-fail/. 

4 Conditional independence 

A mistaken intuition is that independence is related to causality: if A and B are not inde-
pendent, then A must cause B or vice versa. This is not so! In fact, dependence can arise 
between two independent, causally unrelated events due to conditioning on a third event. 

First, a mathematical defnition: we say A and B are independent given C (or conditioned 
on C), if 

Pr[A | C] Pr[B | C] = Pr[A ∩ B | C]. 

This is the “right” defnition to choose since it reduces to our defnition of independence from 
the start of lecture, applied to the probability space obtained by conditioning our original 
probability space on C. 

https://chance.amstat.org/2018/11/epic-fail/
https://chance.amstat.org/2018/11/epic-fail/
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As a specifc example, consider a (drastically oversimplifed) model of dating. Suppose 
that every person can be either attractive or not attractive with probability 1/2 each, and 
nice or not nice with probability 1/2 each. Suppose moreover that these are independent: 
defning events A for attractive and N for nice, we have that A and N are independent, and 
Pr[A] = Pr[N ] = 1/2. 

Now, suppose we condition on the event R of being “romantically interesting”: let’s 
suppose that anyone who is either attractive or nice (or both) is interesting. (Again, a 
drastically oversimplifed assumption!) Are the events A and N independent given R? They 
are not! 

Pr[A ∩ R] 1/2 
Pr[A | R] = = = 2/3 

Pr[R] 3/4 
Pr[N ∩ R] 1/2 

Pr[N | R] = = = 2/3 
Pr[R] 3/4 

Pr[A ∩ N ∩ R] 1/4 
Pr[A ∩ N | R] = = = 1/3. 

Pr[R] 3/4 

In fact, it appears that attractiveness is anticorrelated with niceness: 

Pr[A | R ∩ N ] = 1/2 < Pr[A | R] = 2/3. 

But there’s no causal relationship between attractiveness and niceness! The efect is purely 
caused by the “flter” applied by conditioning on R. 

5 Odds and ends 

The Birthday Principle (Paradox?) In last week’s recitation, you found the probability 
of a group of d students, each of whose birthdays are independently and uniformly chosen 
from n possibilities, have no two students with the same birthday, is equal to 

n − 1 n − 2 n − (d − 1)
Pr[no equal birthdays] = . . . . 

n n n 
Let us upper-bound this quantity to get an estimate of how many students we need before 
a birthday “collision” becomes likelier than not. Using the inequality 1 − x ≤ e−x for x > 0 
(provable using calculus), write � �� � � � 

n − 1 n − 2 n − (d − 1) 1 2 d − 1 
Pr[no equal birthdays] = . . . . = 1 − 1 − . . . 1 − 

n n n n n n 
−1/n −2/n −(d−1)/n≤ e e . . . e 

d(d−1)− 
2n= e . 

√ 
This becomes small when d(d − 1) is about as big as n, or when d ≈ n. We can see that 
for n = 365, we need d = 23 to get this bound to be below 1/2. So for 23 students whose 
birthdays are distributed according to the assumptions, it’s more likely than not that there’s 
a pair with the same birthday! 

This “square root” scaling is counterintuitive and important in computer science in several 
applications (hashing, cryptography, testing random data, etc.). 
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Revisiting the Gambler’s Fallacy. If you actually fipped a coin 50 times and got heads 
every time, would you really guess 50-50 for the next fip? No! Because you’d start suspecting 
that the coin is biased! In fact, the common-sensically “rational” thing to do is the guess 
that after 50 heads, the next fip will also be heads—the precise opposite of the gambler’s 
fallacy. 

One way to formalize this is using Bayes’ rule. At the start, you would assign a large 
prior probability that the coin is fair, and a small probability that it is perfectly biased. The 
more successive heads you see, the higher you should weight the probability that the coin is 
actually biased. 

Pr[H | H50] = Pr[H | biased ∩ H50] Pr[biased | H50] + Pr[H | fair ∩ H50] Pr[fair | H50] 
1 

= 1 · Pr[biased | H50] + · Pr[fair | H50]. 
2 

Indeed, much work has been done on trying to give a formal theory of “reasoning under 
uncertainty” using Bayesian methods. These perspectives have also been quite infuential in 
AI and machine learning. 
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