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Lecture 19: Conditional Probability 

1 Probability Rules 

In the last lecture, we learned how to compute probabilities using the Tree Method. In this 
lecture, we will see how some of our tools for reasoning about sizes of sets carry over naturally 
to the world of probability, and we will learn how to express mathematically statements like 
“if the prize is behind door A, what is the probability that Monty opens door B?” 

Recall: 

Defnition 1. We defne the probability of an event A as X 
Pr[A] := Pr[ω] 

ω∈A 

An immediate consequence: 

Proposition 1 (Sum Rule). If A and B are disjoint events, then 

Pr[A ∪ B] = Pr[A] + Pr[B] 

Corollary 2 (Complement Rule). 

Pr[Ā] = 1 − Pr[A] 

Corollary 3 (Diference Rule). 

Pr[A \ B] = Pr[A] − Pr[A ∩ B] 

Corollary 4 (Principle of Inclusion-Exclusion). 

Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B] 

Corollary 5 (Union Bound). 

Pr[A ∪ B] ≤ Pr[A] + Pr[B] 

Corollary 6 (Monotonicity Rule). If A ⊆ B are events, then 

Pr[A] ≤ Pr[B] 



2 Lecture 19: Conditional Probability 

The Sum Rule and Union Bound generalize: 

Proposition 7 (Sum Rule). If Ai are (pairwise) disjoint events, then " #[ X 
Pr Ai = Pr[Ai] 

i∈N i∈N 

Proposition 8 (Union Bound). " #[ X 
Pr Ai ≤ Pr[Ai] 

i∈N i∈N 

PIE generalizes to fnitely many events in the same way as for counting: 

Proposition 9 (Principle of Inclusion-Exclusion). If I is a fnite index set, then " # " #[ X \ 
Pr Ai = − (−1)|J | Pr Aj 

i∈I ∅⊂J⊆I j∈J 

2 Conditional Probability 

In the last lecture, we studied the Monty Hall problem. In the analysis of this problem, it was 
useful to make statements such as “if the car is behind door 1, the contestant chooses door 1 
with probability 1/3.” How do we express this mathematically in the theory of probability? 

Defnition 2. For two events A, B, the conditional probability of A given B is 

Pr[A ∩ B]
Pr[A | B] = . 

Pr[B] 

This expression can be rewritten to obtain the “product rule” for joint probabilities: 

Corollary 10 (Product Rule). 

Pr[A ∩ B] = Pr[A | B] Pr[B] 

This can be extended to multiple events: 

Pr[A ∩ B ∩ C] = Pr[A | B ∩ C] Pr[B ∩ C] = Pr[A | B ∩ C] Pr[B | C] Pr[C]. 

The product rule is the justifcation for the “tree method” of computing probabilities from 
the last lecture: the numbers on the edges of the tree are the terms in the product. This 
means in particular that the numbers on the edges of the tree (except at the highest level) 
are conditional probabilities! 

Another extension of the product rule that is useful is 

Pr[A ∩ B | C] = Pr[A | B ∩ C] Pr[B | C]. 

This can be obtained by dividing both sides of the previous product rule by Pr[C]. 



3 Lecture 19: Conditional Probability 

3 Example 1: tournament 

Suppose Ash and Gary have a series of battles against each other, and the frst to win two 
battles wins the series. The probabilities of victory have the following behavior: 

1. The frst battle is a toss-up: 1/2 probability of either trainer winning. 

2. If a trainer has won the previous battle, he has a 2/3 chance of winning the next one. 

3. There are no draws. 

Let A be the event that Ash wins the series, and B the event that he wins the frst battle. 
What is Pr[A | B]? 

To compute this, let’s use the Tree Method. 

First Second Third ω Pr[ω] A? B? 

W WW 1/3 × ×2/3

1/3W 1/2 W W LW 1/18 × × 

L 1/3 
W LL 1/9 ×L 2/3 

W LW W 1/9 × 
W 

LW L 1/18 

1/3
2/3 

L 1/2 L 1/3 

LL 1/3L 2/3 

Pr[A ∩ B]
Pr[A | B] = 

Pr[B] 
1/3 + 1/18 

= 
1/2 

7 
= . 

9 

So far, this is just mechanical computation. 



4 Lecture 19: Conditional Probability 

4 Bayes’ rule 

What about Pr[B | A]? This can be calculated in exactly same manner to get 7/9. But what 
does it mean? Such a conditional probability is expressing an inference: what is the chance 
that Ash won the frst battle, given that we later observe that he won the whole series? 

It is often the case that we have a “model” that makes it easy to compute “forward” con-
ditional probabilities Pr[A | B], but we would really like to know the “backward” probability 
Pr[B | A] in order to infer something that we do not have direct observational access to. In 
general Pr[B | A] ̸= Pr[A | B], but they are related by a simple formula called Bayes’ rule 

Pr[A | B] Pr[B]
Pr[B | A] = . 

Pr[A] 

This can be derived from the product rule, but this form is so useful that it’s worth com-
mitting to memory. An especially useful consequence of Bayes’ rule is the expression for the 
ratio of the conditional probabilities of two events B, C given A: 

Pr[B | A] Pr[A | B] Pr[B] 
= . 

Pr[C | A] Pr[A | C] Pr[C] 

5 Example 2: Biased and fair coins 

We will now explore an application of Bayes’ rule. First, let’s name the terms appearing in 
it: 

Pr[A | B] · Pr[B]
Pr[B | A] = . 

Pr[A] 

We refer to Pr[A | B] as the likelihood (of A given B), and Pr[B] as the prior probability of 
B. The left-hand side Pr[B | A] is the posterior probability of B. 

Suppose I have a biased coin (which always comes up heads when I fip it), and a fair 
coin (which comes up heads half the time, and tails half the time). Suppose I pick a coin 
with uniform probability, and fip it, observing heads. What is the chance that the coin I 
picked was fair? 

Mathematically, let H denote the event of seeing heads, F denote the event of picking a 
fair coin, and B the event of picking a biased coin. Then we have 

Pr[F | H] Pr[H | F ] Pr[F ] 
= 

Pr[B | H] Pr[H | B] Pr[B] 
1/2 · 1/2 

= 
1 · 1/2 

= 1/2. 

Thus, the chance that the coin was fair is 1/3, and the chance that it was biased is 2/3. 
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Now observe that if the prior probability changes, this changes as well. For instance, if 
Pr[F ] = 1 − ϵ, we see that we get a ratio of 

1/2 · (1 − ϵ) 
. 

1 · ϵ 

This ratio goes to ∞ as ϵ → 0, so Pr[F | H] → 1 as ϵ → 0. 

6 Example 3: COVID testing 

In the next few examples, we’re going to see some examples of counterintuitive behavior 
arising from Bayes’ rule, where intuitive reasoning underestimates the efect of the prior. 

Suppose 10% of the MIT community has COVID, and everybody is required to take a 
COVID test. The tests have a false positive rate of 0.3, and a false negative rate of 0.1. If I 
test positive, what’s the chance I have COVID? 

• Events: H I am healthy, S I am sick, + I test positive, − I test negative. 

• Probabilities: Pr[H] = 0.9, Pr[+ | H] = 0.3, Pr[− | S] = 0.1. From these we deduce 
the complements: Pr[S] = 0.1, Pr[− | H] = 0.7, Pr[+ | S] = 0.9. 

• Conditional probability: We want to calculate Pr[S | +]. Use Bayes’ rule, again for 
the odds: 

Pr[S | +] Pr[+ | S] Pr[S] 
= 

Pr[H | +] Pr[+ | H] Pr[H] 
0.9 · 0.1 

= 
0.3 · 0.9 
1 

= . 
3 

So I have 1/4 chance of being sick and a 3/4 chance of being healthy! 

Even though the test looks pretty good on paper, the base rate (the prior probability that 
I’m sick) is the dominant efect here: I should still think I’m more likely than not healthy, 
even if I get a positive test. 

Of course, in the real world, we don’t test everybody, so this is not realistic. We only test 
people with symptoms, so in reality, we care about Pr[S | +, has symptoms]. This is a much 
higher quantity in general! 
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7 Example 4: Simpson’s paradox 

An analysis of 1973 UC Berkeley graduate admissions data revealed the following paradoxical 
facts: the admissions rate was higher for men than for women for the university as a whole 
(that is, the fraction of men applicants who were admitted was higher than the fraction of 
women applicants who were admitted). However, for each department, the admissions rate 
for men was lower than it was for women. How could this be? Was the data wrong? 

It turns out that these facts are both consistent with each other. Suppose there are 
only two departments: EE and CS. Defne the events A for a student being admitted, M/F 
for the student being male or female, EE/CS for the student applying to the EE or CS 
departments. The statement about university-wide admissions rates is 

Pr[A | M ] > Pr[A | F ]. 

The statement about per-department admissions rates is 

Pr[A | F ∩ CS] ≥ Pr[A | M ∩ CS] 

Pr[A | F ∩ EE] ≥ Pr[A | M ∩ EE]. 

How do we square these with each other? 

Pr[A ∩ F ]
Pr[A | F ] = 

Pr[F ] 
Pr[A ∩ F ∩ CS] + Pr[A ∩ F ∩ EE] 

= 
Pr[F ] 

Pr[A | F ∩ CS] Pr[CS | F ] Pr[F ] + Pr[A | F ∩ EE] Pr[EE | F ] Pr[F ] 
= 

Pr[F ] 

= Pr[A | F ∩ CS] Pr[CS | F ] + Pr[A | F ∩ EE] Pr[EE | F ] 

Pr[A | M ] = Pr[A | M ∩ CS] Pr[CS | M ] + Pr[A | M ∩ EE] Pr[EE | M ]. 

So to make the overall rates favor men, we can adjust the values of Pr[CS | M ] and Pr[CS | F ] 
accordingly. Here’s the intuition: suppose both CS and EE both mildly favor women, but 
CS is much more popular with women, and is also much harder to get into (for everyone). 
Then the value of Pr[A | F ] will be much smaller than Pr[A | M ], simply because of the 
“base rate” of students applying to diferent departments, not because of a gender diference 
in conditional acceptance probabilities. As an extreme example, suppose 100 men and 100 
women apply. 99 women and 1 man apply to CS. 99 men and 1 woman apply to EE. CS 
is super snobby and accepts 1 applicant (a woman). EE has no standards and rejects 1 
applicant (a man). Now admissions rates are: 

• > 0 for women and 0 for men in CS, 

• 1 for women and < 1 for men in EE, 

• 2% for women and 98% for men overall. 
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We could interpret this as saying that the gender bias in admissions is not caused by 
a direct preference for men over women at the level of individual application readers, but 
rather by other aspects of the system that determine how likely students are to apply to 
each department. 

8 Example 5: O. J. Simpson 

O. J. Simpson was a retired football player who was accused, and later acquitted, of the 
murder of his wife, Nicole. 
Question: Was O. J.’s history of abuse towards his wife was admissible into evidence? 

Prosecution: Abusers are 10× more likely than randos to be murderers. Therefore, abuse 
is likely precursor to murder, and should be taken into account. 

Defense: Probability of abusive husband murdering wife is ∼ 1/2500. Therefore, abuse 
history has negligible probative value. It would, however, bias the jury against Simpson, so 
should be barred. 

Who is right? Both are attempting to reason about conditional probability, specifcally 
the conditional probability that a husband murders his wife, given that he abuses her. Let’s 
make precise some events. 

• Let A be the event [Husband abuses Wife]. 

• Let G be the event [Husband murders Wife]. 

• Let M be the event [Wife is murdered]. 

Pr[G | A]
Prosecution argued that is high, so knowing A dramatically increases the pos-¯Pr[G | A] 

terior probability of G. 

Defense argued that Pr[G | A] is low, so knowing A cannot dramatically increase the 
posterior probability of G. 

Both neglected the fact that Nicole was murdered; the relevant probability is Pr[G |
A ∩ M ], which as it turns out, was around 80%: 80% of abusive widowers with murdered 
wives are the murderers. 

Probability and conditional probability are used and misused all the time, and even 
experts make (very public) mistakes. If in doubt, make everything precise and fall back on 
the fundamentals! 
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