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Lecture 05: Sums

1 Sums

Useful for recurrences, counting, probability, runtimes of algorithms, performances of large
systems, machine learning, and much more!

1.1 Annuity

Winning 1M in lottery really comes is yearly installments. Imagine 50k per year for 20 years
(or 1 per year for 1M years). Is this worth the same? No! Money now is more valuable than
money in the future!

Picture getting 50k now or in 10 years. If I get it now, I can invest it, and accrue 10 years
of interest on it! It’ll be worth way more in 10 years.

So, choice: 50k per year for 20 years, OR 1M now? (Definitely 1M!) What about 700k now
instead? 500k?

This is exactly how a loan works: lump sum now, paid back in installments, accounting for
interest. Known as an annuity.

Let’s simplify our assumptions: fixed interest rate, p. So $1 now is worth $(1 + p) in 1 year,
$(1 + p)2 in 2 years, and so on. Conversely, $1 in 1 year is equivalent to 1/(1 + p) today. $1
in 10 years is worth (1/(1 + p))10 today.

So, imagine an n year, $m annuity, with interest rate p. (E.g., picture p = 0.0533, today’s
interest rate from the Federal Reserve.)

So, m now, m in 1 year, m in 2 years, . . . , m in (n− 1) years. By our assumptions, this is
equivalent to a lump sum today with value

V1 = m+
m

1 + p
+

m

(1 + p)2
+ · · ·+ m

(1 + p)n−1

=
n−1∑
k=0

m ·
(

1

1 + p

)k

= m ·
n−1∑
k=0

xk where x =
1

1 + p
.

Want closed form! (What is closed form? Basically, a formula you could enter into an
arithmetic calculator, with no summations, ellipses, recursions, etc.)
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Geometric series:
n−1∑
k=0

xk = 1 + x+ x2 + · · ·+ xn−1. We know closed form:
1− xn

1− x
.

We already proved this by induction, in Recitation 02. In general, if you know (or can
guess!) the answer, it’s usually straightforward to prove it with induction. This is
known as the Guess and Check method. The hard part is finding/guessing the answer,
not proving it.

(In this case, the inductive step reduces to proving (1−xn)/(1−x)+xn = (1−xn+1)/(1−x),
which can be checked with algebra.)

But how would we discover this closed form, if we didn’t already know it?

1.2 Perturbation Method

Gauss famously solved 1 + 2 + 3 + · · ·+ n = n(n+ 1)/2 with this method.

Perturbation method: compare the sum to itself or a modified version of itself, and hope
things combine nicely. In this case, multiplying by x creates a sum that looks very similar:

S = 1 + x+ x2 + x3 + · · ·+ xn−1

xS = x+ x2 + x3 + · · ·+ xn−1 + xn

S − xS = 1 − xn, because everything else cancels! So (1 − x)S = (1 − xn), so S = (1 −
xn)/(1− x).

Back to annuity:

V1 = m · 1− xn

1− x
= m ·

1−
(

1
1+p

)n
1− 1

1+p

.

If m = 50k, n = 20, p = .0533, then V1 ≈ $638, 340.

What about our $1, 1M year annuity? In fact, let’s just say it goes on forever. What is
∞∑
k=0

xk? Assuming |x| < 1,

∞∑
k=0

xk = lim
n→∞

n−1∑
k=0

xk = lim
n→∞

1− xn

1− x
=

1

1− x
.

V2 =
1

1−x
= 1− 1

p+1
= (p+ 1)/p. Same interest rate gives V2 ≈ $19.76.

Perhaps counterintuitive that money paid every year forever would still have finite total
value, but that’s the interest rate at work.

These perpetual bonds are rare but do exist! Earliest surviving one was issued by a Dutch
water company in 1624. Five such bonds are known to survive today. One was acquired by
Yale for $24k and now earns them e11.35 annually.
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1.3 Educated Guessing, aka the Ansatz Method

How to evaluate S :=
n∑

k=1

k2?

Method 1: already know the answer!
n(n+ 1)(2n+ 1)

6
. Can prove by induction! Inductive

step boils down to proving that
n(n+ 1)(2n+ 1)

6
+(n+1)2 =

(n+ 1)(n+ 2)(2n+ 3)

6
, which

can be verified with algebra.

But what if we didn’t know the answer? Make a partial guess, using variables for unknown
numbers, and solve for their values. In this case, let’s guess that it’s a degree-3 polynomial:

n∑
k=1

k2 = an3 + bn2 + cn+ d,

for some constants a, b, c, d. This would imply

0a+0b+0c+ d = 0

a+ b+ c+ d = 12

8a+4b+2c+ d = 12 + 22

27a+9b+3c+ d = 12 + 22 + 32

which is enough info to solve: a = 1/3, b = 1/2, c = 1/6, d = 0.

So can we conclude that
n∑

k=1

k2 =
1

3
n3 +

1

2
n2 +

1

6
n? Well, not yet; all we know is that this

is true for n ∈ {0, 1, 2, 3}. How could we test whether it is true for all n? Induction! If the
induction works, we’ll have a proof that our formula is right! If not, the induction will fail,
so we’ll know our guess was wrong.

Already checked n ∈ {0, 1, 2, 3}. Inductive step can be verified with algebra.

Note: The summation
0∑

n=1

f(n) is called the empty summation and has value 0.

1.4 Double Sums

Sometimes we have to evaluate sums of sums, otherwise known as double summations. E.g.

n∑
i=1

i∑
j=1

j

To evaluate such a sum, first find a closed form for the inner sum, and then use it to find a
closed form for the outer sum.
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n∑
i=1

i∑
j=1

j =
n∑

i=1

i(i+ 1)

2

=
n∑

i=1

(
1

2
i2 +

1

2
i

)

=
1

2

(
n∑

i=1

i2

)
+

1

2

(
n∑

i=1

i

)

=
n(n+ 1)(2n+ 1) + 3n(n+ 1)

12

=
n(n+ 1)(n+ 2)

6

Suppose instead we had
n∑

i=1

n∑
j=i

j. One tool that is often useful for evaluating double sums

is to exchange the order of summation. Altogether, we are summing over all pairs i, j such
that 1 ≤ i ≤ n and i ≤ j ≤ n, i.e. 1 ≤ i ≤ j ≤ n. The key observation is that we can also
express this as 1 ≤ j ≤ n and 1 ≤ i ≤ j.

n∑
i=1

n∑
j=i

j =
n∑

j=1

j∑
i=1

j

=
n∑

j=1

j2

=
n(n+ 1)(2n+ 1)

6

What about
n∑

j=1

j2j? One (perhaps counterintuitive) way to handle this is to introduce a

double sum by expressing j =

j∑
i=1

1, and then exchange the order of summation.
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n∑
j=1

j2j =
n∑

j=1

j∑
i=1

2j

=
n∑

i=1

n∑
j=i

2j

=
n∑

i=1

(
2n+1 − 2i

)
=

(
n∑

i=1

2n+1

)
−

(
n∑

i=1

2i

)
= n2n+1 − 2n+1 + 2

= (n− 1)2n+1 + 2

1.5 Approximating Sums: The Integral Method

What about
n∑

k=1

√
k? No known closed form! Best we can do is approximate.

Suppose f(x) is a weakly increasing function of x, and S =
n∑

k=1

f(k). (For the preceding

example, f(x) =
√
x.) Recall Riemann Sums from integral calculus: how can we approximate

I :=

∫ n

1

f(x) dx?

If we underapproximate f(x) with f(⌊x⌋), then we can lower bound I:

I =

∫ n

1

f(x) dx

≥
∫ n

1

f(⌊x⌋) dx

=
n−1∑
k=1

∫ k+1

k

f(⌊x⌋) dx

=
n−1∑
k=1

f(k)

Equivalently, this upper bounds S in terms of I:

S =
n∑

k=1

f(k)

= f(n) +
n−1∑
k=1

f(k)

≤ f(n) + I
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Similarly, we could instead over-approximate f(x) with f(⌈x⌉) to get

I ≤
∫ n

1

f(⌈x⌉) dx

=
n∑

k=2

f(k)

Equivalently, this lower bounds S in terms of I:

S = f(1) +
n∑

k=2

f(k)

≥ f(1) + I

0 1 2 3 4 5
0

f(1)

f(2)

f(3)

f(4)

f(5)

f(⌈x⌉)
f(x)
f(⌊x⌋)

S − f(n) : ■

I : ■+■

S − f(1) : ■+■+■
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We now have both an upper and lower bound on
n∑

k=1

f(k):

Theorem 1 (Integral Bound - Increasing). If f : [1, n] → R is weakly increasing, then

f(1) +

∫ n

1

f(x) dx ≤
n∑

k=1

f(k) ≤ f(n) +

∫ n

1

f(x) dx.

Proof. Above

For f(x) =
√
x, we have

∫ n

1

√
x dx =

[
2

3
x
√
x

]n
1

=
2

3
n
√
n− 2

3
, so

1 +
2

3
n
√
n− 2

3
≤ S ≤

√
n+

2

3
n
√
n− 2

3
.

So S is a touch larger than
2

3
n
√
n.

Same method proves:

Theorem 2 (Integral Bound - Decreasing). If f : [1, n] → R is weakly decreasing, then

f(n) +

∫ n

1

f(x) dx ≤
n∑

k=1

f(k) ≤ f(1) +

∫ n

1

f(x) dx.

Proof. Apply Theorem 1 to g(x) := f(n+ 1− x).

Note: there are other proofs. We could instead apply Theorem 1 to h(x) := −f(x), or simply
observe that in the previous proof, f(⌊x⌋) becomes an upper bound on f(x), while f(⌈x⌉)
becomes a lower bound.
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0 1 2 3 4 5
0

f(5)

f(4)

f(3)

f(2)

f(1)
f(⌈x⌉)
f(x)
f(⌊x⌋)

S − f(1) : ■

I : ■+■

S − f(n) : ■+■+■

Theorem 3 (Integral Bound - Improper). If f : [1,∞) → R is weakly decreasing, then the

sum
∞∑
k=1

f(k) converges iff the improper integral

∫ ∞

1

f(x) dx converges. If they converge,

then ∫ ∞

1

f(x) dx ≤
∞∑
k=1

f(k) ≤ f(1) +

∫ ∞

1

f(x) dx.

Proof. Take limits of Theorem 2 as n → ∞.

In this class, if we ask you to use the Integral Method (or Integral Bound), you should simply
cite one of the above theorems. You do not need to rederive them!
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Example: Suppose f(x) = x−2. Define:

S :=
∞∑
k=1

k−2

I :=

∫ ∞

1

x−2 dx

= lim
n→∞

[
−x−1

]n
1

= 1

Theorem 3 gives bounds S ∈ [I, I+f(1)] = [1, 2], which is not a very precise approximation.
How can we improve the approximation?

Idea: approximate tail of S, e.g.

S ′ :=
∞∑
k=4

x−2

I ′ :=

∫ ∞

4

x−2 dx

= lim
n→∞

[
−x−1

]n
4

=
1

4

Now S ′ ∈ [I ′, I ′ + f(4)] =

[
1

4
,
5

16

]
, so S = f(1) + f(2) + f(3) + S ′ ∈

[
232

144
,
241

144

]
. This is

much more precise than our previous approximation!

OPTIONAL MATERIAL, NOT EXAMINED: As it turns out, S =
π2

6
.

Proof. Let m be an even integer, and let n = 2m+ 1. We first observe that

cos(nx) + i sin(nx)

sinn x
=

einx

sinn x
=

(
eix

sinx

)n

= (cotx+ i)n =
n∑

j=0

(
n

j

)
in−j cotj x.

Taking only the imaginary parts (second term on LHS, even indices on the RHS) gives

sin(nx)

sinn x
=

m∑
k=0

(
n

2k

)(
− cot2 x

)k
= nP (cot2 x), (1)

where

P (x) :=
1

n

m∑
k=0

(
n

2k

)
(−x)k.

P is a monic degree-m polynomial, and Equation 1 gives all of its roots. If x is an integer

multiple of
π

n
, then the LHS of Equation 1 is 0. There are m distinct integer multiples of
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π

n
in the interval

(
0,

π

2

)
(on which cot2 x is strictly monotone), namely

{
π

n
,
2π

n
, . . . ,

mπ

n

}
.

Therefore,

{
cot2

π

n
, cot2

2π

n
, . . . , cot2

mπ

n

}
are all of the roots of P . Since P is monic and

has degree m, the sum of its roots is the negation of the coefficient of xm−1. This gives

m∑
k=1

cot2
kπ

n
=

1

n

(
n

3

)
=

(n− 1)(n− 2)

6
.

After multiplying by
π2

n2
and rewriting in terms of m, we have

m∑
k=1

(
π

2m+ 1
cot

kπ

2m+ 1

)2

=
π2

6
· 2m(2m− 1)

(2m+ 1)2
.

Using the identity csc2 x = 1 + cot2 x, we also have

m∑
k=1

(
π

2m+ 1
csc

kπ

2m+ 1

)2

=
π2

6
· 2m(2m− 1)

(2m+ 1)2
+

π2m

(2m+ 1)2
.

We combine the previous two equations using the inequalities sinx < x < tanx on the

interval
(
0,

π

2

)
:

π2

6
· 2m(2m− 1)

(2m+ 1)2
<

m∑
k=1

k−2 <
π2

6
· 2m(2m− 1)

(2m+ 1)2
+

π2m

(2m+ 1)2
.

Taking limits as m → ∞ gives
π2

6
≤ S ≤ π2

6
, i.e. S =

π2

6
.
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