
6.1200J/18.062J Mathematics for Computer Science Thursday 15th February, 2024 
Massachusetts Institute of Technology, Spring 2024 
Z. Abel, B. Chapman, E. Demaine revised Monday 4th March, 2024 

Lecture 04: State machines 

Today we’re going to introduce a new abstraction called a state machine, that lets us 
model how algorithms work. We’ll show how to use induction to prove properties of state 
machines. But frst, an example. 

1 The 8 Puzzle 

Suppose we have 3 × 3 board with 8 tiles and one empty space, arranged as follows. 

1 2 3 
4 5 6 
8 7 ∗ 

We’re allowed to slide a tile horizontally or vertically into the empty space. Using moves 
only of this type, is it possible to convert the above confguration to the confguration below? 

1 2 3 
4 5 6 
7 8 ∗ 

This is called the 8 puzzle. A version on a 4 × 4 grid with 15 tiles, called the 15 puzzle, was 
a national sensation in America in the 1880s, with large cash prizes being ofered for anyone 
who could fnd a solution. We do not have that much cash, but we have candy. Would 
anyone like to try to solve the 8 puzzle in two minutes in return for some candy? 

2 State machines 

This was a trick question. It turns out the 8 puzzle is impossible to solve, and we can prove 
it! We will do so by introducing the framework of state machines, which are an abstraction 
that is very useful for modeling algorithms. 

Defnition 1. A state machine is defned by a collection of states, a specifed initial state, 
and for each state a (possibly empty) list of possible transitions to other states. If a state 
has multiple possible transitions, we say the state machine is non-deterministic; otherwise, 
it is deterministic. 



2 Lecture 04: State machines 

An execution of a state machine is just a sequence of states, starting from the initial state, 
that follows the transition rules. 

How do we model the 8 puzzle as a state machine? 

• The states are board confgurations. We will write these concisely by listing out the 
cells in left-to-right, top-to-bottom order. 

• The initial state is the board confguration 12345687∗. 

The question we would like to answer is one of reachability. 

Defnition 2. A state is reachable if there is some execution that reaches that state. 

Theorem 1 (What we want to show). The state 12345678∗ is not reachable. 

3 Reachability and invariants 

There is a powerful technique to prove unreachability of states, called the invariant principle. 
It is an application of mathematical induction to state machines. In the abstract, the idea 
is extremely simple. 

Defnition 3. A preserved predicate is a predicate P (·) defned on states, such that if P (s) 
is true for a state s, and there exists a transition s 7→ t from s to t, then P (t) is true as well. 

Defnition 4. An invariant is a property that is true for all reachable states. 

Theorem 2 (The Invariant Principle). Suppose P (·) is true for the initial state and is a 
preserved predicate. Then P (·) is an invariant. 

Proof. Let s0 be the initial state of our state machine. Let Q(n) be the following predicate: 
for all executions s0, s1, . . . , sn of n + 1 states, it holds that P (s0) ∧ P (s1) ∧ . . . P (sn) is true. 
We are going to prove that Q(n) is true for all n ≥ 0 by induction. 

Base case: For n = 0 the only execution is s0, and we know by defnition that P (s0) is 
true. Inductive step: Let s0, s1, . . . , sn+1 be an execution. Then s0, . . . , sn is an execution 
of length n + 1, so by the inductive hypothesis, P (sn) is true. Since P (·) is an invariant, it 
is a preserved predicate as well, so P (sn+1) also holds. 

Thus, by induction, we have shown that Q(n) holds for all n. 

Corollary 3. If P (s) is false and P is an invariant, then s in unreachable. 

Proof. By contradiction. 

The basic idea is simple, but choosing the invariant P (·) is not always so simple! We’ll 
show you an invariant for the 8 puzzle, but in general this is a bit of an art. In particular, 
this week’s PEST has a problem where the invariant is extremely difcult to guess if you’re 
not experienced with these sorts of proofs. As instructed on the problem set, we encourage 
you to ask for a hint for this problem—after you’ve thought about it a bit on your own! 



3 Lecture 04: State machines 

Counting inversions Let a1, a2, . . . , an be a sequence of natural numbers. The number of 
inversions is the number of pairs of indices i < j such that ai > aj . For example the sequence 
1234 has no inversions. The sequence 1324 has 1 inversion (i, j = 2, 3). The sequence 4132 
has 4 inversions. 

Let’s now think about board confgurations of the 8 puzzle, and map each one to a 
sequence of numbers from 1 to 8 by just deleting the ∗. What happens to the number of 
inversions in this sequence as we slide tiles around? 

• Horizontal moves: it’s easy to see that a horizontal move doesn’t change the sequence 
at all. This is because a horizontal move just swaps ∗ with one of its neighbors to the 
left or the right. But when we generate the sequence, we delete ∗, so the sequence 
is the same. If the sequence doesn’t change, the number of inversions doesn’t change 
either. So could this be our invariant? 

• Vertical moves: Now we have to be careful. Vertical moves can change the sequence! 

1 2 3 
4 5 6 
8 7 ∗ 

7→ 
1 2 3 
4 5 ∗ 
8 7 6 

The sequence changed from 12345687 to 12345876. The frst has 1 inversion. The 
second has 3 inversions! So the number of inversions changed. 

Let’s try another example. Let’s do a horizontal move and then another vertical move. 

1 2 3 
4 5 ∗ 
8 7 6 

7→ 
1 2 3 
4 ∗ 5 
8 7 6 

7→ 
1 ∗ 3 
4 2 5 
8 7 6 

Now the sequence we end up with 13425876. This has 5 inversions! So the number of 
inversions changes. It seems to change by 2 each time! In fact, a vertical move always 
changes the sequence by shufing three adjacent elements like this: 

ai, ai+1, ai+2 7→ ai+2, ai, ai+1. 

This changes the number of inversions as follows. The pair of indices i, i + 1 is an 
inversion afterwards if i, i + 2 was not an inversion before. The pair i, i + 2 is an 
inversion afterwards if i + 1, i + 2 was not an inversion before. The pair i + 1, i + 2 is 
an inversion if the pair i, i + 1 was an inversion before. 

This seems pretty complicated! The number of inversions could even remain constant 
under this: e.g. 132 7→ 213. Maybe the number of inversions is the wrong thing to 
look at. Indeed, let’s look at something a bit more coarse-grained: the parity of the 
number of inversions. Basically, in this process, we toggle exactly two of the pairs of 
indices. So the number of inversions must always change by an even number. This 
means the parity of the number of inversions is unchanged by vertical moves! (Even 
plus odd is odd, and even plus even is even!) 



4 Lecture 04: State machines 

So defne the predicate P (s) to be true if the number of inversions in s is odd. Then P 
is a preserved predicate by the above. Moreover, in the initial state 12345687∗, P is true 
because the number of inversions is 1. Hence, by the invariant principle, P is an invariant! 
Now, to conclude, observe that 12345678∗ has 0 inversions—an even number! Therefore, it 
is unreachable. 

4 Termination 

So far we’ve seen how to use state machines and invariants to argue about reachability. 
Another important property of state machines is termination. 

Defnition 5. A fnal state is one with no possible transitions. 

Defnition 6. A state machine terminates if there are no infnite executions. 

Intuitively, this says that if you try to run the state machine, then no matter what choices 
you make for each transition, you end up at a fnal state. 

There is a powerful technique to prove termination called the method of derived variables, 
also known as potential functions. 

Defnition 7. A derived variable (aka potential function) is a function mapping states to 
real numbers. 

Defnition 8. A derived variable f is strictly decreasing if, for any transition s 7→ t, 
f(t) < f(s). It’s weakly decreasing if f(t) ≤ f(s). 

Theorem 4. Suppose f is a derived variable with natural number values that is strictly 
decreasing. Then the state machine terminates. 

The idea is that if the state machine did not terminate, then there would be an infnite 
execution. But the sequence of derived variables on the states of this execution would have 
to be an infnite sequence of natural numbers that is strictly decreasing—this is impossible! 

We will show how to use this idea to prove that a very simple sorting algorithm works. 

Simple sort Suppose we have a sequence of n letters (not necessarily distinct) 

a1, a2, . . . , an. 

Let’s consider the following algorithm to put them in sorted (alphabetical) order. At each 
step, choose an index i such that ai, ai+1 are out of order, and swap them. If no such i exists, 
then terminate. 

What is the state machine for this? 

• States: all permutations (reorderings) of the input sequence. 



5 Lecture 04: State machines 

• Initial state: the given sequence. 

• Transitions: Clear from the description of the algorithm. 

What about fnal states? These are precisely the states such that for all i, ai, ai+1 are in 
sorted order. 

Claim 5. Every fnal state is in sorted order. 

Exercise: prove this using induction! 

So clearly the algorithm works if it happens to hit a fnal state (this is called partial 
correctness). What if it never hits one though? 

Theorem 6. The simple sort state machine terminates. 

Proof. Of course, we’re going to use a potential function for this. What shall we choose? 
Let’s try the number of inversions! At least this is natural number valued. 

It remains to show that it is strictly decreasing. Indeed, this is easy: 

· · · ai−1aiai+1 · · · 7→ · · · ai−1ai+1ai · · · . 

The only pair of indices that can possibly change its inversion status is i, i + 1. And by the 
choice of i, we know this pair always goes from being an inversion to being a non-inversion. 
Hence the number of inversions always goes down by exactly 1. Hence, the state machine 
terminates! 

In fact, we get something a little stronger: a bound on how many steps until termination. 
We can see that no matter what choice of transitions we make, it is always equal to the 
number of inversions in the input sequence. This is always at most n(n − 1)/2, the total 
number of pairs of indices. 

Physics inspiration The term “ potential function” should remind you of potential energy 
from physics. Indeed, both the invariant principle and the method of potential functions are 
reminiscent of the role energy plays in physics. Total energy is like an invariant : it is a 
function of the state, that cannot change under transitions. We know that a state that has 
diferent energy than the initial state is impossible to reach. The “potential function” is 
maybe not so aptly named: it behaves more like the mechanical energy, which can only be 
reduced by dissipative forces, but can never go up in a closed system. 



MIT OpenCourseWare 
https://ocw.mit.edu 

6.1200J Mathematics for Computer Science 
Spring 2024 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	The 8 Puzzle
	State machines
	Reachability and invariants
	Termination
	cover.pdf
	Blank Page




