
Problem Set 2: Hangman

Pset Buddy

You do not have a buddy assigned for this pset.

Introduction

Objectives

Writing and calling functions in Python

Using loop mechanisms to repeat a computational process until a condition is reached

Collaboration

Students may work together, but each student should write up and hand in their assignment separately. Students may not submit the exact same

code.

Students are not permitted to look at or copy each other's code or code structure.

Include the names of your collaborators in a comment at the start of each file.

Please refer to the collaboration policy in the Course Information for more details.

Although this handout is long, the information is here to provide you with context, useful examples, and hints, so be sure to read carefully.

Getting Started

In this problem set, you will implement a variation of the classic word game, Hangman.

A) File Setup

Download the files hangman.py, test_ps2_student.py, and words.txt, and save them all in the same directory.

Run hangman.py before writing any code to ensure your files are saved correctly. The starter code loads words from the words.txt file. You should see

the following output in your shell:

Loading word list from file...
 55900 words loaded

B) Hangman Game Overview

You will implement a function called hangman that will allow the user to play hangman against the computer. The computer picks the word, and the

player tries to guess letters in the word.

The general behavior we want to implement is described below. We will break this down into steps and provide further functional specifications later on

in the pset.

1. The computer selects a word at random from the list of words in words.txt. Note that words.txt contains words in all lowercase letters.

2. The user is given a certain number of guesses at the beginning.

3. The user inputs their guess, and the computer either:

reveals the letter if it exists in the secret word,

1

https://en.wikipedia.org/wiki/Hangman_(game)
https://hangman.py
https://test_ps2_student.py
https://hangman.py

informs the user if their guess is invalid (i.e. longer than 1 character, not a letter, or has already been guessed) and does not penalize or

reveal anything, or

penalizes the user and updates the number of guesses remaining if the guess is valid and does not exist in the secret word.

4. The game ends when either the user guesses the secret word or the user runs out of guesses.

We will also introduce a feature to the game to make the game easier for the user. The user will be able to input a special ‘help’ character, ! , that
reveals an unguessed letter at the expense of losing more guesses.

1) The Three Helper Functions

To approach the game, we will break down the problem into logical subtasks, creating three helper functions. This is a common approach to

computational problem solving.

The starter code in hangman.py has implementations for the helper functions load_words and choose_word . You may read the docstrings
associated with each function to understand what they do.

Important: Do NOT change the name, input parameters, or specifications of any of the provided functions! You may add helper functions, but

changing the definitions of the given functions will cause the unit tests to fail.

1.1) Determine if the Player has Won

Implement the function has_player_won according to its docstring. This function will be useful in determining when the hangman game has been won

(i.e., the user has guessed all the letters in the secret word).

Example Usage

>>> secret_word = 'apple'
>>> letters_guessed = ['e', 'i', 'k', 'p', 'r', 's']
>>> print(has_player_won(secret_word, letters_guessed))
False

Testing: Navigate to the test_ps2_student.py file and run it in Spyder. This will run a series of unit tests on your code. Note that this file contains tests

for functions you will implement later on in this pset, so not all of them will pass right away. Examine the tests that start with test_has_player_won . If
your function is correct, you should see the following printout:

test_has_player_won (__main__.TestPS2) ... ok
test_has_player_won_empty_list (__main__.TestPS2) ... ok
test_has_player_won_empty_string (__main__.TestPS2) ... ok
test_has_player_won_repeated_letters (__main__.TestPS2) ... ok

1.2) Revealing Letters

Next, implement the function get_word_progress according to its docstring. This should be fairly similar to has_player_won .

Hint: Think about...

if you need to store information as you loop over a data structure

how you want to add information to your accumulated result

Example Usage

>>> secret_word = 'apple'
>>> letters_guessed = ['e', 'i', 'k', 'p', 'r', 's']
>>> print(get_word_progress(secret_word, letters_guessed))
*pp*e

Testing: Run test_ps2_student.py. Examine the tests that start with test_get_word_progress . If your function is correct, the test printout should
read:

test_get_word_progress (__main__.TestPS2) ... ok
test_get_word_progress_empty_list (__main__.TestPS2) ... ok
test_get_word_progress_empty_string (__main__.TestPS2) ... ok
test_get_word_progress_repeated_letters (__main__.TestPS2) ... ok2

1.3) Get Available Letters

Next, implement the function get_available_letters according to its docstring. This function should return the letters in alphabetical order.

Hint: You might consider using string.ascii_lowercase , which is a string comprised of all lowercase letters:

>>> import string
>>> print(string.ascii_lowercase)
abcdefghijklmnopqrstuvwxyz

Example Usage

>>> letters_guessed = ['e', 'i', 'k', 'p', 'r', 's']
>>> print(get_available_letters(letters_guessed))
abcdfghjlmnoqtuvwxyz

Testing: Run test_ps2_student.py. Examine the tests that start with test_get_available_letters . If your function is correct, the test printout
should read:

test_get_available_letters (__main__.TestPS2) ... ok
test_get_available_letters_empty_list (__main__.TestPS2) ... ok
test_get_available_letters_empty_string (__main__.TestPS2) ... ok

2) The Game

Now that you have written some useful helper functions, you can implement the hangman function, which takes two parameters: (1) secret_word , the
secret word the user is to guess; and (2) with_help , a boolean representing whether or not the game is to be played with the ‘help’ functionality.

Calling the hangman function starts up an interactive game between the user and the computer. In designing your code, be sure you take advantage of

the three helper functions, has_player_won , get_word_progress , and get_available_letters from Problem 1! You may write additional

helper functions if you need them.

To test your hangman function, you should call it from within the if __name__ == "__main__": condition found at the bottom of hangman.py.

Manually set the secret word to make it easier to test your code. However, in the end, you should also test your program with the secret word selected

at random.

Example code to manually test your hangman function (at the bottom of hangman.py):

if __name__ == "__main__":
 secret_word = "tact"
 with_help = False
 hangman(secret_word, with_help)

Important Notes:

1. Make your print statements as close to the example games as possible. The appendix also contains helpful examples of gameplay.

2. Please refer to Helpful Debugging Tips if you have trouble debugging.

2.1) Game Setup

1. The secret_word along with the boolean with_help are passed into the hangman function as parameters.

2. At the start of the game, display how many letters secret_word contains.

3. Users start with 10 guesses.

Example Game Implementation

Loading word list from file...
 55900 words loaded.
Welcome to Hangman!
I am thinking of a word that is 4 letters long.

3

2.2) User-computer interaction

1. Before each guess, you should display to the user:

At least three (3) dashes (e.g. --------------) to separate individual guesses from each other. Leaving out the row of dashes will

cause the tester to fail.

How many guesses they have remaining

All the letters that have not yet been guessed

2. Ask the user to supply one guess at a time.

The user can type any number, symbol, or letter. Your code should only accept capital and lowercase single letters as valid guesses!

If the game is played with help, your code should also accept the help character (!)
3. Immediately after each guess, you should display:

Whether or not the letter is in the secret word (see the example implementation below)

The word with guessed letters revealed and unguessed letters as asterisks (*)

Example Game Implementation 1:

Loading word list from file...
 55900 words loaded.
Welcome to Hangman!
I am thinking of a word that is 4 letters long.

You have 10 guesses left.
Available letters: abcdefghijklmnopqrstuvwxyz
Please guess a letter: a # This is the user input
Good guess: *a**

You have 10 guesses left.
Available letters: bcdefghijklmnopqrstuvwxyz
Please guess a letter: b # This is the user input
Oops! That letter is not in my word: *a**

You have 9 guesses left.
Available letters: cdefghijklmnopqrstuvwxyz
Please guess a letter: 2 # This is the user input
Oops! That is not a valid letter. Please input a letter from
the alphabet: *a**

You have 9 guesses left.
Available letters: cdefghijklmnopqrstuvwxyz
Please guess a letter: foo # This is the user input
Oops! That is not a valid letter. Please input a letter from
the alphabet: *a**

You have 9 guesses left.
Available letters: cdefghijklmnopqrstuvwxyz
Please guess a letter: + # This is the user input
Oops! That is not a valid letter. Please input a letter from
the alphabet: *a**

NOTE: # This is the user input is a comment and will not be displayed in your output.

Hints:

1. Use calls to the input() function to get the user's guess.

Check that the user input is an alphabet letter (or the help character if the game is played with help).

If the user does not input a valid letter/character, tell them they can only input a letter from the alphabet.

2. Since the words in words.txt are lowercase, we suggest converting user input to lowercase so program only needs to handle lowercase

characters.

3. You may find the string functions str.isalpha() and str.lower() helpful! You can type help(str.isalpha) or help(str.lower) in the

Spyder shell to see documentation for the functions.

Example usage of str.isalpha() and str.lower() :

4

>> my_string = "HeLLoWoRlD"
>> my_string.isalpha()
True
>> my_string.lower()
'helloworld'

2.3) Guesses Remaining

If the user inputs:

1. Anything besides a letter in the alphabet (e.g. symbols or numbers), tell the user that they can only input an alphabet letter. The user loses no

guesses. Note: When the game is being played with help, ! is also a valid input.

2. A letter that has already been guessed, print a message telling the user the letter has already been guessed before. The user loses no guesses.

3. Any letter that hasn't been guessed before and the letter is in the secret word, the user loses no guesses.

4. Consonants: If the user inputs a consonant that hasn't been guessed and the consonant is not in the secret word, the user loses one guess.

5. Vowels: If the user inputs a vowel that hasn't been guessed and the vowel is not in the secret word, the user loses two guesses. Vowels are a , e ,
i , o , and u . The letter y does not count as a vowel. Note: if a user inputs an incorrect vowel that hasn't been guessed and there is only one

guess remaining, the user loses and the game is over.

Example Game Implementation 1 (continued):

You have 9 guesses left.
Available letters: bcdefghijklmnopqrtuvwxyz
Please guess a letter: t
Good guess: ta*t

You have 9 guesses left.
Available letters: bcdefghijklmnopqruvwxyz
Please guess a letter: e
Oops! That letter is not in my word: ta*t

You have 7 guesses left.
Available letters: bcdfghijklmnopqruvwxyz
Please guess a letter: e
Oops! You've already guessed that letter: ta*t

2.4) The Game with Help

It isn't always easy to beat the computer, especially when it selects an esoteric word. It might be nice if you could ask for some help.

To do this you will create a feature of the game that works as follows:

If you type the special character ! , the computer will provide you with one of the missing letters in the secret word at a cost of three guesses.
This character should be the only non-letter input that your game accepts as a guess.

If you do not have at least three guesses remaining, the computer will warn you of this and let you try again. You lose no guesses.

Note: The user can play the game with this feature only when the with_help parameter is True .

As a starting point, we suggest writing a helper function that chooses a letter to reveal. It should take two arguments: the secret word and the string

of available letters (from get_available_letters). This helper function should create a string choose_from containing the unique letters that are in

both the secret word and the available letters. You can then use the following statements to pick a random character revealed_letter from that

string:

new = random.randint(0, len(choose_from)-1)
revealed_letter = choose_from[new]

Your helper function should then return this revealed_letter . Back in your original game logic, you'll need to add a conditional statement to catch
the case of the user inputting ! . This case, if triggered, can add the letter returned by your helper function to letters_guessed , show the new word

progress, decrement the remaining guesses by 3, and continue the gameplay.

Example Game Implementation 2:

5

Welcome to Hangman!
I am thinking of a word that is 7 letters long.

You currently have 10 guesses left.
Available letters: abcdefghijklmnopqrstu
Please guess a letter: !
Letter revealed: r
r*****r

You currently have 7 guesses left.
Available letters: abcdefghijklmnopqrstu
Please guess a letter: !
Letter revealed: a
ra***ar

You currently have 4 guesses left.
Available letters: abdefghijklmnopqrstu
Please guess a letter: !
Letter revealed: e
ra*e*ar

You currently have 1 guess left.
Available letters: abdefghijklmnopqstu
Please guess a letter: !
Oops! Not enough guesses left: ra*e*ar

Please refer to the appendix at the end of this handout for an example of a complete game of hangman with help.

2.5) Game Termination

1. The game ends when the user guesses all the letters in secret_word or has 0 guesses remaining.

2. If the user wins, print a congratulatory message, and tell the user their score.

Example: For a game with secret word “asleep” with 6 guesses remaining, there are a total of 5 unique letters (a , s , l , e , and p). Thus, the
final score is: .

3. If the player runs out of guesses before completing the word, tell them they lost and reveal the word to the user when the game ends.

Example Implementation (win):

... snip ...
You have 5 guesses left.
Available letters: abcgnqrstuvwxyz
Please guess a letter: n
Good guess: dolphin

Congratulations, you won!
Your total score for this game is: 54

NOTE: # ...snip... is not part of the output; it indicates that only part of the example game implementation is shown.

Example Implementation (Lose):

... snip ...
You have 1 guess left.
Available Letters: ghijklmnopqrstuvwxyz
Please guess a letter: i
Oops! That letter is not in my word: e**e

Sorry, you ran out of guesses. The word was else.

NOTE: # ...snip... is not part of the output; it indicates that only part of the example game implementation is shown.

2.6) Testing your code

total_score = (guesses_remaining+ 4 × number of unique letters in secret_word) + (3 × length of secret_word)

(6 + 4 × 5) + (3 × 6) = 44

6

Look carefully at the example hangman games in the handout appendix and make your print statements as close to the example games as possible! If

you run into issues, try consulting the debugging hints.

If you scroll to the bottom of hangman.py, you will see the lines below:

if __name__ == "__main__":
 # To test your game, uncomment the following three lines.

 # secret_word = choose_word(wordlist)
 # with_help = False
 # hangman(secret_word, with_help)

Uncomment the bottom three lines to choose a random secret word and play hangman with the provided secret word. Feel free to pass in your own

secret word when testing your program.

2.6.1) Student Tester

In order to test if your game runs properly, please run test_ps2_student.py. If your function is correct, you should see the following in the test printout:

test_play_game_short (__main__.TestPS2) ... ok
test_play_game_short_fail (__main__.TestPS2) ... ok
test_play_game_with_help (__main__.TestPS2) ... ok

You might see some additional messages printed out between the ... and the ok . For example, you might see the following:

Problem Set 2 Unit Test Results:
All correct!
Points for these tests: 5/5
(Please note that this is not your final pset score, additional test cases will be run on submissions)
ok

This is fine.

3) Hand-in Procedure

3.1) Naming Files

Save your solutions with the original file name: hangman.py. Do not ignore this step or save your file with a different name!

3.2) Time and Collaboration Info

At the start of each file, in a comment, write down the names of your collaborators. For example:

 # Problem Set 2, hangman.py
 # Name: Jane Lee
 # Collaborators: John Doe

Please estimate the number of hours you spent on the Problem Set in the question box below.

3.3) Half-way Submission

All students should submit their progress by the half-way due date (1 week before the final due date).

This submission will be worth 1 point out of the problem set grade and will not be graded for correctness. The intention is to make sure that you are

making steady progress on the problem set as opposed to working on it in the final days before the due date.

You may upload new versions of each file until Oct 12 at 09:00PM. You cannot use extensions or late days on this submission.

7

Select File No file selected

Submit

You have infinitely many submissions remaining.

3.4) Final Submission

Be sure to run the student tester and make sure all the tests pass. However, the student tester contains only a subset of the tests that will be run to

determine the problem set grade. Passing all of the provided test cases does not guarantee full credit on the pset.

You may upload new versions until Oct 19 at 09:00PM, but anything uploaded after that time will be counted towards your late days, if you have any

remaining. If you have no remaining late days, you will receive no credit for a late submission.

When you upload a new file with the same name, your old one will be overwritten.

Please refresh the page before submitting a new file. If you do not, your latest submission won't be updated.

Select File No file selected

Submit

You have infinitely many submissions remaining.

4) Appendix

4.1) Hangman Example (Winning Game)

Loading word list from file...
 55900 words loaded.
Welcome to Hangman!
I am thinking of a word that is 4 letters long.

You have 10 guesses left.
Available letters: abcdefghijklmnopqrstuvwxyz
Please guess a letter: a
Good guess: *a**

You have 10 guesses left.
Available letters: bcdefghijklmnopqrstuvwxyz
Please guess a letter: a
Oops! You've already guessed that letter: *a**

You have 10 guesses left.
Available letters: bcdefghijklmnopqrstuvwxyz
Please guess a letter: s
Oops! That letter is not in my word: *a**

You have 9 guesses left.
Available letters: bcdefghijklmnopqrtuvwxyz
Please guess a letter: +
Oops! That is not a valid letter. Please input a letter from the alphabet: *a**

You have 9 guesses left.
Available letters: bcdefghijklmnopqrtuvwxyz
Please guess a letter: t
Good guess: ta*t

You have 9 guesses left.
Available letters: bcdefghijklmnopqruvwxyz
Please guess a letter: e 8

Oops! That letter is not in my word: ta*t

You have 7 guesses left.
Available letters: bcdfghijklnopquvwxyz
Please guess a letter: c
Good guess: tact

Congratulations, you won!
Your total score for this game is: 31

4.2) Hangman Example (Losing Game)

Loading word list from file...
 55900 words loaded.
Welcome to Hangman!
I am thinking of a word that is 4 letters long

You have 10 guesses left.
Available Letters: abcdefghijklmnopqrstuvwxyz
Please guess a letter: a
Oops! That letter is not in my word: ****

You have 8 guesses left.
Available Letters: bcdefghijklmnopqrstuvwxyz
Please guess a letter: b
Oops! That letter is not in my word: ****

You have 7 guesses left.
Available Letters: cdefghijklmnopqrstuvwxyz
Please guess a letter: c
Oops! That letter is not in my word: ****

You have 6 guesses left.
Available Letters: defghijklmnopqrstuvwxyz
Please guess a letter: 2
Oops! That is not a valid letter. Please input a letter from the alphabet: ****

You have 6 guesses left.
Available Letters: defghijklmnopqrstuvwxyz
Please guess a letter: d
Oops! That letter is not in my word: ****

You have 5 guesses left.
Available Letters: efghijklmnopqrstuvwxyz
Please guess a letter: u
Oops! That letter is not in my word: ****

You have 3 guesses left.
Available Letters: efghijklmnopqrstvwxyz
Please guess a letter: e
Good guess: e**e

You have 3 guesses left.
Available Letters: fghijklmnopqrstuvwxyz
Please guess a letter: f
Oops! That letter is not in my word: e**e

You have 2 guesses left.
Available Letters: ghijklmnopqrstuvwxyz
Please guess a letter: o
Oops! That letter is not in my word: e**e

9

Sorry, you ran out of guesses. The word was else.

4.3) Hangman With Help

Loading word list from file...
 55900 words loaded.
Welcome to Hangman!
I am thinking of a word that is 7 letters long

You currently have 10 guesses left
Available letters: abcdefghijklmnopqrstuvwxyz
Please guess a letter: r
Good guess: r*****r

You currently have 10 guesses left
Available letters: abcdefghijklmnopqstuvwxyz
Please guess a letter: !
Letter revealed: c
r*c*c*r

You currently have 7 guesses left
Available letters: abdeghijklmnopqstuvwxyz
Please guess a letter: !
Letter revealed: a
rac*car

You currently have 4 guesses left
Available letters: bdeghijklmnopqstuvwxyz
Please guess a letter: e
Good guess: racecar

Congratulations, you won!
Your total score for this game is: 41

5) Helpful Debugging Tips

Remember, the auto grader is testing your printed output against the expected printed output. That makes it necessary that you design your game

to match as closely as possible. For instance, your output needs to have the same number of lines as the expected output. Therefore, be

careful to include everything that our examples print out, including the dashes (--------------) at the end of a turn!

If you fail any of the test_play_game tests, a file called run_game_test_results.txt should appear in the same directory as

test_ps2_student.py. The text file should contain the expected output and your actual output.

Do not be concerned if your input prompt messages (i.e. Please guess a letter:) do not show up in the text file. Unfortunately,

input prompts are not redirected to the file output. This should not affect the tester.

Make sure you provide a non-empty string parameter to input. That is, you should be calling input("Please guess a letter: ") .
The tester cannot properly feed input into your program if you call input("") instead.

If you come across NameError: name 'outputstr' is not defined , please restart your Spyder kernel.

10

If you are using the print function, you may be adding extra spaces unintentionally. For example, the following statement inserts a space between

the two strings.

>>> print('foo', 'bar')
foo bar

You can change what print inserts between strings by passing in an optional sep parameter, which is by default one space. Python by default inserts a

\n , the newline character, at the end of the string to be printed, which is why you normally see each print statement on a new line. You can change this

using the optional end parameter. You don't need this for the pset, but it's good to be aware of it.

>>> print('foo', 'bar', 'baz', sep=" and ", end='\n')
foo and bar and baz

The Spyder console might insert an extra blank line in the output even though there's nothing in the code that tells it to. This should not affect the

tester.

Are you scoring things properly? You might want to write a function to help you calculate the score given a word and the number of guesses

remaining. Be sure to account for guesses lost using hints as well.

As always, strategically printing the values of variables is often a helpful way of checking that the correct values are stored in those variables.

11

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to CS and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

12

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

