COMPLEXITY CLASSES EXAMPLES

(download slides and .py files to follow along)

6.100L Lecture 23

Ana Bell

THETA

- Theta Θ is how we denote the asymptotic complexity
- We look at the input term that dominates the function
 - Drop other pieces that don't have the fastest growth
 - Drop additive constants
 - Drop multiplicative constants
- End up with only a few classes of algorithms
- We will look at code that lands in each of these classes today

WHERE DOES THE FUNCTION COME FROM?

- Given code, start with the input parameters. What are they?
- Come up with the equation relating input to number of ops.
 - f = 1 + len(L1)*5 + 1 + len(L2)*5 + 2 = 5*len(L1) + 5*len(L2) + 3
 - If lengths are the same, f = 10*len(L) + 3
- $\Theta(f) = \Theta(10^* \text{len}(L) + 3) = \Theta(\text{len}(L))$

WHERE DOES THE FUNCTION COME FROM?

 A quicker way: no need to come up with the exact formula. Look for loops and anything that repeats wrt the input parameters. Everything else is constant.

```
Only care about code that

repeats wrt these variables

def f(L, L1, L2):

inL1 = False

for i in range(len(L1)):

if L[i] == L1[i]:

inL1 = True

inL2 = False

for i in range(len(L2)):

if L[i] == L2[i]:

inL2 = True

return inL1 and inL2
```

6.100L Lecture 23

Big-O Complexity Chart

COMPLEXITY CLASSES n is the input

We want to design algorithms that are as close to top of this hierarchy as possible

Elements

- Θ(1) denotes constant running time
- Θ(log n) denotes logarithmic running time
- Θ(n) denotes linear running time
- Θ(n log n) denotes log-linear running time
- O(n^c) denotes polynomial running time (c is a constant)
- Θ(cⁿ) denotes exponential running time
 (c is a constant raised to a power based on input size)

CONSTANT COMPLEXITY

CONSTANT COMPLEXITY

- Complexity independent of inputs
- Very few interesting algorithms in this class, but can often have pieces that fit this class
- Can have loops or recursive calls, but number of iterations or calls independent of size of input
- Some built-in operations to a language are constant
 - Python indexing into a list L[i]
 - Python list append L.append ()
 - Python dictionary lookup d[key]

CONSTANT COMPLEXITY: EXAMPLE 1

def add(x, y):
 return x+y

Complexity in terms of either x or y: Θ(1)

CONSTANT COMPLEXITY: EXAMPLE 2

def convert_to_km(m):
 return m*1.609

Complexity in terms of m: O(1)

CONSTANT COMPLEXITY: EXAMPLE 3

Complexity in terms of x (the input parameter): O(1)

LINEAR COMPLEXITY

LINEAR COMPLEXITY

- Simple iterative loop algorithms
 - Loops must be a function of input
- Linear search a list to see if an element is present
- Recursive functions with one recursive call and constant overhead for call
- Some built-in operations are linear
 - ∎e in L
 - Subset of list: e.g. L[:len(L)//2]
 - L1 == L2
 - del(L[5])

COMPLEXITY EXAMPLE 0 (with a twist)

```
Multiply x by y
def mul(x, y):
   tot = 0
   for i in range(y):
      tot += x
   return tot
```


- Complexity in terms of y: O(y)
- Complexity in terms of x: O(1)

BIG IDEA

Be careful about what the inputs are.

LINEAR COMPLEXITY: EXAMPLE 1

 Add characters of a string, assumed to be composed of decimal digits

```
def add_digits(s):
   val = 0
   for c in s:
      val += int(c)
   return val
```

Loop goes through len(s) times: **O(len(s))** Everything else is constant. **O(1)**

- O(len(s))
- O(n) where n is len(s)

LINEAR COMPLEXITY: EXAMPLE 2

Loop to find the factorial of a number >=2

```
def fact_iter(n):
    prod = 1
    for i in range(2, n+1):
        prod *= i
    return prod
```


- Number of times around loop is n-1
- Number of operations inside loop is a constant
 - Independent of n
- Overall just O(n)

FUNNY THING ABOUT FACTORIAL AND PYTHON

iter fact(40) took 3.10e-06 sec (322,580.65/sec)
iter fact(80) took 6.00e-06 sec (166,666.67/sec)
iter fact(160) took 1.34e-05 sec (74,626.87/sec)
iter fact(320) took 3.39e-05 sec (29,498.53/sec)
iter fact(640) took <u>1.18e-04</u> sec (8,488.96/sec)
iter fact(1280) took 4.31e-04 sec (2,322.88/sec)
iter fact(2560) took 1.33e-03 sec (752.73/sec)
iter fact(5120) took
iter fact(10240) took 1.90e-02 sec (52.50/sec)
iter fact(20480) took 7.66e-02 sec (13.06/sec)
iter fact(40960) took 3.35e-01 sec (2.99/sec)
iter fact(81920) took 1.60e+00 sec (0.62/sec)

- Eventually grows faster than linear
- Because Python increases the size of integers, which yields more costly operations
- For this class: ignore such effects

LINEAR COMPLEXITY: EXAMPLE 3

```
def fact_recur(n):
    """ assume n >= 0 """
    if n <= 1:
        return 1
    else:
        return n*fact_recur(n - 1)</pre>
```

```
Think about the function call
stack: O(n)
Everything else is constant.
O(1)
```

- Computes factorial recursively
- If you time it, notice that it runs a bit slower than iterative version due to function calls
- O(n) because the number of function calls is linear in n
- Iterative and recursive factorial implementations are the same order of growth

LINEAR COMPLEXITY: EXAMPLE 4

def compound(invest, interest, n_months):

- Θ(1)*Θ(n_months) = Θ(n_months)
 Θ(n) where n=n_months
 - If I was being thorough, then need to account for assignment and return statements:
 - $\Theta(1) + 4^*\Theta(n) + \Theta(1) = \Theta(1 + 4^*n + 1) = \Theta(n)$ where n=n_months

COMPLEXITY OF ITERATIVE FIBONACCI

Θ(1)+ Θ(1)+ Θ(n)*Θ (1)+ Θ(1) → Θ(n)

6.100L Lecture 23

POLYNOMIAL COMPLEXITY

POLYNOMIAL COMPLEXITY (OFTEN QUADRATIC)

- Most common polynomial algorithms are quadratic, i.e., complexity grows with square of size of input
- Commonly occurs when we have nested loops or recursive function calls

QUADRATIC COMPLEXITY: EXAMPLE 1

- Computes n² very inefficiently
- Look at the loops. Are they in terms of the input?
 - Nested loops
 - Look at the ranges
 - Each iterating n times
- Θ(n) * Θ(n) * Θ(1) = Θ(n²)

QUADRATIC COMPLEXITY: EXAMPLE 2

- Decide if L1 is a subset of L2: are all elements of L1 in L2? Yes: No: L1 = [3, 5, 2]L1 = [3, 5, 2]
 - L2 = [2, 3, 5, 9]L2 = [2, 5, 9]

```
def is subset(L1, L2):
    for el in L1:
        matched = False
        for e2 in L2:
            if e1 == e2:
                matched = True
                break
        if not matched:
            return False
    return True
                            24
```

QUADRATIC COMPLEXITY: EXAMPLE 2

```
def is subset(L1, L2):
```

for el in Ll:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

Outer loop executed len(L1) times

Each iteration will execute inner loop up to len(L2) times

Θ(len(L1)*len(L2))

If L1 and L2 same length and none of elements of L1 in L2

Θ(len(L1)²)

QUADRATIC COMPLEXITY: EXAMPLE 3

 Find intersection of two lists, return a list with each element appearing only once Example:

6.100L Lecture 23

QUADRATIC COMPLEXITY: EXAMPLE 3

```
def intersect(L1, L2):
    tmp = []
    for e1 in L1:
        for e2 in L2:
            if e1 == e2:
               tmp.append(e1)
    unique = []
    for e in tmp:
            if not(e in unique):
               unique.append(e)
    return unique
```

First nested loop takes O(len(L1)*len(L2)) steps.

Second loop takes at most O(len(L1)*len(L2)) steps. Typically not this bad.

 E.g: [7,7,7] and [7,7,7] makes tmp=[7,7,7,7,7,7,7,7,7]

Overall O(len(L1)*len(L2))

DIAMETER COMPLEXITY

Outer loop does len(L) passes:

O(len(L))

len(L) * len(L)/2 iterations = $len(L)^2 / 2$

Θ(len(L)²)

YOU TRY IT!

```
def all_digits(nums):
    """ nums is a list of numbers """
    digits = [0,1,2,3,4,5,6,7,8,9]
    for i in nums:
        isin = False
        for j in digits:
            if i == j:
                isin = True
                break
        if not isin:
            return False
    return True
```

ANSWER:

What's the input? Outer for loop is Θ(nums). Inner for loop is Θ(1). Overall: Θ(len(nums))

YOU TRY IT!

Asymptotic complexity of f? And if L1,L2,L3 are same length? def f(L1, L2, L3): for e1 in L1: for e2 in L2: if e1 in L3 and e2 in L3 : return True

return False

ANSWER:

 $\Theta(len(L1))^* \Theta(len(L2))^* \Theta(len(L3)+len(L3))$

```
Overall: \Theta(\text{len}(L1)*\text{len}(L2)*\text{len}(L3))
Overall if lists equal length: \Theta(\text{len}(L1)**3)
```

EXPONENTIAL COMPLEXITY

EXPONENTIAL COMPLEXITY

- Recursive functions where have more than one recursive call for each size of problem
 - Fibonacci
- Many important problems are inherently exponential
 - Unfortunate, as cost can be high
 - Will lead us to consider approximate solutions more quickly

 $2^{30} \approx 1$ million $2^{100} > \#$ cycles than all the computers in the world working for all of recorded history could complete

COMPLEXITY OF RECURSIVE FIBONACCI

```
def fib_recur(n):
    """ assumes n an int >= 0 """
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib recur(n-1) + fib_recur(n-2)
```


6.100L Lecture 23

COMPLEXITY OF RECURSIVE FIBONACCI

- Can do a bit better than 2ⁿ since tree thins out to the right
- But complexity is still order exponential

34

6.100L Lecture 23

EXPONENTIAL COMPLEXITY: GENERATE SUBSETS

- Input is [1, 2, 3]
- Output is all combinations of elements of all lengths [[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

def	gen_subsets(L):
	<u>if</u> len(L) == 0:
	return [[]]
	extra = L[-1:]
	<pre>smaller = gen_subsets(L[:-1])</pre>
	new = []
	<pre>for small in smaller:</pre>
	<pre>new.append(small+extra)</pre>
	return smaller+new

36

6.100L Lecture 23

def gen_subsets(L): if len(L) == 0: return [[]] extra = L[-1:] smaller = gen_subsets(L[:-1]) new = [] for small in smaller: new.append(small+extra) return smaller+new

6.100L Lecture 23

EXPONENTIAL COMPLEXITY GENERATE SUBSETS

```
def gen_subsets(L):
    if len(L) == 0:
        return [[]]
    extra = L[-1:]
    smaller = gen_subsets(L[:-1])
    new = []
    for small in smaller:
        new.append(small+extra)
    return smaller+new
```

- Assuming append is constant time
- Time to make sublists includes time to solve smaller problem, and time needed to make a copy of all elements in smaller problem

EXPONENTIAL COMPLEXITY GENERATE SUBSETS

```
def gen_subsets(L):
    if len(L) == 0:
        return [[]]
    extra = L[-1:]
    smaller = gen_subsets(L[:-1])
    new = []
    for small in smaller:
        new.append(small+extra)
    return smaller+new
```

Think about size of smaller

- For a set of size k there are 2^k cases, doubling the size every call
- So to solve need 2ⁿ⁻¹ + 2ⁿ⁻² + ...
 +2⁰ steps = Θ(2ⁿ)
- Time to make a copy of smaller
 - Concatenation isn't constant
 - Θ(n)
- Overall complexity is
 O(n*2ⁿ) where n=len(L)

LOGARITHMIC COMPLEXITY

- Adds digits of a number together
 - n = 83, but the loop only iterates 2 times. Relationship?
 - n = 4271, but the loop only iterates 4 times! Relationship??

1

- Adds digits of a number together
 - n = 83, but the loop only iterates 2 times. Relationship?
 - n = 4271, but the loop only iterates 4 times! Relationship??

- Adds digits of a number together
 - n = 83, but the loop only iterates 2 times. Relationship?
 - n = 4271, but the loop only iterates 4 times! Relationship??

- Adds digits of a number together
 - n = 83, but the loop only iterates 2 times. Relationship?
 - n = 4271, but the loop only iterates 4 times! Relationship??

- Adds digits of a number together
- Tricky part: iterate over **length of string**, not magnitude of n
 - Think of it like dividing n by 10 each iteration
 - n/10^{len(s)} = 1 (i.e. divide by 10 until there is 1 element left to add)
 - len(s) = log(n)
- O(log n) base doesn't matter

LOGARITHMIC COMPLEXITY

- Complexity grows as log of size of one of its inputs
- Example algorithm: **binary search** of a list
- Example we'll see in a few slides: one bisection search implementation

LIST AND DICTIONARIES

Must be careful when using built-in functions!

Lists – n is len(L)

- index $\Theta(1)$
- store Θ(1)
- length $\Theta(1)$
- append Θ(1)
- == Θ(n)
- remove Θ(n)
- copy Θ(n)
- reverse
 Θ(n)
- iteration Θ(n)
- in list Θ(n)

Dictionaries – n is len(d)

- index Θ(1)
- store Θ(1)
- length Θ(1)
- delete Θ(1)
- .keys Θ(n)
- .values Θ(n)
- iteration Θ(n)

SEARCHING ALGORITHMS

SEARCHING ALGORITHMS

- Linear search
 - Brute force search
 - List does not have to be sorted
- Bisection search
 - List **MUST be sorted** to give correct answer
 - Will see two different implementations of the algorithm

LINEAR SEARCH ON **UNSORTED** LIST

- Must look through all elements to decide it's not there
- O(len(L)) for the loop * O(1) to test if e == L[i]
- Overall complexity is O(n) where n is len(L)
- Θ(len(L))

LINEAR SEARCH ON **UNSORTED** LIST

def linear_search(L, e):

- Must look through all elements to decide it's not there
- O(len(L)) for the loop * O(1) to test if e == L[i]
- Overall complexity is O(n) where n is len(L)
- O(len(L))

LINEAR SEARCH ON **SORTED** LIST

- Must only look until reach a number greater than e
- O(len(L)) for the loop * O(1) to test if i == e or i > e
- Overall complexity is O(len(L))
 O(n) where n is len(L)

BISECTION SEARCH FOR AN ELEMENT IN A **SORTED** LIST

- 1) Pick an index, \pm , that divides list in half
- 2) Ask if L[i] == e
- 3) If not, ask if L[i] is larger or smaller than e
- 4) Depending on answer, search left or right half of ${\rm L}$ for ${\rm e}$
- A new version of divide-and-conquer: recursion!
- Break into smaller versions of problem (smaller list), plus simple operations
- Answer to smaller version is answer to original version

BISECTION SEARCH COMPLEXITY ANALYSIS

 Finish looking through list when

 $1 = n/2^{i}$

- So... relationship between original length of list and how many times we divide the list: i = log n
- Complexity is
 O(log n) where n
 is len(L)

BIG IDEA

Two different implementations have two different Θ values.

BISECTION SEARCH IMPLEMENTATION 1

COMPLEXITY OF bisect_search1 (where n is len(L))

• O(log n) bisection search calls

- Each recursive call cuts range to search in half
- Worst case to reach range of size 1 from n is when n/2^k = 1 or when k = log n
- We do this to get an expression relating k to n
- O(n) for each bisection search call to copy list
 - Cost to set up recursive call at each level of recursion
- Θ(log n) * Θ(n) = Θ(n log n) where n = len(L)
 ^ this is the answer in this class
- If careful, notice list is also halved on each recursive call
 - Infinite series (don't worry about this in this class)
 - Θ(n) is a tighter bound because copying list dominates log n

BISECTION SEARCH ALTERNATE IMPLEMENTATION

- Reduce size of problem by factor of 2 each step
- Keep track of low and high indices to search list
- Avoid copying list
- Complexity of recursion is
 O(log n) where n is len(L)

COMPLEXITY OF bisect_search2 and helper (where n is len(L))

• O(log n) bisection search calls

- Each recursive call cuts range to search in half
- Worst case to reach range of size 1 from n is when n/2^k = 1 or when k = log n
- We do this to get an expression relating k to n
- Pass list and indices as parameters
 - List never copied, just re-passed
 - O(1) on each recursive call
- Θ (log n) * Θ(1) = Θ(log n) where n is len(L)

WHEN TO SORT FIRST AND THEN SEARCH?

SEARCHING A SORTED LIST -- n is len(L)

- Using linear search, search for an element is Θ(n)
- Using binary search, can search for an element in O(log n)
 - Assumes the list is sorted!
- When does it make sense to sort first then search?

When is sorting is less than Θ(n)??!!?
 → Never true because you'd at least have to look at each element!

AMORTIZED COST -- n is len(L)

Why bother sorting first?

Only once!

Sort a list once then do many searches

Do K searches

AMORTIZE cost of the sort over many searches

implies that for large K, SORT time becomes irrelevant

COMPLEXITY CLASSES SUMMARY

- Compare efficiency of algorithms
- Lower order of growth
- Using O for an upper and lower ("tight") bound
- Given a function f:
 - Only look at items in terms of the input
 - Look at loops
 - Are they in terms of the input to f?
 - Are there nested loops?
 - Look at recursive calls
 - How deep does the function call stack go?
 - Look at built-in functions
 - Any of them depend on the input?

6.100L Introduction to Computer Science and Programming Using Python Fall 2022

Forinformation aboutciting these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.