
COMPLEXITY CLASSES
EXAMPLES

(download slides and .py files to follow along)
6.100L Lecture 23

Ana Bell

1

THETA

 Theta Θ is how we denote the asymptotic complexity

 We look at the input term that dominates the function
 Drop other pieces that don’t have the fastest growth
 Drop additive constants
 Drop multiplicative constants

 End up with only a few classes of algorithms
 We will look at code that lands in each of these classes today

6.100L Lecture 23
2

WHERE DOES THE FUNCTION
COME FROM?

 Given code, start with the input parameters. What are they?
 Come up with the equation relating input to number of ops.

 f = 1 + len(L1)*5 + 1 + len(L2)*5 + 2 = 5*len(L1) + 5*len(L2) + 3

 If lengths are the same, f = 10*len(L) + 3

 Θ(f) = Θ (10*len(L) + 3) = Θ(len(L))

6.100L Lecture 23

def f(L, L1, L2):
inL1 = False
for i in range(len(L1)):

if L[i] == L1[i]:
inL1 = True

inL2 = False
for i in range(len(L2)):

if L[i] == L2[i]:
inL2 = True

return inL1 and inL2

3

WHERE DOES THE FUNCTION
COME FROM?

 A quicker way: no need to come up with the exact formula.
Look for loops and anything that repeats wrt the input
parameters. Everything else is constant.

6.100L Lecture 23

def f(L, L1, L2):
inL1 = False
for i in range(len(L1)):

if L[i] == L1[i]:
inL1 = True

inL2 = False
for i in range(len(L2)):

if L[i] == L2[i]:
inL2 = True

return inL1 and inL2

4

6.0001 LECTURE 8

COMPLEXITY CLASSES
n is the input

We want to design algorithms that are as
close to top of this hierarchy as possible

6.100L Lecture 23

 Θ(1) denotes constant running time
 Θ(log n) denotes logarithmic running time
 Θ(n) denotes linear running time
 Θ(n log n) denotes log-linear running time
 Θ(nc) denotes polynomial running time

(c is a constant)
 Θ(cn) denotes exponential running time

(c is a constant raised to a power based on input size)
5

CONSTANT COMPLEXITY

6

CONSTANT COMPLEXITY

 Complexity independent of inputs
 Very few interesting algorithms in this class, but can often have

pieces that fit this class
 Can have loops or recursive calls, but number of iterations or

calls independent of size of input
 Some built-in operations to a language are constant

 Python indexing into a list L[i]
 Python list append L.append()
 Python dictionary lookup d[key]

6.100L Lecture 23
7

CONSTANT COMPLEXITY:
EXAMPLE 1

def add(x, y):

return x+y

 Complexity in terms of either x or y: Θ(1)

6.100L Lecture 23
8

6.0001 LECTURE 9

CONSTANT COMPLEXITY: EXAMPLE 2

def convert_to_km(m):

return m*1.609

 Complexity in terms of m: Θ(1)

6.100L Lecture 23
9

CONSTANT COMPLEXITY: EXAMPLE 3

def loop(x):

y = 100

total = 0

for i in range(y):

total += x

return total

 Complexity in terms of x (the input parameter): Θ(1)

6.100L Lecture 23
10

LINEAR COMPLEXITY

11

LINEAR COMPLEXITY

 Simple iterative loop algorithms
 Loops must be a function of input

 Linear search a list to see if an element is present
 Recursive functions with one recursive call and constant

overhead for call
 Some built-in operations are linear

 e in L
 Subset of list: e.g. L[:len(L)//2]
 L1 == L2
 del(L[5])

6.100L Lecture 23
12

6.0001 LECTURE 9

COMPLEXITY EXAMPLE 0
(with a twist)

 Multiply x by y
def mul(x, y):

tot = 0

for i in range(y):

tot += x

return tot

 Complexity in terms of y: Θ(y)
 Complexity in terms of x: Θ(1)

6.100L Lecture 23
13

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.pinterest.com%2Fpin%2F280067670552813798%2F&psig=AOvVaw1fPH8tc8O7_tsHPF8fS0aR&ust=1600885710254000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPDcg52y_esCFQAAAAAdAAAAABAh

BIG IDEA

Be careful about what
the inputs are.

6.100L Lecture 23
14

LINEAR COMPLEXITY: EXAMPLE 1

 Add characters of a string, assumed to be composed of
decimal digits

def add_digits(s):

val = 0

for c in s:

val += int(c)

return val

 Θ(len(s))
 Θ(n) where n is len(s)

6.100L Lecture 23
15

LINEAR COMPLEXITY: EXAMPLE 2

 Loop to find the factorial of a number >=2
def fact_iter(n):

prod = 1

for i in range(2, n+1):

prod *= i

return prod

 Number of times around loop is n-1
 Number of operations inside loop is a constant

 Independent of n

 Overall just Θ(n)

6.100L Lecture 23
16

6.0001 LECTURE 9

FUNNY THING ABOUT FACTORIAL
AND PYTHON

 Eventually grows faster than linear
 Because Python increases the size of integers, which

yields more costly operations
 For this class: ignore such effects

6.100L Lecture 23
17

6.0001 LECTURE 10

LINEAR COMPLEXITY: EXAMPLE 3

def fact_recur(n):
""" assume n >= 0 """
if n <= 1:

return 1
else:

return n*fact_recur(n – 1)

 Computes factorial recursively
 If you time it, notice that it runs a bit slower than iterative

version due to function calls
 Θ(n) because the number of function calls is linear in n
 Iterative and recursive factorial implementations are the

same order of growth
6.100L Lecture 23

18

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmemegenerator.net%2Finstance%2F37515039%2Ffuturama-fry-not-sure-if-factorial-or-just-excited&psig=AOvVaw3IdQAEFYZ03ef0h15nle1I&ust=1600886085178000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMj5zMqz_esCFQAAAAAdAAAAABAD

def compound(invest, interest, n_months):
total=0
for i in range(n_months):

total = total * interest + invest
return total

6.0001 LECTURE 9

LINEAR COMPLEXITY: EXAMPLE 4

 Θ(1)*Θ(n_months) = Θ(n_months)
Θ(n) where n=n_months

 If I was being thorough, then need to account for assignment
and return statements:

 Θ(1) + 4*Θ(n) + Θ(1) = Θ(1 + 4*n + 1) = Θ(n) where n=n_months

Θ(1)

Θ(n_months)

6.100L Lecture 23
19

COMPLEXITY OF
ITERATIVE FIBONACCI

def fib_iter(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

fib_i = 0

fib_ii = 1

for i in range(n-1):

tmp = fib_i

fib_i = fib_ii

fib_ii = tmp + fib_ii

return fib_ii

Θ(1)+ Θ(1)+ Θ(n)*Θ (1)+ Θ(1)
 Θ(n)

6.100L Lecture 23
20

POLYNOMIAL
COMPLEXITY

21

POLYNOMIAL COMPLEXITY
(OFTEN QUADRATIC)

 Most common polynomial algorithms are quadratic, i.e.,
complexity grows with square of size of input
 Commonly occurs when we have nested loops or recursive

function calls

6.100L Lecture 23
22

QUADRATIC COMPLEXITY:
EXAMPLE 1

def g(n):
""" assume n >= 0 """
x = 0
for i in range(n):

for j in range(n):
x += 1

return x

 Computes n2 very inefficiently
 Look at the loops. Are they in terms of the input?

 Nested loops
 Look at the ranges
 Each iterating n times

 Θ(n) * Θ(n) * Θ(1) = Θ(n2)

6.100L Lecture 23
23

6.0001 LECTURE 9

QUADRATIC
COMPLEXITY: EXAMPLE 2

 Decide if L1 is a subset of L2: are all elements of L1 in L2?
Yes: No:
L1 = [3, 5, 2] L1 = [3, 5, 2]
L2 = [2, 3, 5, 9] L2 = [2, 5, 9]

def is_subset(L1, L2):
for e1 in L1:

matched = False
for e2 in L2:

if e1 == e2:
matched = True
break

if not matched:
return False

return True

6.100L Lecture 23
24

6.0001 LECTURE 9

QUADRATIC
COMPLEXITY: EXAMPLE 2

def is_subset(L1, L2):

for e1 in L1:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

Outer loop executed
len(L1) times

Each iteration will execute
inner loop up to len(L2)
times

Θ(len(L1)*len(L2))
If L1 and L2 same length
and none of elements of L1
in L2

Θ(len(L1)2)

6.100L Lecture 23
25

6.0001 LECTURE 9

QUADRATIC COMPLEXITY: EXAMPLE 3

 Find intersection of two lists, return a list with each element
appearing only once
Example:
L1 = [3, 5, 2] L1 = [7, 7, 7]
L2 = [2, 3, 5, 9] L2 = [7, 7, 7]
returns [2,3,5] returns [7]

def intersect(L1, L2):
tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
unique = []
for e in tmp:

if not(e in unique):
unique.append(e)

return unique

6.100L Lecture 23
26

6.0001 LECTURE 9

QUADRATIC
COMPLEXITY: EXAMPLE 3

def intersect(L1, L2):
tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
unique = []
for e in tmp:

if not(e in unique):
unique.append(e)

return unique

First nested loop takes
Θ(len(L1)*len(L2)) steps.

Second loop takes at most
Θ(len(L1)*len(L2)) steps.
Typically not this bad.

• E.g: [7,7,7] and [7,7,7] makes
tmp=[7,7,7,7,7,7,7,7,7]

Overall Θ(len(L1)*len(L2))
6.100L Lecture 23

27

def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

DIAMETER COMPLEXITY

len(L) * len(L)/2 iterations = len(L)2 / 2

Θ(len(L)2)

6.100L Lecture 23
28

YOU TRY IT!
def all_digits(nums):

""" nums is a list of numbers """
digits = [0,1,2,3,4,5,6,7,8,9]
for i in nums:

isin = False
for j in digits:

if i == j:
isin = True
break

if not isin:
return False

return True

6.100L Lecture 23

ANSWER:
What’s the input?
Outer for loop is Θ(nums).
Inner for loop is Θ(1).
Overall: Θ(len(nums))

29

YOU TRY IT!
 Asymptotic complexity of f? And if L1,L2,L3 are same length?
def f(L1, L2, L3):

for e1 in L1:
for e2 in L2:

if e1 in L3 and e2 in L3 :
return True

return False

6.100L Lecture 23

ANSWER:
Θ(len(L1))* Θ(len(L2))* Θ(len(L3)+len(L3))

Overall: Θ(len(L1)*len(L2)*len(L3))
Overall if lists equal length: Θ(len(L1)**3)

30

EXPONENTIAL
COMPLEXITY

31

EXPONENTIAL COMPLEXITY

 Recursive functions
where have more than
one recursive call for
each size of problem
 Fibonacci

 Many important
problems are inherently
exponential
 Unfortunate, as cost can

be high
 Will lead us to consider

approximate solutions
more quickly

6.100L Lecture 23

230 ~= 1 million
2100 > # cycles than all the computers
in the world working for all of recorded history
could complete

32

COMPLEXITY OF
RECURSIVE FIBONACCI

def fib_recur(n):
""" assumes n an int >= 0 """
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib_recur(n-1) + fib_recur(n-2)

 Worst case:
Θ(2n)

6.100L Lecture 23
33

COMPLEXITY OF RECURSIVE
FIBONACCI

 Can do a bit better than 2n since tree thins out to the
right
 But complexity is still order exponential

6.100L Lecture 23

Fib(6)

Fib(5) Fib(4)

Fib(4) Fib(3) Fib(2)

Fib(3) Fib(2)

Fib(3)

Fib(2) Fib(1)

Fib(2) Fib(1) Fib(2) Fib(1)

34

EXPONENTIAL COMPLEXITY: GENERATE SUBSETS

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

6.100L Lecture 23

 Input is [1, 2, 3]
 Output is all combinations of elements of all lengths

[[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

35

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]
def gen_subsets(L):

if len(L) == 0:
return [[]]

extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

36

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]
def gen_subsets(L):

if len(L) == 0:
return [[]]

extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

37

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

38

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

[[],[1],[2],[1,2]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

39

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

[[],[1],[2],[1,2]]

[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

40

VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

41

EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

6.100L Lecture 23

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

 Assuming append is
constant time

 Time to make sublists
includes time to solve
smaller problem, and
time needed to make a
copy of all elements in
smaller problem

42

EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

6.100L Lecture 23

 Think about size of smaller
 For a set of size k there are 2k

cases, doubling the size every
call

 So to solve need 2n-1 + 2n-2 + …
+20 steps = Θ(2n)

 Time to make a copy of
smaller
 Concatenation isn’t constant
 Θ(n)

 Overall complexity is
Θ(n*2n) where n=len(L)

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

43

LOGARITHMIC
COMPLEXITY

44

def digit_add(n):
""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s[::-1]:

answer += int(c)
return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?
 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 2 7 1 1

45

def digit_add(n):
""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s[::-1]:

answer += int(c)
return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?
 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 2 7 17

46

def digit_add(n):
""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s[::-1]:

answer += int(c)
return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?
 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 2 172

47

def digit_add(n):
""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s[::-1]:

answer += int(c)
return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?
 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 1724

48

def digit_add(n):
""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s[::-1]:

answer += int(c)
return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 Tricky part: iterate over length of string, not magnitude of n

• Think of it like dividing n by 10 each iteration
• n/10len(s) = 1 (i.e. divide by 10 until there is 1 element left to add)
• len(s) = log(n)

 Θ(log n) – base doesn’t matter

6.100L Lecture 23
49

LOGARITHMIC COMPLEXITY

 Complexity grows as log of size of one of its inputs
 Example algorithm: binary search of a list
 Example we’ll see in a few slides: one bisection search

implementation

6.100L Lecture 23
50

LIST AND DICTIONARIES

 Must be careful when using built-in functions!

6.100L Lecture 23

Dictionaries – n is len(d)
• index Θ(1)
• store Θ(1)
• length Θ(1)
• delete Θ(1)
• .keys Θ(n)
• .values Θ(n)
• iteration Θ(n)

Lists – n is len(L)
• index Θ(1)
• store Θ(1)
• length Θ(1)
• append Θ(1)
• == Θ(n)
• remove Θ(n)
• copy Θ(n)
• reverse Θ(n)
• iteration Θ(n)
• in list Θ(n)

51

SEARCHING
ALGORITHMS

52

SEARCHING ALGORITHMS

 Linear search
• Brute force search
• List does not have to be sorted

• Bisection search
• List MUST be sorted to give correct answer
• Will see two different implementations of the algorithm

6.100L Lecture 23
53

LINEAR SEARCH
ON UNSORTED LIST

def linear_search(L, e):
found = False
for i in range(len(L)):

if e == L[i]:
found = True

return found

 Must look through all elements to decide it’s not there
 Θ(len(L)) for the loop * Θ(1) to test if e == L[i]
 Overall complexity is Θ(n) where n is len(L)
 Θ(len(L))

6.100L Lecture 23
54

LINEAR SEARCH
ON UNSORTED LIST

def linear_search(L, e):

for i in range(len(L)):
if e == L[i]:

return True
return False

 Must look through all elements to decide it’s not there
 Θ(len(L)) for the loop * Θ(1) to test if e == L[i]
 Overall complexity is Θ(n) where n is len(L)
 Θ(len(L))

6.100L Lecture 23
55

LINEAR SEARCH
ON SORTED LIST

def search(L, e):
for i in L:

if i == e:
return True

if i > e:
return False

return False

 Must only look until reach a number greater than e
 Θ(len(L)) for the loop * Θ(1) to test if i == e or i > e
 Overall complexity is Θ(len(L))

Θ(n) where n is len(L)

6.100L Lecture 23
56

BISECTION SEARCH FOR AN
ELEMENT IN A SORTED LIST

1) Pick an index, i, that divides list in half
2) Ask if L[i] == e
3) If not, ask if L[i] is larger or smaller than e
4) Depending on answer, search left or right half of L for e

 A new version of divide-and-conquer: recursion!
 Break into smaller versions of problem (smaller list), plus

simple operations
 Answer to smaller version is answer to original version

6.100L Lecture 23
57

BISECTION SEARCH COMPLEXITY
ANALYSIS

 Finish looking
through list when
1 = n/2i

 So… relationship
between original
length of list and
how many times
we divide the list:
i = log n

 Complexity is
Θ(log n) where n
is len(L)

…

…

6.100L Lecture 23
58

BIG IDEA
Two different
implementations have
two different Θ values.

6.100L Lecture 23
59

BISECTION SEARCH
IMPLEMENTATION 1

def bisect_search1(L, e):

if L == []:

return False

elif len(L) == 1:

return L[0] == e

else:

half = len(L)//2

if L[half] > e:

return bisect_search1(L[:half], e)

else:

return bisect_search1(L[half:], e)

6.100L Lecture 23
60

COMPLEXITY OF bisect_search1
(where n is len(L))

 Θ(log n) bisection search calls
 Each recursive call cuts range to search in half
 Worst case to reach range of size 1 from n is when

n/2k = 1 or when k = log n
 We do this to get an expression relating k to n

 Θ(n) for each bisection search call to copy list
 Cost to set up recursive call at each level of recursion

 Θ(log n) * Θ(n) = Θ(n log n) where n = len(L)
^ this is the answer in this class

 If careful, notice list is also halved on each recursive call
 Infinite series (don’t worry about this in this class)
 Θ(n) is a tighter bound because copying list dominates log n

6.100L Lecture 23
61

BISECTION SEARCH ALTERNATE
IMPLEMENTATION

6.100L Lecture 23

 Reduce size of
problem by factor
of 2 each step

 Keep track of low
and high indices
to search list

 Avoid copying list

 Complexity of
recursion is
Θ(log n) where n
is len(L)

…

…

62

def bisect_search2(L, e):
def bisect_search_helper(L, e, low, high):

if high == low:
return L[low] == e

mid = (low + high)//2
if L[mid] == e:

return True
elif L[mid] > e:

if low == mid: #nothing left to search
return False

else:
return bisect_search_helper(L, e, low, mid - 1)

else:
return bisect_search_helper(L, e, mid + 1, high)

if len(L) == 0:
return False

else:
return bisect_search_helper(L, e, 0, len(L) - 1)

BISECTION SEARCH
IMPLEMENTATION 2

6.100L Lecture 23
63

COMPLEXITY OF bisect_search2
and helper (where n is len(L))

 Θ(log n) bisection search calls
 Each recursive call cuts range to search in half
 Worst case to reach range of size 1 from n is when

n/2k = 1 or when k = log n
 We do this to get an expression relating k to n

 Pass list and indices as parameters
 List never copied, just re-passed
 Θ(1) on each recursive call

 Θ (log n) * Θ(1) = Θ(log n) where n is len(L)

6.100L Lecture 23
64

WHEN TO SORT FIRST
AND THEN SEARCH?

6.100L Lecture 23
65

SEARCHING A SORTED LIST
-- n is len(L)

 Using linear search, search for an element is Θ(n)
 Using binary search, can search for an element in Θ(log n)

• Assumes the list is sorted!

 When does it make sense to sort first then search?

• SORT + Θ(log n) < Θ(n)
implies that SORT < Θ(n) – Θ(log n)

• When is sorting is less than Θ(n)??!!?
 Never true because you’d at least have to look at each element!

6.100L Lecture 23
66

AMORTIZED COST
-- n is len(L)

 Why bother sorting first?
 Sort a list once then do many searches

 AMORTIZE cost of the sort over many searches

 SORT + K * Θ(log n) < K * Θ(n)
implies that for large K, SORT time becomes irrelevant

6.100L Lecture 23
67

6.0001 LECTURE 9

COMPLEXITY CLASSES SUMMARY

 Compare efficiency of algorithms
 Lower order of growth
 Using Θ for an upper and lower (“tight”) bound

 Given a function f:
 Only look at items in terms of the input
 Look at loops

 Are they in terms of the input to f?
 Are there nested loops?

 Look at recursive calls
 How deep does the function call stack go?

 Look at built-in functions
 Any of them depend on the input?

9/28/20 6.100L Lecture 23
68

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

69

https://ocw.mit.edu
https://ocw.mit.edu/terms

	COMPLEXITY CLASSES EXAMPLES�(download slides and .py files to follow along)
	THETA
	WHERE DOES THE FUNCTION COME FROM?
	WHERE DOES THE FUNCTION COME FROM?
	COMPLEXITY CLASSES�n is the input
	CONSTANT COMPLEXITY
	CONSTANT COMPLEXITY
	CONSTANT COMPLEXITY: EXAMPLE 1
	CONSTANT COMPLEXITY: EXAMPLE 2
	CONSTANT COMPLEXITY: EXAMPLE 3
	LINEAR COMPLEXITY
	LINEAR COMPLEXITY
	COMPLEXITY EXAMPLE 0 �(with a twist)
	Be careful about what the inputs are.
	LINEAR COMPLEXITY: EXAMPLE 1
	LINEAR COMPLEXITY: EXAMPLE 2
	FUNNY THING ABOUT FACTORIAL AND PYTHON
	LINEAR COMPLEXITY: EXAMPLE 3
	LINEAR COMPLEXITY: EXAMPLE 4
	COMPLEXITY OF �ITERATIVE FIBONACCI
	POLYNOMIAL COMPLEXITY
	POLYNOMIAL COMPLEXITY�(OFTEN QUADRATIC)
	QUADRATIC COMPLEXITY: EXAMPLE 1
	QUADRATIC �COMPLEXITY: EXAMPLE 2
	QUADRATIC �COMPLEXITY: EXAMPLE 2
	QUADRATIC COMPLEXITY: EXAMPLE 3
	QUADRATIC �COMPLEXITY: EXAMPLE 3
	DIAMETER COMPLEXITY
	Slide Number 29
	Slide Number 30
	EXPONENTIAL COMPLEXITY
	EXPONENTIAL COMPLEXITY
	COMPLEXITY OF �RECURSIVE FIBONACCI
	COMPLEXITY OF RECURSIVE FIBONACCI
	EXPONENTIAL COMPLEXITY: GENERATE SUBSETS
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	LOGARITHMIC COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	LOGARITHMIC COMPLEXITY
	LIST AND DICTIONARIES
	SEARCHING ALGORITHMS
	SEARCHING ALGORITHMS
	LINEAR SEARCH �ON UNSORTED LIST
	LINEAR SEARCH �ON UNSORTED LIST
	LINEAR SEARCH �ON SORTED LIST
	BISECTION SEARCH FOR AN ELEMENT IN A SORTED LIST
	BISECTION SEARCH COMPLEXITY ANALYSIS
	Two different implementations have two different Θ values.
	BISECTION SEARCH IMPLEMENTATION 1
	COMPLEXITY OF bisect_search1�(where n is len(L))
	BISECTION SEARCH ALTERNATE IMPLEMENTATION
	BISECTION SEARCH IMPLEMENTATION 2
	COMPLEXITY OF bisect_search2 and helper (where n is len(L))
	WHEN TO SORT FIRST AND THEN SEARCH?
	SEARCHING A SORTED LIST�-- n is len(L)
	AMORTIZED COST�-- n is len(L)
	COMPLEXITY CLASSES SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

