
COMPLEXITY CLASSES 
EXAMPLES

(download slides and .py files to follow along)
6.100L Lecture 23

Ana Bell

1



THETA

 Theta Θ is how we denote the asymptotic complexity

 We look at the input term that dominates the function
 Drop other pieces that don’t have the fastest growth
 Drop additive constants
 Drop multiplicative constants

 End up with only a few classes of algorithms
 We will look at code that lands in each of these classes today

6.100L Lecture 23
2



WHERE DOES THE FUNCTION 
COME FROM?

 Given code, start with the input parameters. What are they?
 Come up with the equation relating input to number of ops.

 f = 1 + len(L1)*5 + 1 + len(L2)*5 + 2 = 5*len(L1) + 5*len(L2) + 3

 If lengths are the same, f = 10*len(L) + 3

 Θ(f) = Θ (10*len(L) + 3) = Θ(len(L))

6.100L Lecture 23

def f(L, L1, L2):
inL1 = False
for i in range(len(L1)):

if L[i] == L1[i]:
inL1 = True

inL2 = False
for i in range(len(L2)):

if L[i] == L2[i]:
inL2 = True

return inL1 and inL2

3



WHERE DOES THE FUNCTION 
COME FROM?

 A quicker way: no need to come up with the exact formula. 
Look for loops and anything that repeats wrt the input 
parameters. Everything else is constant.

6.100L Lecture 23

def f(L, L1, L2):
inL1 = False
for i in range(len(L1)):

if L[i] == L1[i]:
inL1 = True

inL2 = False
for i in range(len(L2)):

if L[i] == L2[i]:
inL2 = True

return inL1 and inL2

4



6.0001 LECTURE 8

COMPLEXITY CLASSES
n is the input

We want to design algorithms that are as 
close to top of this hierarchy as possible

6.100L Lecture 23

 Θ(1) denotes constant running time
 Θ(log n) denotes logarithmic running time
 Θ(n) denotes linear running time
 Θ(n log n) denotes log-linear running time
 Θ(nc) denotes polynomial running time 

(c is a constant)
 Θ(cn) denotes exponential running time 

(c is a constant raised to a power based on input size)
5



CONSTANT COMPLEXITY

6



CONSTANT COMPLEXITY

 Complexity independent of inputs
 Very few interesting algorithms in this class, but can often have 

pieces that fit this class
 Can have loops or recursive calls, but number of iterations or 

calls independent of size of input
 Some built-in operations to a language are constant

 Python indexing into a list L[i]
 Python list append L.append()
 Python dictionary lookup d[key]

6.100L Lecture 23
7



CONSTANT COMPLEXITY: 
EXAMPLE 1

def add(x, y):

return x+y

 Complexity in terms of either x or y: Θ(1)

6.100L Lecture 23
8



6.0001 LECTURE 9

CONSTANT COMPLEXITY: EXAMPLE 2

def convert_to_km(m):

return m*1.609

 Complexity in terms of m: Θ(1)

6.100L Lecture 23
9



CONSTANT COMPLEXITY: EXAMPLE 3

def loop(x):

y = 100

total = 0

for i in range(y):

total += x

return total

 Complexity in terms of x (the input parameter): Θ(1)

6.100L Lecture 23
10



LINEAR COMPLEXITY

11



LINEAR COMPLEXITY

 Simple iterative loop algorithms
 Loops must be a function of input

 Linear search a list to see if an element is present
 Recursive functions with one recursive call and constant

overhead for call
 Some built-in operations are linear

 e in L
 Subset of list: e.g. L[:len(L)//2]
 L1 == L2
 del(L[5])

6.100L Lecture 23
12



6.0001 LECTURE 9

COMPLEXITY EXAMPLE 0 
(with a twist)

 Multiply x by y
def mul(x, y):

tot = 0

for i in range(y):

tot += x

return tot

 Complexity in terms of y: Θ(y)
 Complexity in terms of x: Θ(1)

6.100L Lecture 23
13

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.pinterest.com%2Fpin%2F280067670552813798%2F&psig=AOvVaw1fPH8tc8O7_tsHPF8fS0aR&ust=1600885710254000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPDcg52y_esCFQAAAAAdAAAAABAh


BIG  IDEA

Be careful about what 
the inputs are.

6.100L Lecture 23
14



LINEAR COMPLEXITY: EXAMPLE 1

 Add characters of a string, assumed to be composed of
decimal digits

def add_digits(s):

val = 0

for c in s:

val += int(c)

return val

 Θ(len(s))
 Θ(n) where n is len(s)

6.100L Lecture 23
15



LINEAR COMPLEXITY: EXAMPLE 2

 Loop to find the factorial of a number >=2
def fact_iter(n):

prod = 1

for i in range(2, n+1):

prod *= i

return prod

 Number of times around loop is n-1
 Number of operations inside loop is a constant

 Independent of n

 Overall just Θ(n)

6.100L Lecture 23
16



6.0001 LECTURE 9

FUNNY THING ABOUT FACTORIAL 
AND PYTHON

 Eventually grows faster than linear
 Because Python increases the size of integers, which

yields more costly operations
 For this class: ignore such effects

6.100L Lecture 23
17



6.0001 LECTURE 10

LINEAR COMPLEXITY: EXAMPLE 3

def fact_recur(n):
""" assume n >= 0 """
if n <= 1: 

return 1
else: 

return n*fact_recur(n – 1)

 Computes factorial recursively
 If you time it, notice that it runs a bit slower than iterative

version due to function calls
 Θ(n) because the number of function calls is linear in n
 Iterative and recursive factorial implementations are the

same order of growth
6.100L Lecture 23

18

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmemegenerator.net%2Finstance%2F37515039%2Ffuturama-fry-not-sure-if-factorial-or-just-excited&psig=AOvVaw3IdQAEFYZ03ef0h15nle1I&ust=1600886085178000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMj5zMqz_esCFQAAAAAdAAAAABAD


def compound(invest, interest, n_months):
total=0
for i in range(n_months):

total = total * interest + invest
return total

6.0001 LECTURE 9

LINEAR COMPLEXITY: EXAMPLE 4

 Θ(1)*Θ(n_months) = Θ(n_months)
Θ(n) where n=n_months

 If I was being thorough, then need to account for assignment
and return statements:

 Θ(1) + 4*Θ(n) + Θ(1) = Θ(1 + 4*n + 1) = Θ(n) where n=n_months

Θ(1)

Θ(n_months)

6.100L Lecture 23
19



COMPLEXITY OF 
ITERATIVE FIBONACCI

def fib_iter(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

fib_i = 0

fib_ii = 1

for i in range(n-1):

tmp = fib_i

fib_i = fib_ii

fib_ii = tmp + fib_ii

return fib_ii

Θ(1)+ Θ(1)+ Θ(n)*Θ (1)+ Θ(1)
 Θ(n)

6.100L Lecture 23
20



POLYNOMIAL 
COMPLEXITY

21



POLYNOMIAL COMPLEXITY
(OFTEN QUADRATIC)

 Most common polynomial algorithms are quadratic, i.e.,
complexity grows with square of size of input
 Commonly occurs when we have nested loops or recursive

function calls

6.100L Lecture 23
22



QUADRATIC COMPLEXITY: 
EXAMPLE 1

def g(n):
""" assume n >= 0 """
x = 0
for i in range(n):

for j in range(n):
x += 1

return x

 Computes n2 very inefficiently
 Look at the loops. Are they in terms of the input?

 Nested loops
 Look at the ranges
 Each iterating n times

 Θ(n) * Θ(n) * Θ(1) = Θ(n2)

6.100L Lecture 23
23



6.0001 LECTURE 9

QUADRATIC 
COMPLEXITY: EXAMPLE 2

 Decide if L1 is a subset of L2: are all elements of L1 in L2?
Yes: No:
L1 = [3, 5, 2] L1 = [3, 5, 2]
L2 = [2, 3, 5, 9] L2 = [2, 5, 9]

def is_subset(L1, L2):
for e1 in L1:

matched = False
for e2 in L2:

if e1 == e2:
matched = True
break

if not matched:
return False

return True

6.100L Lecture 23
24



6.0001 LECTURE 9

QUADRATIC 
COMPLEXITY: EXAMPLE 2

def is_subset(L1, L2):

for e1 in L1:

matched = False

for e2 in L2:

if e1 == e2:

matched = True

break

if not matched:

return False

return True

Outer loop executed 
len(L1) times

Each iteration will execute 
inner loop up to len(L2) 
times

Θ(len(L1)*len(L2))
If L1 and L2 same length
and none of elements of L1 
in L2

Θ(len(L1)2)

6.100L Lecture 23
25



6.0001 LECTURE 9

QUADRATIC COMPLEXITY: EXAMPLE 3

 Find intersection of two lists, return a list with each element
appearing only once
Example:
L1 = [3, 5, 2] L1 = [7, 7, 7]
L2 = [2, 3, 5, 9] L2 = [7, 7, 7]
returns [2,3,5] returns [7]

def intersect(L1, L2):
tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
unique = []
for e in tmp:

if not(e in unique):
unique.append(e)

return unique

6.100L Lecture 23
26



6.0001 LECTURE 9

QUADRATIC 
COMPLEXITY: EXAMPLE 3

def intersect(L1, L2):
tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
unique = []
for e in tmp:

if not(e in unique):
unique.append(e)

return unique

First nested loop takes 
Θ(len(L1)*len(L2)) steps.

Second loop takes at most 
Θ(len(L1)*len(L2)) steps. 
Typically not this bad.

• E.g: [7,7,7] and [7,7,7] makes
tmp=[7,7,7,7,7,7,7,7,7]

Overall Θ(len(L1)*len(L2))
6.100L Lecture 23

27



def diameter(L):
farthest_dist = 0
for i in range(len(L)):

for j in range(i+1, len(L)):
p1 = L[i]
p2 = L[j]
dist = math.sqrt( (p1[0]-p2[0])**2 + (p1[1]-p2[1])**2 )
if dist > farthest_dist:

farthest_dist = dist
return farthest_dist

6.0001 LECTURE 9

DIAMETER COMPLEXITY

len(L) * len(L)/2 iterations = len(L)2 / 2

Θ(len(L)2)

6.100L Lecture 23
28



YOU TRY IT!
def all_digits(nums):

""" nums is a list of numbers """
digits = [0,1,2,3,4,5,6,7,8,9]
for i in nums:

isin = False
for j in digits:

if i == j:
isin = True
break

if not isin:
return False

return True

6.100L Lecture 23

ANSWER:
What’s the input?
Outer for loop is Θ(nums).
Inner for loop is Θ(1).
Overall: Θ(len(nums))

29



YOU TRY IT!
 Asymptotic complexity of f? And if L1,L2,L3 are same length?
def f(L1, L2, L3):

for e1 in L1:
for e2 in L2:

if e1 in L3 and e2 in L3 :
return True

return False

6.100L Lecture 23

ANSWER:
Θ(len(L1))* Θ(len(L2))* Θ(len(L3)+len(L3))

Overall: Θ(len(L1)*len(L2)*len(L3))
Overall if lists equal length: Θ(len(L1)**3)

30



EXPONENTIAL 
COMPLEXITY

31



EXPONENTIAL COMPLEXITY

 Recursive functions
where have more than
one recursive call for
each size of problem
 Fibonacci

 Many important
problems are inherently
exponential
 Unfortunate, as cost can

be high
 Will lead us to consider

approximate solutions
more quickly

6.100L Lecture 23

230 ~= 1 million
2100 > # cycles than all the computers 
in the world working for all of recorded history
could complete

32



COMPLEXITY OF 
RECURSIVE FIBONACCI

def fib_recur(n):
""" assumes n an int >= 0 """
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib_recur(n-1) + fib_recur(n-2)

 Worst case:
Θ(2n)

6.100L Lecture 23
33



COMPLEXITY OF RECURSIVE 
FIBONACCI

 Can do a bit better than 2n since tree thins out to the
right
 But complexity is still order exponential

6.100L Lecture 23

Fib(6)

Fib(5) Fib(4)

Fib(4) Fib(3) Fib(2)

Fib(3) Fib(2)

Fib(3)

Fib(2) Fib(1)

Fib(2) Fib(1) Fib(2) Fib(1)

34



EXPONENTIAL COMPLEXITY: GENERATE SUBSETS

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1]) 
new = []
for small in smaller:

new.append(small+extra) 
return smaller+new

6.100L Lecture 23

 Input is [1, 2, 3]
 Output is all combinations of elements of all lengths

[[],[1],[2],[3],[1,2],[1,3],[2,3],[1,2,3]]

35



VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]
def gen_subsets(L):

if len(L) == 0:
return [[]]

extra = L[-1:]
smaller = gen_subsets(L[:-1]) 
new = []
for small in smaller:

new.append(small+extra) 
return smaller+new

36



VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]
def gen_subsets(L):

if len(L) == 0:
return [[]]

extra = L[-1:]
smaller = gen_subsets(L[:-1]) 
new = []
for small in smaller:

new.append(small+extra) 
return smaller+new

37



VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1]) 
new = []
for small in smaller:

new.append(small+extra) 
return smaller+new

38



VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

[[],[1],[2],[1,2]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1]) 
new = []
for small in smaller:

new.append(small+extra) 
return smaller+new

39



VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

[[],[1],[2],[1,2]]

[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1]) 
new = []
for small in smaller:

new.append(small+extra) 
return smaller+new

40



VISUALIZING the ALGORITHM

6.100L Lecture 23

[1,2,3]

[1,2]

[1]

[]

[[]]

[[],[1]]

[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

def gen_subsets(L):
if len(L) == 0:

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:-1]) 
new = []
for small in smaller:

new.append(small+extra) 
return smaller+new

41



EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

6.100L Lecture 23

def gen_subsets(L):
if len(L) == 0:

return [[]] 
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

 Assuming append is 
constant time

 Time to make sublists
includes time to solve 
smaller problem, and 
time needed to make a 
copy of all elements in 
smaller problem

42



EXPONENTIAL COMPLEXITY
GENERATE SUBSETS

6.100L Lecture 23

 Think about size of smaller
 For a set of size k there are 2k

cases, doubling the size every
call

 So to solve need 2n-1 + 2n-2 + …
+20 steps = Θ(2n)

 Time to make a copy of
smaller
 Concatenation isn’t constant
 Θ(n)

 Overall complexity is
Θ(n*2n) where n=len(L)

def gen_subsets(L):
if len(L) == 0:

return [[]] 
extra = L[-1:]
smaller = gen_subsets(L[:-1])
new = []
for small in smaller:

new.append(small+extra)
return smaller+new

43



LOGARITHMIC 
COMPLEXITY

44



def digit_add(n):
""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s[::-1]:

answer += int(c)
return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?
 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 2 7 1 1

45



def digit_add(n):
""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s[::-1]:

answer += int(c)
return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?
 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 2 7 17

46



def digit_add(n):
""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s[::-1]:

answer += int(c)
return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?
 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 2 172

47



def digit_add(n):
""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s[::-1]:

answer += int(c)
return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 n = 83, but the loop only iterates 2 times. Relationship?
 n = 4271, but the loop only iterates 4 times! Relationship??

6.100L Lecture 23

4 1724

48



def digit_add(n):
""" assume n an int >= 0 """
answer = 0
s = str(n)
for c in s[::-1]:

answer += int(c)
return answer

TRICKY COMPLEXITY

 Adds digits of a number together
 Tricky part: iterate over length of string, not magnitude of n

• Think of it like dividing n by 10 each iteration
• n/10len(s) = 1 (i.e. divide by 10 until there is 1 element left to add)
• len(s) = log(n)

 Θ(log n) – base doesn’t matter

6.100L Lecture 23
49



LOGARITHMIC COMPLEXITY

 Complexity grows as log of size of one of its inputs
 Example algorithm: binary search of a list
 Example we’ll see in a few slides: one bisection search

implementation

6.100L Lecture 23
50



LIST AND DICTIONARIES

 Must be careful when using built-in functions!

6.100L Lecture 23

Dictionaries – n is len(d)
• index Θ(1)
• store Θ(1)
• length Θ(1)
• delete Θ(1)
• .keys Θ(n)
• .values Θ(n)
• iteration      Θ(n)

Lists – n is len(L)
• index Θ(1)
• store Θ(1)
• length Θ(1)
• append Θ(1)
• == Θ(n)
• remove Θ(n)
• copy Θ(n)
• reverse Θ(n)
• iteration Θ(n)
• in list Θ(n)

51



SEARCHING 
ALGORITHMS

52



SEARCHING ALGORITHMS

 Linear search
• Brute force search
• List does not have to be sorted

• Bisection search
• List MUST be sorted to give correct answer
• Will see two different implementations of the algorithm

6.100L Lecture 23
53



LINEAR SEARCH 
ON UNSORTED LIST

def linear_search(L, e):
found = False
for i in range(len(L)):

if e == L[i]:
found = True

return found

 Must look through all elements to decide it’s not there
 Θ(len(L)) for the loop * Θ(1) to test if e == L[i]
 Overall complexity is Θ(n) where n is len(L)
 Θ(len(L))

6.100L Lecture 23
54



LINEAR SEARCH 
ON UNSORTED LIST

def linear_search(L, e):

for i in range(len(L)):
if e == L[i]:

return True
return False

 Must look through all elements to decide it’s not there
 Θ(len(L)) for the loop * Θ(1) to test if e == L[i]
 Overall complexity is Θ(n) where n is len(L)
 Θ(len(L))

6.100L Lecture 23
55



LINEAR SEARCH 
ON SORTED LIST

def search(L, e):
for i in L:

if i == e:
return True

if i > e:
return False

return False

 Must only look until reach a number greater than e
 Θ(len(L)) for the loop * Θ(1) to test if i == e or i > e
 Overall complexity is Θ(len(L))

Θ(n) where n is len(L)

6.100L Lecture 23
56



BISECTION SEARCH FOR AN 
ELEMENT IN A SORTED LIST

1) Pick an index, i, that divides list in half
2) Ask if L[i] == e
3) If not, ask if L[i] is larger or smaller than e
4) Depending on answer, search left or right half of L for e

 A new version of divide-and-conquer: recursion!
 Break into smaller versions of problem (smaller list), plus

simple operations
 Answer to smaller version is answer to original version

6.100L Lecture 23
57



BISECTION SEARCH COMPLEXITY 
ANALYSIS

 Finish looking
through list when
1 = n/2i

 So… relationship
between original
length of list and
how many times
we divide the list:
i = log n

 Complexity is
Θ(log n) where n
is len(L)

…

…

6.100L Lecture 23
58



BIG  IDEA
Two different 
implementations have 
two different Θ values.

6.100L Lecture 23
59



BISECTION SEARCH 
IMPLEMENTATION 1

def bisect_search1(L, e):

if L == []:

return False

elif len(L) == 1:

return L[0] == e

else:

half = len(L)//2

if L[half] > e:

return bisect_search1( L[:half], e)

else:

return bisect_search1( L[half:], e)

6.100L Lecture 23
60



COMPLEXITY OF bisect_search1
(where n is len(L))

 Θ(log n) bisection search calls
 Each recursive call cuts range to search in half
 Worst case to reach range of size 1 from n is  when

n/2k = 1 or when k = log n
 We do this to get an expression relating k to n

 Θ(n) for each bisection search call to copy list
 Cost to set up recursive call at each level of recursion

 Θ(log n) * Θ(n) = Θ(n log n) where n = len(L)
^ this is the answer in this class

 If careful, notice list is also halved on each recursive call
 Infinite series (don’t worry about this in this class)
 Θ(n) is a tighter bound because copying list dominates log n

6.100L Lecture 23
61



BISECTION SEARCH ALTERNATE 
IMPLEMENTATION

6.100L Lecture 23

 Reduce size of
problem by factor
of 2 each step

 Keep track of low
and high indices
to search list

 Avoid copying list

 Complexity of
recursion is
Θ(log n) where n
is len(L)

…

…

62



def bisect_search2(L, e):
def bisect_search_helper(L, e, low, high):

if high == low:
return L[low] == e

mid = (low + high)//2
if L[mid] == e:

return True
elif L[mid] > e:

if low == mid: #nothing left to search
return False

else:
return bisect_search_helper(L, e, low, mid - 1)

else:
return bisect_search_helper(L, e, mid + 1, high)

if len(L) == 0:
return False

else:
return bisect_search_helper(L, e, 0, len(L) - 1)

BISECTION SEARCH 
IMPLEMENTATION 2

6.100L Lecture 23
63



COMPLEXITY OF bisect_search2 
and helper (where n is len(L))

 Θ(log n) bisection search calls
 Each recursive call cuts range to search in half
 Worst case to reach range of size 1 from n is  when

n/2k = 1 or when k = log n
 We do this to get an expression relating k to n

 Pass list and indices as parameters
 List never copied, just re-passed
 Θ(1) on each recursive call

 Θ (log n) * Θ(1) = Θ(log n) where n is len(L)

6.100L Lecture 23
64



WHEN TO SORT FIRST 
AND THEN SEARCH?

6.100L Lecture 23
65



SEARCHING A SORTED LIST
-- n is len(L)

 Using linear search, search for an element is Θ(n)
 Using binary search, can search for an element in Θ(log n)

• Assumes the list is sorted!

 When does it make sense to sort first then search?

• SORT  +  Θ(log n)  <  Θ(n)
implies that SORT < Θ(n) – Θ(log n)

• When is sorting is less than Θ(n)??!!?
 Never true because you’d at least have to look at each element!

6.100L Lecture 23
66



AMORTIZED COST
-- n is len(L)

 Why bother sorting first?
 Sort a list once then do many searches

 AMORTIZE cost of the sort over many searches

 SORT + K * Θ(log n)  < K * Θ(n)
implies that for large K, SORT time becomes irrelevant

6.100L Lecture 23
67



6.0001 LECTURE 9

COMPLEXITY CLASSES SUMMARY

 Compare efficiency of algorithms
 Lower order of growth
 Using Θ for an upper and lower (“tight”) bound

 Given a function f:
 Only look at items in terms of the input
 Look at loops

 Are they in terms of the input to f?
 Are there nested loops?

 Look at recursive calls
 How deep does the function call stack go?

 Look at built-in functions
 Any of them depend on the input?

9/28/20 6.100L Lecture 23
68



 
 

 

            

MIT OpenCourseWare 
https://ocw.mit.edu 

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

69

https://ocw.mit.edu
https://ocw.mit.edu/terms

	COMPLEXITY CLASSES EXAMPLES�(download slides and .py files to follow along)
	THETA
	WHERE DOES THE FUNCTION COME FROM?
	WHERE DOES THE FUNCTION COME FROM?
	COMPLEXITY CLASSES�n is the input
	CONSTANT COMPLEXITY
	CONSTANT COMPLEXITY
	CONSTANT COMPLEXITY: EXAMPLE 1
	CONSTANT COMPLEXITY: EXAMPLE 2
	CONSTANT COMPLEXITY: EXAMPLE 3
	LINEAR COMPLEXITY
	LINEAR COMPLEXITY
	COMPLEXITY EXAMPLE 0 �(with a twist)
	Be careful about what the inputs are.
	LINEAR COMPLEXITY: EXAMPLE 1
	LINEAR COMPLEXITY: EXAMPLE 2
	FUNNY THING ABOUT FACTORIAL AND PYTHON
	LINEAR COMPLEXITY: EXAMPLE 3
	LINEAR COMPLEXITY: EXAMPLE 4
	COMPLEXITY OF �ITERATIVE FIBONACCI
	POLYNOMIAL COMPLEXITY
	POLYNOMIAL COMPLEXITY�(OFTEN QUADRATIC)
	QUADRATIC COMPLEXITY: EXAMPLE 1
	QUADRATIC �COMPLEXITY: EXAMPLE 2
	QUADRATIC �COMPLEXITY: EXAMPLE 2
	QUADRATIC  COMPLEXITY: EXAMPLE 3
	QUADRATIC �COMPLEXITY: EXAMPLE 3
	DIAMETER COMPLEXITY
	Slide Number 29
	Slide Number 30
	EXPONENTIAL COMPLEXITY
	EXPONENTIAL COMPLEXITY
	COMPLEXITY OF �RECURSIVE FIBONACCI
	COMPLEXITY OF RECURSIVE FIBONACCI
	EXPONENTIAL COMPLEXITY: GENERATE SUBSETS
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	LOGARITHMIC COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	LOGARITHMIC COMPLEXITY
	LIST AND DICTIONARIES
	SEARCHING ALGORITHMS
	SEARCHING ALGORITHMS
	LINEAR SEARCH �ON UNSORTED LIST
	LINEAR SEARCH �ON UNSORTED LIST
	LINEAR SEARCH �ON SORTED LIST
	BISECTION SEARCH FOR AN ELEMENT IN A SORTED LIST
	BISECTION SEARCH COMPLEXITY ANALYSIS
	Two different implementations have two different Θ values.
	BISECTION SEARCH IMPLEMENTATION 1
	COMPLEXITY OF bisect_search1�(where n is len(L))
	BISECTION SEARCH ALTERNATE IMPLEMENTATION
	BISECTION SEARCH IMPLEMENTATION 2
	COMPLEXITY OF bisect_search2 and helper (where n is len(L))
	WHEN TO SORT FIRST AND THEN SEARCH?
	SEARCHING A SORTED LIST�-- n is len(L)
	AMORTIZED COST�-- n is len(L)
	COMPLEXITY CLASSES SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page





