COMPLEXITY CLASSES
EXAMPLES

(download slides and .py files to follow along)

6.100L Lecture 23
Ana Bell

THETA

" Theta O is how we denote the asymptotic complexity

* We look at the input term that dominates the function

= Drop other pieces that don’t have the fastest growth
= Drop additive constants
= Drop multiplicative constants

" End up with only a few classes of algorithms

= We will look at code that lands in each of these classes today

2
6.100L Lecture 23

WHERE DOES THE FUNCTION
COME FROM?

" Given code, start with the input parameters. What are they?

= Come up with the equation relating input to number of ops.
= f = 1|+ len(Ll)-l— 1|+ len(L2)+ 2|= 5*len(Ll) + 5*len(L2) + 3
= |f lengths are the same, £ = 10*1en(L) + 3

= O(f) = © (10*len(L) + 3) = O(len(L))

Ony, ..
r@pe re abo
def £(L, L1, L2): dts Ut -
| inLl = False | Wf‘t l'/)e Od@ th
for in range(len(Ll)): Se Va,.- at
Sa - : g : : /'/ab
3‘53 if[L[i] == LIi[i]]: leg
(Q@e —\(\Q\)" linLl = True |
\,OOQ ,O(\Or‘ | inlL2 = False |
cul © for[i]in range (len(L2)):
250 if [L[1] == L2[i]l:
e’d‘c" linL2 = True |
e0C° . oWt
OOQ(of N\ return [inLl and inL2 |
\ ’{\O(\]

6.100L Lecture 23

WHERE DOES THE FUNCTION
COME FROM?

= A quicker way: no need to come up with the exact formula.
Look for loops and anything that repeats wrt the input
parameters. Everything else is constant.

def f£(L, L1, L2|):
inLl = False
for 1 in range(len(L1l)):
if L[i] == L1[i]:
inLl = True
inlL2 = False
for 1 in range(len(L2)):
if L[i] == L2[i]:
inL2 = True
return inLl and inL2

4
6.100L Lecture 23

Big-O Complexity Chart

COMPLEXITY CLASSES | [[o=
nis the input

Operations

We want to design algorithms that are as
close to top of this hierarchy as possible

O(n)

Dgl_gg n!s 0i1 !

Elements

O(1) denotes constant running time

O(log n) denotes logarithmic running time
= @(n) denotes linear running time

= O(nlog n) denotes log-linear running time

" O(n) denotes polynomial running time
(c is a constant)

= O(c") denotes exponential running time
(c is a constant raised to a power based on input size)

5
6.100L Lecture 23

CONSTANT COMPLEXITY

CONSTANT COMPLEXITY

= Complexity independent of inputs

= Very few interesting algorithms in this class, but can often have
pieces that fit this class

= Can have loops or recursive calls, but number of iterations or
calls independent of size of input

= Some built-in operations to a language are constant
» Python indexing into a list L [1]
= Python list append L. append ()
= Python dictionary lookup d [key]

7
6.100L Lecture 23

CONSTANT COMPLEXITY:
EXAMPLE 1

def add(x, v):

return x+vy

= Complexity in terms of either x or y: O(1)

CONSTANT COMPLEXITY: EXAMPLE 2

def convert to km(m):

return m*1.609

= Complexity in terms of m: ©(1)

6.100L Lecture 23

CONSTANT COMPLEXITY: EXAMPLE 3

def loop (x):
vy = 100
total = 0
for 1 in range(y) :
total += x

return total

= Complexity in terms of x (the input parameter): ©(1)

10
6.100L Lecture 23

LINEAR COMPLEXITY

LINEAR COMPLEXITY

= Simple iterative loop algorithms
= Loops must be a function of input

" Linear search a list to see if an element is present

= Recursive functions with one recursive call and constant
overhead for call

= Some built-in operations are linear
" e In L
= Subsetoflist:e.g. L{:1len(L)//2]
= L1 == L2
= del (L[5])

12
6.100L Lecture 23

COMPLEXITY EXAMPLE O
(with a twist)

= Multiply x by y
def mul (x, V) :
tot = 0
for 1 in range(y) :
tot += x

return tot

= Complexity in terms of y: O(y)

= Complexity in terms of x: ©(1)

13
6.100L Lecture 23

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.pinterest.com%2Fpin%2F280067670552813798%2F&psig=AOvVaw1fPH8tc8O7_tsHPF8fS0aR&ust=1600885710254000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPDcg52y_esCFQAAAAAdAAAAABAh

BIG IDEA

Be careful about what
the inputs are.

LINEAR COMPLEXITY: EXAMPLE 1

= Add characters of a string, assumed to be composed of
decimal digits

def add digits(s): o\)%‘(\\e“\S\
_ .
val = 0 Lo0P %oei\e“\s\\
for ¢ in s: {\meg' © e © 0005‘3“
o €
val += int (c) gxle(\l‘“m%
return val oM

= O(len(s))
= O(n) where n is len(s)

15
6.100L Lecture 23

LINEAR COMPLEXITY: EXAMPLE 2

" Loop to find the factorial of a number >=2
def fact 1ter(n):

_ A (0e
prod = 1 ““mﬁ’ﬂ
for 1 1n range (2, n+l): uppgﬁS .
k= o) aste’
prod *= 1 (C \Se-\sco
.G ©
return prod B@N“N@

" Number of times around loop is n-1

* Number of operations inside loop is a constant
= Independent of n

= Overall just O(n)

16
6.100L Lecture 23

FUNNY THING ABOUT FACTORIAL

AND PYTHON

iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter
iter

fact(40) took|3.

10e-06 |sec (322,580.65/sec)

fact(80) took |6.

@0e-06 [sec (166,666.67/sec)

fact(160) took|1

.34e-05|sec (74,626.87/sec)

fact(320) took |3

.39e-05 |sec (29,498.53/sec)

fact(640) took 1

.18e-04 |sec (8,488.96/sec)

fact(1280) took

4.31e-04 |sec (2,322.88/sec)

fact(2560) took

1.33e-03|sec (752.73/sec)

fact(5120) took

4.94e-03 |sec (202.24/sec)

fact(10240) took
fact(20480) took
fact(40960) took
fact(81920) took

= Eventually grows faster than linear

1.90e-02|sec (52.50/sec)
7.66e-02|sec (13.06/sec)
3.35e-01|sec (2.99/sec)
1.60e+00 |sec (0.62/sec)

= Because Python increases the size of integers, which
yields more costly operations

" For this class: ignore such effects

17

6.100L Lecture 23

LINEAR COMPLEXITY: EXAMPLE 3

def fact recur(n):
""" assume n >= 0 """
1if n <= 1:
return 1
else:
return n*fact recur(n - 1)

= Computes factorial recursively

= |f you time it, notice that it runs a bit slower than iterative

version due to function calls

* O(n) because the number of function calls is linear in n

" |[terative and recursive factorial implementations are the

same order of growth

18
6.100L Lecture 23

https://www.google.com/url?sa=i&url=https%3A%2F%2Fmemegenerator.net%2Finstance%2F37515039%2Ffuturama-fry-not-sure-if-factorial-or-just-excited&psig=AOvVaw3IdQAEFYZ03ef0h15nle1I&ust=1600886085178000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMj5zMqz_esCFQAAAAAdAAAAABAD

LINEAR COMPLEXITY: EXAMPLE 4

def compound(invest, interest, n months):
total=0 ©(n_months)

for 1 1in range(n months):
total = total * interest + invest Cﬂl)
return total

= O(1)*0©(n_months) = ©(n_months)
O(n) where n=n_months

= |f | was being thorough, then need to account for assignment
and return statements:

= O(1) +4*0(n) +0O(1) =0(1 + 4*n + 1) = O(n) where n=n_months

19
6.100L Lecture 23

COMPLEXITY OF
ITERATIVE FIBONACCI

def .fifb_iter (n) : O(1)+ ©(1)+ ©(n)*6 (1)+ 6(1)
1 n == .
return 0 (\5’&3(\& > e(n)
elif n == 1: d;y&
return 1
else: vﬁ“
fib i = 0 dﬁia
fib ii = 1 o\

for 1 in range (n-1):
tmp = fib 1
fib i = fib ii o\
fib ii = tmp + fib ii

return fib i1
_ @™

20
6.100L Lecture 23

POLYNOMIAL
COMPLEXITY

POLYNOMIAL COMPLEXITY
(OFTEN QUADRATIC)

" Most common polynomial algorithms are quadratic, i.e.,
complexity grows with square of size of input

= Commonly occurs when we have nested loops or recursive
function calls

22
6.100L Lecture 23

QUADRATIC COMPLEXITY:

0
def g(n): es‘wou%
"N Ssqume n >= (Q "n"e (\Oop g0
_ OVt a0
x = 0 .0\ o
. : .meS- o\)%
for i in range(n) : h p%oes‘\“
for 7 in range (n): \(\ﬂe(\og\“\ «
x += 1 N \S cors®
return X qt\\‘“% e\s€
gvel!
9\\\

= Computes n? very inefficiently
" Look at the loops. Are they in terms of the input?
= Nested loops

= Look at the ranges
= Each iterating n times

= O(n) * O(n) * O(1) = O(n?)

23

6.100L Lecture 23

QUADRATIC
COMPLEXITY: EXAMPLE 2

= Decide if L1 is a subset of L2: are all elements of L1 in L2?

Yes: No:
L1 = [3, 5, 2] L1 = [3, 5, 2]
L2 = [2, 3, 5, 9] L2 = [2, 5, 9]

def 1is subset (L1, L2):
for el 1in L1:
matched = False
for e2 in L2:
1f el == e2:
matched = True
break
1f not matched:
return False

return True
24

6.100L Lecture 23

QUADRATIC
COMPLEXITY: EXAMPLE 2

def is subset (L1, L2): Outer loop executed
for el in L1: len(L1) times
matched = False Each iteration will execute
for e2 in L2: inner loop up to len(L2)
1f el == e2: times
matched = True O(Ien(Ll)*Ien(LZ))
break
, If L1 and L2 same length
1f not matched:
and none of elements of L1
return False in L2

return True

O(len(L1)?)

25
6.100L Lecture 23

QUADRATIC COMPLEXITY: EXAMPLE 3

= Find intersection of two lists, return a list with each element
appearing only once

Example:
L1 = [3, 5, 2] L1 = 17, 7, 7]
L2 = [2, 3, 5, 9] L2 = (7, 7, 7]
returns [2,3,5] returns [7]
def intersect (L1, 1.2): wn
tmp = [] . me\"st\N\ (\ts'\“u
for el in L1: B\)\\d e\em® ed\)ps
for e2 in L2: Commo \\j\a\l‘(\a\l
if el == e2: aﬂdvz'
tmp.append (el)
unique = [] _ ev&ues
for e in tmp: N\ﬂ“qu
1f not(e in unique) : ngpoﬂ
unique.append(e)
return unique

26
6.100L Lecture 23

QUADRATIC
COMPLEXITY: EXAMPLE 3

def intersect (Ll, L2):
tmp = []
for el in Ll:
for e2 in L2:
1T el == e2:
tmp.append (el)
unique = []
for e 1n tmp:
1f not (e in unique) :
unique.append (e)
return unique

27

First nested loop takes
O(len(L1)*len(L2)) steps.

Second loop takes at most
O(len(L1)*len(L2)) steps.
Typically not this bad.

 E.g:[7,7,7] and [7,7,7] makes
tmp=[7,7,7,7,7,7,7,7,7]

Overall ©(len(L1)*len(L2))

6.100L Lecture 23

\e®
DIAMETER COMPLEXITY o0p 89¢°
oute! o
otent™) 0y | 292%°
oes\e“\)
def diameter (L) : \m\ef \002 %e\ Gk\e“\ 1)
farthest dist = 0 (on @ ef ‘,\Staf\‘ek
for 1 in|range (len(L))|: _ eﬁﬁ\sc
for j in| range(i+l, len (L)) E\,ewt‘ﬂmg’
pl = L[1]
p2 = L[J]
dist = math.sqgrt((pl[0]-p2[0])**2 + (pl[l]l-p2[1l])**2)

1f dist > farthest dist:
farthest dist = dist
return farthest dist

len(L) * len(L)/2 iterations = len(L)? / 2

O(len(L)?)

28
6.100L Lecture 23

YOU TRY IT!

def all digits (nums) :
""" nums is a list of numbers """
digits = [0,1,2,3,4,5,6,7,8,9]
for i in nums:

isin = False
for j in digits:
1if 1 == 7:
isin = True
break

if not isin:
return False
return True

ANSWER:

What's the input?

Outer for loop is ©(nums).
Inner for loop is O(1).
Overall: O(len(nums))

29

YOU TRY IT!

= Asymptotic complexity of f? And if L1,L2,L3 are same length?
def £(L1, L2, L3):
for el 1n L1:
for e2 1in L2:
1f el 1n L3 and e2 1in L3
return True
return False

ANSWER:
O(len(L1))* ©(len(L2))* ©(len(L3)+len(L3))

Overall: ©(len(L1)*len(L2)*len(L3))
Overall if lists equal length: O(len(L1)**3)

30

EXPONENTIAL
COMPLEXITY

EXPONENTIAL COMPLEXITY

= Recursive functions
where have more than
one recursive call for
each size of problem

= Fibonacci e

Big-O Complexity

= Many important

problems are inherently =
exponential

= Unfortunate, as cost can _

be high o m ® % @ = @ w ® e w

= Will lead us to consider
approximate solutions
more quickly

230 ~= 1 million

2100 5 4 cycles than all the computers

in the world working for all of recorded history

could complete
32

6.100L Lecture 23

COMPLEXITY OF
RECURSIVE FIBONACCI

def fib recur (n) :
"o assumes n oan int >= 0 """
1f n ==
return O
elif n ==
return 1

else:
return fib recur(n-1) + fib recur (n-2)

= Worst case:
o(2")

33
6.100L Lecture 23

COMPLEXITY OF RECURSIVE
FIBONACCI

z/// Fib (\\\&
/\ /\

Fib (Fib (

/\ AN X\

Fib (Fib(2) Fib(2) Fib (1) Fib(Fib (

/\

Fib (2) Fib (1)
= Can do a bit better than 2" since tree thins out to the
right

= But complexity is still order exponential

34

EXPONENTIAL COMPLEXITY: GENERATE SUBSETS

" |nputis [1, 2, 3]

= Qutputis all combinations of elements of all lengths
(t1,t11,121,131,1%,21,101,31,12,31,[1,2,3]]

NS
N
«®
§ ©
\<\\.\"':«':"O e(\’ﬂ.
def gen subsets (L) : R o\
2% W e
if len(L) == O0: %,ac,e(’ ,‘-\\)‘»‘ ‘e\e“\
. x O
return [[]] o “00‘\66
X W
extra = L[-1:] e® oW ad
o . 6‘3
smaller = gen subsets(L[:-1]) \x\\‘a‘)\0 0\\)&\0(\\,
= S
new = [] A e
: S X
for small in smaller: \%o(’b\\ .\,&\\\">S '«
eQQ '\‘.\(\ ‘\(\0
new.append (small+extra) oo SQN R\
o e
return smaller+new \0.\(\6‘\(\(\6&‘00"
2
35 (/O((\ 60‘

6.100L Lecture 23

VISUALIZING the ALGORITHM

.\5\’5\

S

[1,2,[3)

&(a'\s\l\
X

[1,2]

“a.\s\\/\
F

1)

cpe
2 def gen subsets(L):

[] if len(L) ==

return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:—l])l
new = []

2%

for small in smaller:
new.append (small+extra)

return smaller+new
36

6.100L Lecture 23

VISUALIZING the ALGORITHM

o)
ef

[1,2,[3)

o

o

[1,2]

.\S\\/\

o

1)

cpe
o oxoﬁ def gen subsets(L):

\ if len(L) ==
[] Q&Z return [[]]
extra = L[-1:]
smaller = gen subsets(L[:-1])
new = []

2%

for small in smaller:
new.append (small+extra)

return smaller+new
37

6.100L Lecture 23

VISUALIZING the ALGORITHM

e

def

gen_subsets (L) :
if len(L) ==
return [[]]
extra = L[-1:]
smaller = gen subsets(L[:-1])

38

new = []

for small in smaller:
new.append (small+extra)

return smaller+new

6.100L Lecture 23

VISUALIZING the ALGORITHM

<
2
i
(1, 2,/3) e
D o o net
PO N GO T2 o
15 S o

def gen subsets(L):
if len(L) == O0:
return [[]]
extra = L[-1:]
smaller = gen subsets(L[:-1])

new = []

for small in smaller:
new.append (small+extra)

return smaller+new

39

6.100L Lecture 23

VISUALIZING the ALGORITHM

N
e i, 13,121,01,23,.031, 11,31, (2,31, [1,2,3]]
(oW
11, 2,3l o\ o
N T S W
01,011,121, [01,2]]! 0
e e e e e e \O\e‘v
oo

def gen subsets(L):
if len(L) == O0:
return [[]]
extra = L[-1:]
smaller = gen subsets(L[:-1])
new = []

for small in smaller:
new.append (small+extra)
return smaller+new

40
6.100L Lecture 23

VISUALIZING the ALGORITHM
o

(i, 11,1021, 1%, 21,031, 11,31, 12,31, [1,2,31]

def gen subsets(L):

if len(L) == O0:
return [[]]

extra = L[-1:]

smaller = gen subsets(L[:-1])

new = []

for small in smaller:
new.append (small+extra)

return smaller+new
41

6.100L Lecture 23

EXPONENTIAL COMPLEXITY

GENERATE SUBSETS
def gen subsets (L) :
if len(L) == O0O:
return [[]]
extra = L[-1:]
smaller = gen_subsets(L[:—l])
new = []

for small 1in smaller:
new.append (small+extra)
return smaller+new

42
6.100L Lecture 23

= Assuming append is
constant time

" Time to make sublists
includes time to solve
smaller problem, and
time needed to make a
copy of all elements in
smaller problem

EXPONENTIAL COMPLEXITY

GENERATE SUBSETS
def gen subsets (L) : = Think about size of smaller
if len(L) == O: » For a set of size k there are 2k
return [[]] cases, doubling the size every
extra = L[-1:] call
smaller = gen_subsets (L[:-1]) * So to solve need 2"1 + 22 +
new = [] +29 steps = ©(2")

for small 1in smaller: .
=" Time to make a copy of

smaller
= Concatenation isn’t constant
" O(n)

= Overall complexity is
©(n*2") where n=len(L)

new.append (small+extra)
return smaller+new

43

LOGARITHMIC
COMPLEXITY

TRICKY COMPLEXITY

def digit add(n) :

. A\
""" gssume n an i1nt >= 0 """ @\\e“\ \\&\\e
answer = 0 G (00% o
\,\(\ C)\.\\ 3‘53
s = str(n) \’009 \(\0‘\(‘ So’\
for ¢ in s[::-1]: e &
answer += int (c) \N\\a‘\

return answer o L

oY

\

= Adds digits of a number together

= n =83, but the loop only iterates 2 times. Relationship?

= n=4271, but the loop only iterates 4 times! Relationship??
o
™ e

. ((\e ,&\,\(\ .\é\’\‘
LAt (O
DBEE o 1
\S

45
6.100L Lecture 23

TRICKY COMPLEXITY

def digit add(n) :

assume n an int >= 0 “\s\\
answer = 0 G)\\e
S
s = str(n) e e
for ¢ in s[::-17: N\(\a’&\q
answer += int (c) N Q\g&‘\'
return answer K \©

= Adds digits of a number together
= n =83, but the loop only iterates 2 times. Relationship?
= n=4271, but the loop only iterates 4 times! Relationship??

e
QO et x
0(\6 (,a(:ﬁ" ‘6\%\
217 Sec R ‘;\\(,3(\ 7 Bd 1

46
6.100L Lecture 23

TRICKY COMPLEXITY

def digit add(n) :

assume n an int >= 0 “\s\\
answer = 0 G)\\e
S
s = str(n) e e
for ¢ in s[::-17: N\(\a’&\q
answer += int (c) N Q\g&‘\'
return answer K \©

= Adds digits of a number together
= n =83, but the loop only iterates 2 times. Relationship?
= n=4271, but the loop only iterates 4 times! Relationship??

o
&‘0‘0 (\e"*
S\ N
4| 2 R G o 2 87 B8
\00 L %(\

47
6.100L Lecture 23

TRICKY COMPLEXITY

def digit add(n) :

assume n an int >= 0 “\s\\
answer = 0 G)\\e
S
s = str(n) e e
for ¢ in s[::-17: N\(\a’&\q
answer += int (c) N Q\g&‘\'
return answer K \©

= Adds digits of a number together
= n =83, but the loop only iterates 2 times. Relationship?
= n=4271, but the loop only iterates 4 times! Relationship??

.\ AN
‘\((\ L 6\%
4 o ko d-8-d8

48
6.100L Lecture 23

TRICKY COMPLEXITY

def digit add(n):

mwiwmw . >: mwww
assume n an int 0 “\s\\
answer = 0 e&e
s = str(n) Q@eﬁ .065«6
for ¢ in s[::-1]: \@Nﬁ\q
answer += int (c) N Q\g&‘\
return answer K\

= Adds digits of a number together

= Tricky part: iterate over length of string, not magnitude of n

* Think of it like dividing n by 10 each iteration

e n/10'ens)=1 (i.e. divide by 10 until there is 1 element left to add)

* len(s) = log(n)

= O(log n) — base doesn’t matter

49
6.100L Lecture 23

LOGARITHMIC COMPLEXITY

= Complexity grows as log of size of one of its inputs
= Example algorithm: binary search of a list

=" Example we’ll see in a few slides: one bisection search
implementation

50
6.100L Lecture 23

LIST AND DICTIONARIES

= Must be careful when using built-in functions!

Lists — n is len(L) Dictionaries — n is len(d)

e index 0(1) e index 0O(1)

e store O(1) * store O(1)

e length 0(1) * length O(1)

 append 0O(1) e delete 0O(1)

¢ == O(n) e keys O(n)

* remove O(n) e values O(n)

* copy o(n) .+ iteration O(n)

* reverse O(n)

e iteration O(n)

* in list ©(n)

51

SEARCHING
ALGORITHMS

SEARCHING ALGORITHMS

= Linear search
 Brute force search
e List does not have to be sorted

* Bisection search
* List MUST be sorted to give correct answer
* Will see two different implementations of the algorithm

53
6.100L Lecture 23

LINEAR SEARCH
ON UNSORTED LIST

def linear search(L, e): AL
found = False rov ¢
S
for i1 in range(len (L)) : \Oop%oe
- 1041 W) o
1f e [l] . e\\eﬂ\ _ (\S’Qa
S
found = True m.m%e\se‘
return found pvel
e\'\-\

= Must look through all elements to decide it’s not there
= O(len(L)) for the loop * O(1) to test if e == L][i]

= Overall complexity is ©(n) where n is len(L)

= O(len(L))

54
6.100L Lecture 23

LINEAR SEARCH
ON UNSORTED LIST

def linear search (L, e):

W
<K\e
\\\‘ ‘2
CONIPR (S
for 1 1n range(len (L)) : eed‘)q%«(“e 60?’50
y S : . Y ((\\(\ N\ A2
if e == L[1i]: S Qeed &
return True wﬁ;@,o
.\((\

return False

= Must look through all elements to decide it’s not there
= O(len(L)) for the loop * O(1) to test if e == L][i]

= Overall complexity is ©(n) where n is len(L)

= O(len(L))

55
6.100L Lecture 23

LINEAR SEARCH
ON SORTED LIST

def search (L, e):

for 1 in L: A
S A\
return True 1:\;\eﬂ_\\ | (\sta“‘
if i > e: eV
“(\\(\%
return False evey
return False o\

= Must only look until reach a number greater than e
= O(len(L)) for the loop * ©(1) totestifi==eori>e

= Overall complexity is O(len(L))
O(n) where nis len(L)

56
6.100L Lecture 23

BISECTION SEARCH FOR AN
ELEMENT IN A SORTED LIST

1) Pick an index, i, that divides list in half
2)Askif L[1] ==
3) If not, ask if L[1] islarger or smaller than e

4) Depending on answer, search left or right half of L for e

= A new version of divide-and-conquer: recursion!

= Break into smaller versions of problem (smaller list), plus
simple operations

= Answer to smaller version is answer to original version

57

BISECTION SEARCH COMPLEXITY
ANALYSIS

» Finish looking
through list when

1=n/2

" So... relationship
between original
length of list and
how many times
we divide the list:
i =logn

= Complexity is
O(log n) where n
is len(L)

58
6.100L Lecture 23

BIG IDEA

Two different
implementations have
two different © values.

BISECTION SEARCH
IMPLEMENTATION 1

def bisect searchl (L, e):

ok
if - []: c’o(\c"a
return False @mi&
X
elif len(L) == o
oM s‘ (\"\(\
return L[0] == e (ﬁ“ Cﬁcp?§¥®« cﬁ“
else: Co(\s\ N OQ'\QS (\C{\o(‘
C O
half = len(L)//2 o\ o2C) R
S
if L[half] > e: r==—--- . < O W)
I l WO\
return bisect searchl (;L[:half], e) o\° X
else: [y 0§§°
: r I O,\ O e(\\\)\
return bisect_searchl('L[half:”, e) ‘$®wﬁ§

60
6.100L Lecture 23

COMPLEXITY OF bisect _searchl
(where nis len(L))

" O(log n) bisection search calls
= Each recursive call cuts range to search in half

= Worst case to reach range of size 1 from nis when
n/2%=1 or when k = log n

= We do this to get an expression relating k to n

" O(n) for each bisection search call to copy list
= Cost to set up recursive call at each level of recursion
=" O(log n) * ©(n) = O(n log n) where n = len(L)
A this is the answer in this class
= |f careful, notice list is also halved on each recursive call

= |nfinite series (don’t worry about this in this class)
= O(n) is a tighter bound because copying list dominates log n

61
6.100L Lecture 23

BISECTION SEARCH ALTERNATE
IMPLEMENTATION

I { d . I
K R D S S S S S
L

. . problem by factor
NS
B s
B I
s 0] eacn ste
S S
itoteteleteletetotatotetotatetutetetetotototatotate utetetetotatotattete!
o T S
T T I
Rty S S S50 -
B GEGEF) raCk O ow
e
B o S
S S SS5S (j r]_ r] . (j'
to search list

i o P P o P P P

255
etelels

sty 0050900 m
otetatetatetotutoretototetototolels’ Totetatetatatetutoratototetotetotatotutoatetotetototot et le!
soleiatoiolalatotolalatolotelels Joleiieselainiotolulioiolalioolaloiololeloiel

= Complexity of
e e L L T L L L e T L S L T L S e 1 1
Skttt I % recursion iIs
AT
O(log n) where n
L]
is len(L)

L

62
6.100L Lecture 23

S
BISECTION SEARCH o
IMPLEMENTATION 2 e>0“°09c\«°“.‘\;
xe? (2, Q¢
. \'\(‘ . \\\\
W S
a0
def bisect search2 (L, e):
def |[bisect search helper (L, e, low, high):
if high == low:
return L[low] == e
mid = (low + high)//2
if L[mid] == e:
return True X
elif L[mid] > e: (\c;a“
if low == mid: #nothing left to search Cﬁcp e&@“
return False W “ﬂp
o\
else:
return |bisect search helper (L, e, low, mid - 1)
else:
return|bisect search helper (L, e, mid + 1, high) eﬁ&
if len(L) == S
d\c N7
return False W %ge
else: @Qp
return|bisect search helper (L, e, 0, len(L) - 1) %Qwa “fﬁ
= — -\ © e
63 \O e
‘& (S\
6.100L Lecture 23 C\)

COMPLEXITY OF bisect search?2
and helper (where nis len(L))

" O(log n) bisection search calls
= Each recursive call cuts range to search in half

= Worst case to reach range of size 1 from nis when
n/2%=1 or when k = log n

= We do this to get an expression relating k to n

= Pass list and indices as parameters
= List never copied, just re-passed
= O(1) on each recursive call

" O (logn) * ©(1) = O(log n) where n is len(L)

64

WHEN TO SORT FIRST
AND THEN SEARCH?

SEARCHING A SORTED LIST
- nis len(L)

= Using linear search, search for an element is ©(n)

= Using binary search, can search for an element in ©(log n)
e Assumes the list is sorted!

= \WWhen does it make sense to sort first then search?

0 o ¢ 0
@ < <
A K e (oe? O e?
«© O \0,\(\3(\\ _(\63<
\

* | SORT|+|O(1log n)| <|O(n)
implies that SORT < O(n) - O©(log n)

* When is sorting is less than ©(n)??!!?
= Never true because you’d at least have to look at each element!

66
6.100L Lecture 23

AMORTIZED COST
- nis len(L)

» Why bother sorting first?

= Sort a list once then do many searches

= AMORTIZE cost of the sort over many searches

" SORT|+K [*O(log n) <[K |*0O(n)

implies that for large K, SORT time becomes irrelevant

67
6.100L Lecture 23

COMPLEXITY CLASSES SUMMARY

= Compare efficiency of algorithms
= Lower order of growth
= Using O for an upper and lower (“tight”) bound

= Given a function f:
= Only look at items in terms of the input
" Look at loops
= Are they in terms of the input to f?
= Are there nested loops?
" Look at recursive calls
= How deep does the function call stack go?
= Look at built-in functions
= Any of them depend on the input?

68
6.100L Lecture 23

MITO;)enCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

Forinformation aboutciting these materials orourTerms ofUse,visit: https://ocw.mit.edu/terms.

69

https://ocw.mit.edu
https://ocw.mit.edu/terms

	COMPLEXITY CLASSES EXAMPLES�(download slides and .py files to follow along)
	THETA
	WHERE DOES THE FUNCTION COME FROM?
	WHERE DOES THE FUNCTION COME FROM?
	COMPLEXITY CLASSES�n is the input
	CONSTANT COMPLEXITY
	CONSTANT COMPLEXITY
	CONSTANT COMPLEXITY: EXAMPLE 1
	CONSTANT COMPLEXITY: EXAMPLE 2
	CONSTANT COMPLEXITY: EXAMPLE 3
	LINEAR COMPLEXITY
	LINEAR COMPLEXITY
	COMPLEXITY EXAMPLE 0 �(with a twist)
	Be careful about what the inputs are.
	LINEAR COMPLEXITY: EXAMPLE 1
	LINEAR COMPLEXITY: EXAMPLE 2
	FUNNY THING ABOUT FACTORIAL AND PYTHON
	LINEAR COMPLEXITY: EXAMPLE 3
	LINEAR COMPLEXITY: EXAMPLE 4
	COMPLEXITY OF �ITERATIVE FIBONACCI
	POLYNOMIAL COMPLEXITY
	POLYNOMIAL COMPLEXITY�(OFTEN QUADRATIC)
	QUADRATIC COMPLEXITY: EXAMPLE 1
	QUADRATIC �COMPLEXITY: EXAMPLE 2
	QUADRATIC �COMPLEXITY: EXAMPLE 2
	QUADRATIC COMPLEXITY: EXAMPLE 3
	QUADRATIC �COMPLEXITY: EXAMPLE 3
	DIAMETER COMPLEXITY
	Slide Number 29
	Slide Number 30
	EXPONENTIAL COMPLEXITY
	EXPONENTIAL COMPLEXITY
	COMPLEXITY OF �RECURSIVE FIBONACCI
	COMPLEXITY OF RECURSIVE FIBONACCI
	EXPONENTIAL COMPLEXITY: GENERATE SUBSETS
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	VISUALIZING the ALGORITHM
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	EXPONENTIAL COMPLEXITY�GENERATE SUBSETS
	LOGARITHMIC COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	TRICKY COMPLEXITY
	LOGARITHMIC COMPLEXITY
	LIST AND DICTIONARIES
	SEARCHING ALGORITHMS
	SEARCHING ALGORITHMS
	LINEAR SEARCH �ON UNSORTED LIST
	LINEAR SEARCH �ON UNSORTED LIST
	LINEAR SEARCH �ON SORTED LIST
	BISECTION SEARCH FOR AN ELEMENT IN A SORTED LIST
	BISECTION SEARCH COMPLEXITY ANALYSIS
	Two different implementations have two different Θ values.
	BISECTION SEARCH IMPLEMENTATION 1
	COMPLEXITY OF bisect_search1�(where n is len(L))
	BISECTION SEARCH ALTERNATE IMPLEMENTATION
	BISECTION SEARCH IMPLEMENTATION 2
	COMPLEXITY OF bisect_search2 and helper (where n is len(L))
	WHEN TO SORT FIRST AND THEN SEARCH?
	SEARCHING A SORTED LIST�-- n is len(L)
	AMORTIZED COST�-- n is len(L)
	COMPLEXITY CLASSES SUMMARY
	cover-slides.pdf
	cover_h.pdf
	Blank Page

