
FITNESS TRACKER
OBJECT ORIENTED

PROGRAMMING EXAMPLE
(download slides and .py files to follow along)

6.100L Lecture 20
Ana Bell

1

IMPLEMENTING USING
THE CLASS vs THE CLASS

Implementing a new
object type with a class

 Define the class
 Define data attributes

(WHAT IS the object)
 Define methods

(HOW TO use the object)

Class abstractly captures
common properties and
behaviors

6.100L Lecture 20

Using the new object type in
code

• Create instances of the
object type

• Do operations with them

Instances have specific
values for attributes

Two different coding perspectives
2

Workout Tracker Example

6.100L Lecture 20

 Suppose we are writing a program to track workouts,
e.g., for a smart watch

Different kinds of workouts

Thanks to Sam Madden for this OOP
example (his slides have been modified)

Apple Watch and fitness tracker screens © Apple. Fitbit © Fitbit Inc.
Garmin watch © Garmin. All rights reserved. This content is excluded
from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

3

Fitness Tracker

6.100L Lecture 20

Different types of workouts

Common properties:
Icon Kind
Date Start Time
End Time Calories
Heart Rate Distance

Swimming Specific:
Swimming Pace
Stroke Type
100 yd Splits

Running Specific:
Cadence
Running Pace
Mile Splits
Elevation

© Apple. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see
https://ocw.mit.edu/help/faq-fair-use/

4

GROUPS OF OBJECTS HAVE
ATTRIBUTES (RECAP)

 Data attributes
• How can you represent your object with data?
• What it is
• for a coordinate: x and y values
• for a workout: start time, end time, calories

 Functional attributes (behavior/operations/methods)
• How can someone interact with the object?
• What it does
• for a coordinate: find distance between two
• for a workout: display an information card

6.100L Lecture 20

© Apple. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see
https://ocw.mit.edu/help/faq-fair-use/5

DEFINE A SIMPLE CLASS (RECAP)

class Workout(object):

def __init__(self, start, end, calories):

self.start = start

self.end = end

self.calories = calories

self.icon = '😓😓'

self.kind = 'Workout'

my_workout = Workout('9/30/2021 1:35 PM', 9/30/2021 1:57 PM', 200)

6

GETTER AND SETTER METHODS (RECAP)
class Workout(object):

def __init__(self, start, end, calories):
self.start = start
self.end = end
self.calories = calories
self.icon = '😓😓'
self.kind = 'Workout'

def get_calories(self):
return self.calories

def get_start(self):
return self.start

def get_end(self):
return self.end

def set_calories(self, calories):
self.calories = calories

def set_start(self, start):
self.start = start

def set_end(self, end):
self.end = end

Getters and setters used outside of class to access data attributes
6.100L Lecture 20

7

Accessed via
“self” keyword

Class State
Dictionary

SELF PROVIDES ACCESS TO CLASS
STATE

6.100L Lecture 20

Workout

Class

get_calories()

get_end()

__init__()

my_workout = Workout('9/30/2021 1:35 PM', 9/30/2021 1:57 PM', 200)

start

end

calories

my_workout

an instance

Instance State
Dictionary

Demo

get_start()

set_calories()

set_start()

set_end()

icon

kind

8

AN INSTANCE and
DOT NOTATION (RECAP)

 Instantiation creates an instance of an object
myWorkout = Workout('9/30/2021 1:35 PM', '9/30/2021 1:57 PM', 200)

 Dot notation used to access attributes (data and methods)

 It’s better to use getters and setters to access data attributes

my_workout.calories

my_workout.get_calories()

6.100L Lecture 20
9

WHY INFORMATION HIDING?

 Keep the interface of your class as simple as possible
 Use getters & setters, not attributes

 i.e., get_calories() method NOT calories attribute
 Prevents bugs due to changes in implementation

 May seem inconsequential in small programs, but for
large programs complex interfaces increase the potential
for bugs
 If you are writing a class for others to use, you are

committing to maintaining its interface!

6.100L Lecture 20
10

CHANGING THE CLASS
IMPLEMENTATION

 Author of class definition may change internal
representation or implementation
 Use a class variable
 Now get_calories estimates calories based of workout

duration if calories are not passed in

 If accessing data attributes outside the class and class
implementation changes, may get errors

6.100L Lecture 20
11

CHANGING THE CLASS
IMPLEMENTATION

class Workout:

cal_per_hr = 200

def __init__(self, start, end, calories=None):

self.start = parser.parse(start)

self.end = parser.parse(end)

self.calories = calories # may be None

self.icon = '😓😓'
self.kind = 'Workout'

def get_calories(self):
if (calories == None):

return Workout.cal_per_hr*(self.end-self.start).total_seconds()/3600
else:

return self.calories

6.100L Lecture 20

Demo

12

ASIDE: datetime OBJECTS
OTHER PYTON LIBRARIES

 Takes the string representing the date and time and converts it
to a datetime object

from dateutil import parser

start = '9/30/2021 1:35 PM'

end = '9/30/2021 1:45 PM'

start_date = parser.parse(start)

end_date = parser.parse(end)

type(start_date)

 Why do this? Because it makes operations with dates easy!
The datetime object takes care of everything

print((end_date-start_date).total_seconds())

6.100L Lecture 20
13

CLASS VARIABLES LIVE IN CLASS
STATE DICTIONARY

6.100L Lecture 20

Accessed via
“self” keyword

Workout

Class

get_calories()

get_end()

__init__()

start

end

calories

my_workout

an instance

Instance State
DictionaryClass State

Dictionary

get_start()

set_calories()

set_start()

set_end()
icon

kind

cal_per_hr

14

CLASS VARIABLES

class Workout:

cal_per_hr = 200

def __init__(self, start, end, calories):

…

print(Workout.cal_per_hr)

w = Workout('1/1/2021 2:34', '1/1/2021 3:35', None)

print(w.cal_per_hr)

Workout.cal_per_hr = 250
print(w.cal_per_hr)

6.100L Lecture 20

Associate a class variable with all instances of a class

Warning: if an instance changes the class variable, it’s
changed for all instances

15

YOU TRY IT!
 Write lines of code to create two Workout objects.

 One Workout object saved as variable w_one,
from Jan 1 2021 at 3:30 PM until 4 PM.
You want to estimate the calories from this workout.
Print the number of calories for w_one.

 Another Workout object saved as w_two,
from Jan 1 2021 at 3:35 PM until 4 PM.
You know you burned 300 calories for this workout.
Print the number of calories for w_two.

6.100L Lecture 20
16

NEXT UP: CLASS HIERARCHIES

6.100L Lecture 20
17

WorkoutHIERARCHIES

 Parent class
(superclass)

 Child class
(subclass)
• Inherits all data and

behaviors of parent
class

• Add more info
• Add more behavior
• Override behavior

Indoor
Workout

Outdoor
Workout

6.100L Lecture 20

Treadmill

Running

Weights

Swimming

18

Fitness Tracker

6.100L Lecture 20

Different kinds of workouts

Common properties:
Icon Kind
Date Start
Time
End Time Calories
Heart Rate Distance

Swimming Specific:
Swimming Pace
Stroke Type
100 yd Splits

Running Specific:
Cadence
Running Pace
Mile Splits
Elevation

© Apple. All rights reserved. This content is
excluded from our Creative Commons license.
For more information, see
https://ocw.mit.edu/help/faq-fair-use/

19

INHERITANCE:
PARENT CLASS

class Workout(object):

cal_per_hr = 200

def __init__(self, start, end, calories=None):

…

 Everything is an object
 Class object implements basic operations in Python, e.g.,

binding variables

6.100L Lecture 20
20

class RunWorkout(Workout):

def __init__(self, start, end, elev=0, calories=None):

super().__init__(start,end,calories)

self.icon = '�'
self.kind = 'Running'

self.elev = elev

def get_elev(self):

return self.elev

def set_elev(self, e):

self.elev = e

INHERITANCE:
SUBCLASS

Add new functionality e.g., get_elev()
• New methods can be called on instance of type RunWorkout
• __init__ uses super() to setup Workout base instance (can also

call Workout.__init__(start,end,calories) directly
6.100L Lecture 20

21

start

end

calories

icon

kind

INHERITANCE REPRESENTATION
IN MEMORY

6.100L Lecture 20

RunWorkout

Class

super()

get_elev()

RunWorkout

instance

Demo

set_elev()

Workout

Class

get_calories()

get_end()

__init__()

get_start()

set_calories()

set_start()

set_end()

cal_per_hr

elev

Accessed via
“self” keyword

22

WHY USE INHERITENCE?

 Improve clarity
 Commonalities are explicit in parent class
 Differences are explicit in subclass

 Reuse code
 Enhance modularity

 Can pass subclasses to any method that uses parent

6.100L Lecture 20
23

 Complex print function shared by all subclasses

SUBCLASSES REUSE PARENT CODE

6.100L Lecture 20

class Workout(object)
………

def __str__(self):
width = 16
retstr = f"|{'–'*width}|\n"
retstr += f"|{' ' *width}|\n"
iconLen = 0
retstr += f"| {self.icon}{' '*(width-3)}|\n"
retstr += f"| {self.kind}{' '*(width-len(self.kind)-1)}|\n"
retstr += f"|{' ' *width}|\n"
duration_str = str(self.get_duration())
retstr += f"| {duration_str}{' '*(width-len(duration_str)-1)}|\n"
cal_str = f"{self.get_calories():.0f}"
retstr += f"| {cal_str} Calories {' '*(width-len(cal_str)-11)}|\n"

retstr += f"|{' ' *width}|\n"
retstr += f"|{'_'*width}|\n"

return retstr

outputs

24

SUBCLASSES REUSE PARENT CODE

6.100L Lecture 20

w=Workout(…)
rw=RunWorkout(…)
sw=SwimWorkout(…)

print(w)
print(rw)
print(sw)

Demo

25

WHERE CAN I USE AN INSTANCE
OF A CLASS?

 We can use an instance of RunWorkout anywhere Workout can
be used
 Opposite is not true (cannot use Workout anywhere
RunWorkout is used)
 Consider two helper functions

6.100L Lecture 20

def total_calories(workouts):
cals = 0
for w in workouts:

cals += w.get_cals()
return cals

def total_elevation(run_workouts):
elev = 0
for w in run_workouts:

elev += w.get_elev()
return elev

26

WHERE CAN I USE AN INSTANCE
OF A CLASS?

6.100L Lecture 20

def total_calories(workouts):
cals = 0
for w in workouts:

cals += w.get_cals()
return cals

def total_elevation(run_workouts):
elev = 0
for w in run_workouts:

elev += w.get_elev()
return elev

w1 = Workout('9/30/2021 1:35 PM','9/30/2021 2:05 PM')

w2 = Workout('9/30/2021 4:35 PM','9/30/2021 5:05 PM')

rw1 = RunWorkout('9/30/2021 1:35 PM','9/30/2021 3:35 PM', 100)

rw2 = RunWorkout('9/30/2021 1:35 PM','9/30/2021 3:35 PM', 200)

total_calories([w1,w2,rw1,rw2])) # (1) # cal = 100+100+400+400

total_elevation([rw1,rw2])) # (2) # elev = 100+200

total_elevation([w1,rw1]) # (3) # err! w1 has no elev method

Demo

27

YOU TRY IT!
 For each line creating on object below, tell me:

 What is the calories val through get_calories()
 What is the elevation val through get_elev()

w1 = Workout('9/30/2021 2:20 PM','9/30/2021 2:50 PM')

w2 = Workout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',450)

rw1 = RunWorkout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',250)

rw2 = RunWorkout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',250,300)

rw3 = RunWorkout('9/30/2021 2:20 PM','9/30/2021 2:50 PM',calories=300)

6.100L Lecture 20
28

OVERRIDING SUPERCLASSES

 Overriding superclass – add calorie calculation w/ distance

6.100L Lecture 20

class RunWorkout(Workout):
cals_per_km = 100

…

def get_calories(self):
if (self.route_gps_points != None):

dist = 0
lastP = self.routeGpsPoints[0]
for p in self.routeGpsPoints[1:]:

dist += gpsDistance(lastP,p)
lastP = p

return dist * RunWorkout.cals_per_km
else:

return super().get_calories()

Demo

29

start

end

calories

icon

kind

RunWorkout

Class

super()

get_elev()

RunWorkout

instance

set_elev()

Workout

Class

get_calories()

get_end()

__init__()

get_start()

set_calories()

set_start()

set_end()

cal_per_hr

elev

Accessed via
“self” keyword

OVERRIDDEN METHODS IN
MEMORY

6.100L Lecture 20

cals_per_km

get_calories()

30

WHICH METHOD
WILL BE CALLED?

• Overriding: subclass methods
with same name as superclass

• For an instance of a class, look
for a method name in current
class definition

• If not found, look for method
name up the hierarchy (in
parent, then grandparent, and
so on)

• Use first method up the
hierarchy that you found with
that method name

6.100L Lecture 20

Workout

Indoor
Workout

Outdoor
Workout

Treadmill

Running

Weights

Swimming

get_calories()?

get_calories()?

get_calories()

31

TESTING EQUALITY WITH
SUBCLASSES

 With subclasses, often want to ensure base class is equal, in
addition to new properties in the subclass

6.100L Lecture 20

class Workout(object):
……

def __eq__(self, other):
return type(self) == type(other) and \

self.startDate == other.startDate and \
self.endDate == other.endDate and \
self.kind == other.kind and \
self.get_calories() == other.get_calories()

class RunWorkout(Workout):
……

def __eq__(self,other):
return super().__eq__(other) and self.elev == other.elev

Demo

32

OBJECT ORIENTED DESIGN:
MORE ART THAN SCIENCE

 OOP is a powerful tool for modularizing your code and grouping state
and functions together

BUT
 It’s possible to overdo it

 New OOP programmers often create elaborate class hierarchies
 Not necessarily a good idea
 Think about the users of your code

Will your decomposition make sense to them?
 Because the function that is invoked is implicit in the class hierarchy, it can

sometimes be difficult to reason about control flow

 The Internet is full of opinions OOP and “good software design” – you
have to develop your own taste through experience!

6.100L Lecture 20
33

MIT OpenCourseWare
https://ocw.mit.edu

6.100L Introduction to Computer Science and Programming Using Python
Fall 2022

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

34

https://ocw.mit.edu
https://ocw.mit.edu/terms

	FITNESS TRACKER�OBJECT ORIENTED PROGRAMMING EXAMPLE�(download slides and .py files to follow along)
	IMPLEMENTING 	 		 USING�THE CLASS 	 vs 	THE CLASS
	Workout Tracker Example
	Fitness Tracker
	GROUPS OF OBJECTS HAVE ATTRIBUTES (RECAP)
	DEFINE A SIMPLE CLASS (RECAP)
	GETTER AND SETTER METHODS (RECAP)
	SELF PROVIDES ACCESS TO CLASS STATE
	AN INSTANCE and �DOT NOTATION (RECAP)
	WHY INFORMATION HIDING?
	CHANGING THE CLASS IMPLEMENTATION
	CHANGING THE CLASS IMPLEMENTATION
	ASIDE: datetime OBJECTS�OTHER PYTON LIBRARIES
	CLASS VARIABLES LIVE IN CLASS STATE DICTIONARY
	CLASS VARIABLES
	Slide Number 16
	Slide Number 18
	HIERARCHIES
	Fitness Tracker
	INHERITANCE:�PARENT CLASS
	INHERITANCE: �SUBCLASS
	INHERITANCE REPRESENTATION IN MEMORY
	WHY USE INHERITENCE?
	SUBCLASSES REUSE PARENT CODE
	SUBCLASSES REUSE PARENT CODE
	WHERE CAN I USE AN INSTANCE OF A CLASS?
	WHERE CAN I USE AN INSTANCE OF A CLASS?
	Slide Number 29
	OVERRIDING SUPERCLASSES
	OVERRIDDEN METHODS IN MEMORY
	WHICH METHOD �WILL BE CALLED?
	TESTING EQUALITY WITH SUBCLASSES
	OBJECT ORIENTED DESIGN: MORE ART THAN SCIENCE
	cover-slides.pdf
	cover_h.pdf
	Blank Page

