Recitation 23 December 2, 2010

1. Example 9.1, page 463 in textbook

Romeo and Juliet start dating, but Juliet will be late on any date by a random amount X, uniformly distributed over the interval $[0, \theta]$. The parameter θ is unknown. Assuming that Juliet was late by an amount x on their first date, find the ML estimate of θ based on the observation X = x.

2. Example 9.4, page 464 in textbook

Estimate the mean μ and variance v of a normal distribution using n independent observations X_1, \ldots, X_n .

3. Example 9.8, page 474 of textbook

We would like to estimate the fraction of voters supporting a particular candidate for office. We collect n independent sample voter responses X_1, \ldots, X_n , where X_i is viewed as a Bernoulli random variable, with $X_i = 1$ if the *i*th voter supports the candidate. We conducted a poll of 1200 people in North Carolina, and found that 684 were supporting the candidate. We would like to construct a 95% confidence interval for θ , the proportion of people who support the candidate. As we saw in lecture, using the central limit theorem, an (approximate) 95% confidence interval can be defined as

$$\hat{\Theta}^- = \hat{\Theta}_n - 1.96\sqrt{\frac{v}{n}}, \quad \hat{\Theta}^+ = \hat{\Theta}_n + 1.96\sqrt{\frac{v}{n}}$$

where $v = \operatorname{Var}(X_i)$, and $\hat{\Theta}_n = (X_1 + \ldots + X_n)/n$. Unfortunately, we don't know the value for v. Construct confidence intervals for θ using the following three ways of estimating or bounding the value for v (in each case simply assume that v is equal to the given estimate; note that this is a further approximation in cases (a) and (b)).

(a)

$$\hat{S}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \hat{\Theta}_n)^2$$

(b)

 $\hat{\Theta}_n(1-\hat{\Theta}_n)$

(c) The most conservative upper bound for the variance.

6.041SC Probabilistic Systems Analysis and Applied Probability Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.