

6.033 Spring 2018
Lecture #19

• Distributed transactions
• Availability
• Replicated State Machines

1 6.033 | spring 2018 | Katrina LaCurts

goal: build reliable systems from unreliable components
the abstraction that makes that easier is

transactions, which provide atomicity and
isolation, while not hindering performance

shadow copies (simple, poor
performance) or logs (better atomicity

performance, a bit more complex)

two-phase locking isolation

we also want transaction-based systems to be
distributed — to run across multiple machines — and

to remain available even through failures

2 6.033 | spring 2018 | Katrina LaCurts

C1 writewrite11(X)(X) S1

C2 writewrite22(X)(X) S2

(replica of S1)

problem: replica servers can become inconsistent

3 6.033 | spring 2018 | Katrina LaCurts

if primary fails, C switches to backup (primary)
primary chooses order(C knows how to contact backup servers)
of operations, decides

C

S1 all non-deterministic
values

primary ACKs coordinator
only after it’s sure that S2

backup has all updates

(backup)

attempt: coordinators communicate with primary
servers, who communicate with backup servers

4 6.033 | spring 2018 | Katrina LaCurts

if primary fails, C switches to backup (dead)

S1

C

(C knows how to contact backup servers)

!

S2

(backup)

attempt: coordinators communicate with primary
servers, who communicate with backup servers

5 6.033 | spring 2018 | Katrina LaCurts

if primary fails, C switches to backup

S1!
(dead)

(C knows how to contact backup servers)

C

S2

(primary)

attempt: coordinators communicate with primary
servers, who communicate with backup servers

6 6.033 | spring 2018 | Katrina LaCurts

multiple coordinators + the network = problems
(primary)

C1 S1

S2C2

(backup)

attempt: coordinators communicate with primary
servers, who communicate with backup servers

7 6.033 | spring 2018 | Katrina LaCurts

multiple coordinators + the network = problems
(primary)

C1 S1

network partition

S2C2
(backup)

attempt: coordinators communicate with primary
servers, who communicate with backup servers

8 6.033 | spring 2018

network partition

multiple coordinators + the network = problems
(primary)

C1 S1

network partition

S2C2
(backup, but

primary for C2)

attempt: coordinators communicate with primary
servers, who communicate with backup servers

9 6.033 | spring 2018

multiple coordinators + the network = problems
(primary)

C1 S1

network partition

S2C2
(backup, but

primary for C2)

C1 and C2 are using different primaries;
S1 and S2 are no longer consistent

attempt: coordinators communicate with primary
servers, who communicate with backup servers

10 6.033 | spring 2018

C VS

S1

S2

use a view server, which determines which replica is
the primary

11 6.033 | spring 2018 | Katrina LaCurts

S1

C VS

1: S1, S2

view server keeps a
table that maintains a

sequence of views S2

use a view server, which determines which replica is
the primary

12 6.033 | spring 2018 | Katrina LaCurts

(primary)

C VS

S1

S2

1: S1, S2

pri
mar

y

backup

view server alerts
primary/backups about

their roles

(backup)

use a view server, which determines which replica is
the primary

13 6.033 | spring 2018 | Katrina LaCurts

pri
mar

y

primary sends updates (primary)
to, gets ACKs from
backup (as before)

S1

C

1: S1, S2
backup

VS

S2

(backup)

use a view server, which determines which replica is
the primary

14 6.033 | spring 2018 | Katrina LaCurts

(primary)

S1

VS
primary?

C
S1

1: S1, S2
coordinators make

requests to view server
to find out who is S2

primary

(backup)

use a view server, which determines which replica is
the primary

15 6.033 | spring 2018 | Katrina LaCurts

coordinators contact (primary)
primary (as before)

C VS

S1

1: S1, S2

S1

primary?

S2

(backup)

use a view server, which determines which replica is
the primary

16 6.033 | spring 2018 | Katrina LaCurts

(primary)

(backup)

C VS

1: S1, S2

S1

primary?

S1

!

! S2primary/backup(s) ping
view server so that it
can discover failures

use a view server, which determines which replica is
the primary

17 6.033 | spring 2018 | Katrina LaCurts

handling primary failure
(dead)

S1 !

lack of pings indicates
C VS to VS that S1 is down

1: S1, S2

" S2

(backup)

18 6.033 | spring 2018 | Katrina LaCurts

primary

handling primary failure
(dead)

S1 !

C

1: S1, S2
2: S2, --

VS

S2 "

(primary)

19 6.033 | spring 2018 | Katrina LaCurts

handling primary failure
(dead)

C VS

S1 !

1: S1, S2
2: S2, --

"

S2

primary?

S2

(primary)

20 6.033 | spring 2018 | Katrina LaCurts

!

handling primary failure
(dead)

S1

C VS

1: S1, S2
2: S2, --

" S2

(primary)

21 6.033 | spring 2018 | Katrina LaCurts

handling primary failure
(primary)due to partition

C VS

(backup)

S1

network partition
1: S1, S2

! S2

!

ppose a partition keeps S1 from communicating with the view ser

22 6.033 | spring 2018

handling primary failure
(presumed dead)due to partition

C VS

S1

lack of pings indicates
to VS that S1 is down

1: S1, S2

! S2
network partition

!

(backup)

23 6.033 | spring 2018

S1

network p

!

handling primary failure
(presumed dead)due to partition

C VS

(primary)

1: S1, S2
2: S2, --

VS makes S2 primary !

primary

S2

artition

24 6.033 | spring 2018

handling primary failure
(presumed dead)due to partition

C VS

(primary)

S1

1: S1, S2
2: S2, --

!

primary

S2
network partition

!

question: what happens before S2 knows
it’s the primary?

25 6.033 | spring 2018

handling primary failure

C VS

(primary)

(presumed dead)

S1

due to partition

1: S1, S2
2: S2, --

S2 will act as backup
(accept updates from S1, reject coordinator requests)

!

primary

rejected by S2
S2

network partition

!

26 6.033 | spring 2018

handling primary failure
(presumed dead)due to partition

C VS

(primary)

S1

1: S1, S2
2: S2, --

! S2
network partition

!

question: what happens after S2 knows it’s
the primary, but S1 also thinks it is?

27 6.033 | spring 2018

C VS

(primary)

(presumed dead)

S1

handling primary failure
due to partition

1: S1, S2
2: S2, --

S1 won’t be able to act as primary
(can’t accept client requests because it won’t get ACKs from S2)

!

rejected by S
2

re
je
ct
ed
 b
y
S1

(ca
n’t

 ge
t A

CK
fro

m S
2)

S2
network partition

!

28 6.033 | spring 2018

(primary)

C

1: S1, S2

S1

!

!

"

S2

problem: what if view server fails?

29 6.033 | spring 2018 | Katrina LaCurts

(primary)

C

1: S1, S2

S1

!

!

"

S2

problem: what if view server fails?

go to recitation tomorrow and find out!

30 6.033 | spring 2018 | Katrina LaCurts

• Replicated state machines (RSMs) provide single-copy
consistency: operations complete as if there is a single
copy of the data, though internally there are replicas.

• RSMs use a primary-backup mechanism for replication.
The view server ensures that only one replica acts as the
primary. It can also recruit new backups after servers fail.

• To extend this model to handle view-server failures, we
need a mechanism to provide distributed consensus;
see tomorrow’s recitation (on Raft).

31 6.033 | spring 2018 | Katrina LaCurts

MIT OpenCourseWare
https://ocw.mit.edu

�.�����ompute����stem����i�ee�i��
Spring 201�

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

32

https://ocw.mit.edu/terms
http:https://ocw.mit.edu

