

6.033 Spring 2018
Lecture #15

• When replication fails us
• Atomicity via shadow copies
• Isolation
• Transactions

6.033 | spring 2018 | Katrina LaCurts
1

high-level goal: build reliable
systems from unreliable components

this is difficult because reasoning about failures
is difficult. we need some abstractions that will

let us simplify.

6.033 | spring 2018 | Katrina LaCurts
2

atomicity

an action is atomic if it happens completely or
not at all. if we can guarantee atomicity, it will

be much easier to reason about failures

6.033 | spring 2018 | Katrina LaCurts
3

transfer (bank, account_a, account_b, amount):
bank[account_a] = bank[account_a] - amount crash! !
bank[account_b] = bank[account_b] + amount

problem: account_a lost amount dollars, but
account_b didn’t gain amount dollars

6.033 | spring 2018 | Katrina LaCurts
4

transfer (bank, account_a, account_b, amount):
bank[account_a] = bank[account_a] - amount crash! !
bank[account_b] = bank[account_b] + amount

solution: make this action atomic. ensure that
we complete both steps or neither step.

6.033 | spring 2018 | Katrina LaCurts
5

quest for atomicity: attempt 1

transfer (bank_file, account_a, account_b, amount):
bank = read_accounts(bank_file)
bank[account_a] = bank[account_a] - amount crash! !
bank[account_b] = bank[account_b] + amount

crash! !write_accounts(bank_file)

problem: a crash during write_accounts
leaves bank_file in an intermediate state

6.033 | spring 2018 | Katrina LaCurts
6

quest for atomicity: attempt 2
(shadow copies)

transfer (bank_file, account_a, account_b, amount):
bank = read_accounts(bank_file)
bank[account_a] = bank[account_a] - amount
bank[account_b] = bank[account_b] + amount
write_accounts(tmp_file)
rename(tmp_file, bank_file)

crash! !

crash! !
crash! !

problem: a crash during rename potentially
leaves bank_file in an intermediate state

6.033 | spring 2018 | Katrina LaCurts
7

quest for atomicity: attempt 2
(shadow copies)

transfer (bank_file, account_a, account_b, amount):
bank = read_accounts(bank_file)
bank[account_a] = bank[account_a] - amount
bank[account_b] = bank[account_b] + amount
write_accounts(tmp_file)

crash! !rename(tmp_file, bank_file)

solution: make rename atomic

6.033 | spring 2018 | Katrina LaCurts
8

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode 1
filename “tmp_file” -> inode 2

6.033 | spring 2018 | Katrina LaCurts
9

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode 1
filename “tmp_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 1 refcount: 1

rename(tmp_file, orig_file):
// point bank_file’s dirent at inode 2
// delete tmp_file’s dirent
// remove refcount on inode 1

6.033 | spring 2018 | Katrina LaCurts
10

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode 2
filename “tmp_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 1 refcount: 1

rename(tmp_file, orig_file):
tmp_inode = lookup(tmp_file) // = 2
orig_inode = lookup(orig_file) // = 1

orig_file dirent = tmp_inode
// delete tmp_file’s dirent
// remove refcount on inode 1

6.033 | spring 2018 | Katrina LaCurts
11

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 1 refcount: 1

rename(tmp_file, orig_file):
tmp_inode = lookup(tmp_file) // = 2
orig_inode = lookup(orig_file) // = 1

orig_file dirent = tmp_inode
remove tmp_file dirent
// remove refcount on inode 1

6.033 | spring 2018 | Katrina LaCurts
12

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 0 refcount: 1

rename(tmp_file, orig_file):
tmp_inode = lookup(tmp_file) // = 2
orig_inode = lookup(orig_file) // = 1

orig_file dirent = tmp_inode
remove tmp_file dirent
decref(orig_inode)

6.033 | spring 2018 | Katrina LaCurts
13

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode 1
filename “tmp_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 1 refcount: 1

rename(tmp_file, orig_file):
tmp_inode = lookup(tmp_file) // = 2
orig_inode = lookup(orig_file) // = 1

// point bank_file’s dirent at inode 2
// delete tmp_file’s dirent
// remove refcount on inode 1

6.033 | spring 2018 | Katrina LaCurts
14

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode 1
filename “tmp_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 1 refcount: 1

rename(tmp_file, orig_file):
tmp_inode = lookup(tmp_file) // = 2
orig_inode = lookup(orig_file) // = 1

crash! !

orig_file dirent = tmp_inode rename didn’t happen
remove tmp_file dirent
decref(orig_inode)

6.033 | spring 2018 | Katrina LaCurts
15

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode 2
filename “tmp_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 1 refcount: 1

rename(tmp_file, orig_file):
tmp_inode = lookup(tmp_file) // = 2
orig_inode = lookup(orig_file) // = 1

orig_file dirent = tmp_inode crash! !
remove tmp_file dirent

rename happened,
decref(orig_inode) but refcounts are wrong

6.033 | spring 2018 | Katrina LaCurts
16

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode ?
filename “tmp_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 1 refcount: 1

rename(tmp_file, orig_file):
tmp_inode = lookup(tmp_file) // = 2
orig_inode = lookup(orig_file) // = 1

crash! !orig_file dirent = tmp_inode
crash during this line seems bad..remove tmp_file dirent

decref(orig_inode)
6.033 | spring 2018 | Katrina LaCurts

17

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode ?
filename “tmp_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 1 refcount: 1

rename(tmp_file, orig_file):
tmp_inode = lookup(tmp_file) // = 2
orig_inode = lookup(orig_file) // = 1

crash! !orig_file dirent = tmp_inode
crash during this line seems bad..remove tmp_file dirent

but is okay because single-sector writes
decref(orig_inode) are themselves atomic

6.033 | spring 2018 | Katrina LaCurts
18

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode 2
filename “tmp_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 1 refcount: 1

rename(tmp_file, orig_file):
tmp_inode = lookup(tmp_file) // = 2
orig_inode = lookup(orig_file) // = 1

orig_file dirent = tmp_inode crash! !
remove tmp_file dirent

rename happened,
decref(orig_inode) but refcounts are wrong

6.033 | spring 2018 | Katrina LaCurts
19

quest for atomicity: making rename atomic
directory entries

filename “bank_file” -> inode 2
filename “tmp_file” -> inode 2

inode 1: // old data inode 2: // new data
data blocks: [..] data blocks:

[..]
refcount: 1 refcount: 1

rename(tmp_file, orig_file):
tmp_inode = lookup(tmp_file) // = 2
orig_inode = lookup(orig_file) // = 1
incref(tmp_inode)
orig_file dirent = tmp_inode
decref(orig_inode) problem: this is a mess,

and is still incorrect remove tmp_file dirent
decref(tmp_inode) 6.033 | spring 2018 | Katrina LaCurts

20

solution: recover from failure
(clean things up)

recover(disk):
for inode in disk.inodes:

inode.refcount = find_all_refs(disk.root_dir, inode)
if exists(“tmp_file”):

unlink(“tmp_file”)

6.033 | spring 2018 | Katrina LaCurts
21

atomicity
(first abstraction)

not quite solved; shadow copies perform poorly
even for a single user and a single file, and we

haven’t even talked about concurrency

isolation
(second abstraction)

if we guarantee isolation, then two actions A1
and A2 will appear to have run serially even if

they were executed concurrently
(i.e., A1 before A2, or vice versa)

6.033 | spring 2018 | Katrina LaCurts
22

transactions: provide atomicity and
isolation

Transaction 1 Transaction 2
begin begin
transfer(A, B, 20) transfer(B, C, 5)
withdraw(B, 10) deposit(A, 5)
end end

atomicity: each transaction will appear to have run to
completion, or not at all

isolation: when multiple transactions are run
concurrently, it will appear as if they were run

sequentially (serially)

6.033 | spring 2018 | Katrina LaCurts
23

atomicity and isolation — and thus,
transactions — make it easier to reason

about failures (and concurrency)

6.033 | spring 2018 | Katrina LaCurts
24

transfer (bank_file, account_a, account_b, amount):
acquire(lock)
bank = read_accounts(bank_file)
bank[account_a] = bank[account_a] - amount
bank[account_b] = bank[account_b] + amount
write_accounts(“tmp_file”)
rename(“tmp_file”, bank_file)
release(lock)

couldn’t we just put locks around
everything?

(isn’t that what locks are for?)

6.033 | spring 2018 | Katrina LaCurts
25

transfer (bank_file, account_a, account_b, amount):
acquire(lock)
bank = read_accounts(bank_file)
bank[account_a] = bank[account_a] - amount
bank[account_b] = bank[account_b] + amount
write_accounts(“tmp_file”)
rename(“tmp_file”, bank_file)
release(lock)

this particular strategy will perform poorly
(would force a single transfer at a time)

6.033 | spring 2018 | Katrina LaCurts
26

transfer (bank_file, account_a, account_b, amount):
acquire(lock)
bank = read_accounts(bank_file)
bank[account_a] = bank[account_a] - amount
bank[account_b] = bank[account_b] + amount
write_accounts(“tmp_file”)
rename(“tmp_file”, bank_file)
release(lock)

this particular strategy will perform poorly
(would force a single transfer at a time)

locks sometimes require global reasoning,
which is messy

eventually, we’ll incorporate locks, but in a systematic way

6.033 | spring 2018 | Katrina LaCurts
27

goal: to implement transactions,
which provide atomicity and isolation,

while not hindering performance

shadow copies. work, but perform atomicity poorly and don’t allow for concurrency

?
(coarse-grained locks perform poorly, isolation finer-grained locks are difficult to

reason about)

eventually, we also want transaction-based systems to
be distributed: to run across multiple machines

6.033 | spring 2018 | Katrina LaCurts
28

• Transactions provide atomicity and isolation, both of
which make it easier for us to reason about failures
because we don’t have to deal with intermediate states.

• Shadow copies are one way to achieve atomicity. The
work, but perform poorly: require copying an entire file
even for small changes, and don’t allow for concurrency.

6.033 | spring 2018 | Katrina LaCurts
29

MIT OpenCourseWare
https://ocw.mit.edu

6.033 Computer System Engineering
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

30

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	cover_h.pdf
	Blank Page

