
 

  

6.033 Spring 2018
Lecture #5 

• Threads
• Condition Variables
• Preemption
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operating systems enforce modularity 
on a single machine using virtualization 

in order to enforce modularity + build an effective operating system 

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory 

bounded buffers 
(virtualize communication links) 

assume one program 
per CPU 
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operating systems enforce modularity 
on a single machine using virtualization 

in order to enforce modularity + build an effective operating system 

1. programs shouldn’t be able to refer to
virtual memory (and corrupt) each others’ memory

2. programs should be able to bounded buffers communicate (virtualize communication links) 

3. programs should be able to share a
threads CPU without one program halting the

(virtualize processors) progress of the others

today’s goal: use threads to allow multiple programs to share a 
CPU 
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thread: a virtual processor 

thread API: 
suspend(): save state of current thread 

to memory 
restore state from resume(): 
memory
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send(bb, message): 
acquire(bb.lock) 
while bb.in - bb.out == N: 

release(bb.lock) 
acquire(bb.lock) 

bb.buf[bb.in mod N] <- message 
bb.in <- bb.in + 1 
release(bb.lock) 
return 
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send(bb, message): 
acquire(bb.lock) 
while bb.in - bb.out == N: 

release(bb.lock) 
yield() 
acquire(bb.lock) 

bb.buf[bb.in mod N] <- message 
bb.in <- bb.in + 1 
release(bb.lock) 
return 
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yield(): 
acquire(t_lock) 

id = cpus[CPU].thread 
threads[id].state = RUNNABLE 
threads[id].sp = SP 
threads[id].ptr = PTR 

do: 
id = (id + 1) mod N 

while threads[id].state != RUNNABLE 

SP = threads[id].sp 
PTR = threads[id].ptr 
threads[id].state = RUNNING 
cpus[CPU].thread = id 

release(t_lock) 

Suspend 
current thread 

Choose new 
thread 

Resume new 
thread 
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send(bb, message): 
acquire(bb.lock) 
while bb.in - bb.out == N: 

release(bb.lock) 
yield() 
acquire(bb.lock) 

bb.buf[bb.in mod N] <- message 
bb.in <- bb.in + 1 
release(bb.lock) 
return 
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condition variables: let threads wait for 
events, and get notified when they occur 

condition variable API: 
wait(cv): yield processor and wait to

be notified of cv 
notify(cv): notify waiting threads of cv 
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send(bb, message): 
acquire(bb.lock) 
while bb.in - bb.out == N: 

release(bb.lock) 
wait(bb.not_full) 
acquire(bb.lock) 

bb.buf[bb.in mod N] <- message 
bb.in <- bb.in + 1 

(threads in receive() willrelease(bb.lock) wait on bb.not_empty andnotify(bb.not_empty) notify of bb.not_full)
return 

problem: lost notify 
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condition variable API: 
wait(cv,lock): yield processor, release

lock, wait to be notified 
of cv 

notify(cv): notify waiting threads of cv 
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send(bb, message): 
acquire(bb.lock) 
while bb.in - bb.out == N: 

wait(bb.not_full, bb.lock) 
bb.buf[bb.in mod N] <- message 
bb.in <- bb.in + 1 
release(bb.lock) 
notify(bb.not_empty) 
return 
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wait(cv, lock): 
acquire(t_lock) 
release(lock) 
id = cpus[CPU].thread 
threads[id].cv = cv 
threads[id].state = WAITING will be different yield_wait() than yield()release(t_lock) 
acquire(lock) 

notify(cv): 
acquire(t_lock) 
for id = 0 to N-1: 

if threads[id].cv == cv && 
threads[id].state == WAITING: 

threads[id].state = RUNNABLE 
release(t_lock) 
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yield_wait(): // called by wait() 
acquire(t_lock) 

id = cpus[CPU].thread 
threads[id].state = RUNNABLE 
threads[id].sp = SP 
threads[id].ptr = PTR 

do: 
id = (id + 1) mod N 

while threads[id].state != RUNNABLE 

SP = threads[id].sp 
PTR = threads[id].ptr 
threads[id].state = RUNNING 
cpus[CPU].thread = id 

release(t_lock) 

problem: wait() holds t_lock 
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yield_wait(): // called by wait() 

id = cpus[CPU].thread 
threads[id].state = RUNNABLE 
threads[id].sp = SP 
threads[id].ptr = PTR 

do: 
id = (id + 1) mod N 

while threads[id].state != RUNNABLE 

SP = threads[id].sp 
PTR = threads[id].ptr 
threads[id].state = RUNNING 
cpus[CPU].thread = id 

problem: current thread’s state shouldn’t be RUNNABLE 
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yield_wait(): // called by wait() 

id = cpus[CPU].thread 
threads[id].sp = SP 
threads[id].ptr = PTR 

do: 
id = (id + 1) mod N 

while threads[id].state != RUNNABLE 

SP = threads[id].sp 
PTR = threads[id].ptr 
threads[id].state = RUNNING 
cpus[CPU].thread = id 

problem: deadlock (wait() holds t_lock) 
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yield_wait(): // called by wait() 

id = cpus[CPU].thread 
threads[id].sp = SP 
threads[id].ptr = PTR 

do: 
id = (id + 1) mod N 
release(t_lock) 
acquire(t_lock) 

while threads[id].state != RUNNABLE 

SP = threads[id].sp 
PTR = threads[id].ptr 
threads[id].state = RUNNING 
cpus[CPU].thread = id 

problem: stack corruption 
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yield_wait(): // called by wait() 

id = cpus[CPU].thread 
threads[id].sp = SP 
threads[id].ptr = PTR 
SP = cpus[CPU].stack 

do: 
id = (id + 1) mod N 
release(t_lock) 
acquire(t_lock) 

while threads[id].state != RUNNABLE 

SP = threads[id].sp 
PTR = threads[id].ptr 
threads[id].state = RUNNING 
cpus[CPU].thread = id 
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preemption: forcibly interrupt threads 

timer_interrupt(): 
push PC 
push registers 
yield() 
pop registers 
pop PC 

problem: what if timer interrupt occurs while running 
yield() or yield_wait()? 
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preemption: forcibly interrupt threads 

timer_interrupt(): 
push PC 
push registers 
yield() 
pop registers 
pop PC 

solution: hardware mechanism to disable interrupts 
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• Threads virtualize a processor so that we can share it
among programs. yield() allows the kernel to suspend
the current thread and resume another.

• Condition Variables provide a more efficient API for
threads, where they wait for an event and are notified
when it occurs. wait() requires a new version of yield(),
yield_wait().

• Preemption forces a thread to be interrupted so that we
don’t have to rely on programmers correctly using yield().
Requires a special interrupt and hardware support to
disable other interrupts.
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operating systems enforce modularity 
on a single machine using virtualization 

in order to enforce modularity + build an effective operating system 

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory 

bounded buffers 
(virtualize communication links) 

threads 
(virtualize processors) 
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