

6.033 Spring 2018
Lecture #5

• Threads
• Condition Variables
• Preemption

6.033 | spring 2018 | Katrina LaCurts
1

operating systems enforce modularity
on a single machine using virtualization

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

bounded buffers
(virtualize communication links)

assume one program
per CPU

6.033 | spring 2018 | Katrina LaCurts
2

operating systems enforce modularity
on a single machine using virtualization

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
virtual memory (and corrupt) each others’ memory

2. programs should be able to bounded buffers communicate (virtualize communication links)

3. programs should be able to share a
threads CPU without one program halting the

(virtualize processors) progress of the others

today’s goal: use threads to allow multiple programs to share a
CPU

6.033 | spring 2018 | Katrina LaCurts
3

thread: a virtual processor

thread API:
suspend(): save state of current thread

to memory
restore state from resume():
memory

6.033 | spring 2018 | Katrina LaCurts
4

send(bb, message):
acquire(bb.lock)
while bb.in - bb.out == N:

release(bb.lock)
acquire(bb.lock)

bb.buf[bb.in mod N] <- message
bb.in <- bb.in + 1
release(bb.lock)
return

6.033 | spring 2018 | Katrina LaCurts
5

http:bb.buf[bb.in

send(bb, message):
acquire(bb.lock)
while bb.in - bb.out == N:

release(bb.lock)
yield()
acquire(bb.lock)

bb.buf[bb.in mod N] <- message
bb.in <- bb.in + 1
release(bb.lock)
return

6.033 | spring 2018 | Katrina LaCurts
6

http:bb.buf[bb.in

yield():
acquire(t_lock)

id = cpus[CPU].thread
threads[id].state = RUNNABLE
threads[id].sp = SP
threads[id].ptr = PTR

do:
id = (id + 1) mod N

while threads[id].state != RUNNABLE

SP = threads[id].sp
PTR = threads[id].ptr
threads[id].state = RUNNING
cpus[CPU].thread = id

release(t_lock)

Suspend
current thread

Choose new
thread

Resume new
thread

6.033 | spring 2018 | Katrina LaCurts
7

http:threads[id].sp
http:threads[id].sp

send(bb, message):
acquire(bb.lock)
while bb.in - bb.out == N:

release(bb.lock)
yield()
acquire(bb.lock)

bb.buf[bb.in mod N] <- message
bb.in <- bb.in + 1
release(bb.lock)
return

6.033 | spring 2018 | Katrina LaCurts
8

http:bb.buf[bb.in

condition variables: let threads wait for
events, and get notified when they occur

condition variable API:
wait(cv): yield processor and wait to

be notified of cv
notify(cv): notify waiting threads of cv

6.033 | spring 2018 | Katrina LaCurts
9

send(bb, message):
acquire(bb.lock)
while bb.in - bb.out == N:

release(bb.lock)
wait(bb.not_full)
acquire(bb.lock)

bb.buf[bb.in mod N] <- message
bb.in <- bb.in + 1

(threads in receive() willrelease(bb.lock) wait on bb.not_empty andnotify(bb.not_empty) notify of bb.not_full)
return

problem: lost notify
6.033 | spring 2018 | Katrina LaCurts

10

http:bb.buf[bb.in

condition variable API:
wait(cv,lock): yield processor, release

lock, wait to be notified
of cv

notify(cv): notify waiting threads of cv

6.033 | spring 2018 | Katrina LaCurts
11

send(bb, message):
acquire(bb.lock)
while bb.in - bb.out == N:

wait(bb.not_full, bb.lock)
bb.buf[bb.in mod N] <- message
bb.in <- bb.in + 1
release(bb.lock)
notify(bb.not_empty)
return

6.033 | spring 2018 | Katrina LaCurts
12

http:bb.buf[bb.in

wait(cv, lock):
acquire(t_lock)
release(lock)
id = cpus[CPU].thread
threads[id].cv = cv
threads[id].state = WAITING will be different yield_wait() than yield()release(t_lock)
acquire(lock)

notify(cv):
acquire(t_lock)
for id = 0 to N-1:

if threads[id].cv == cv &&
threads[id].state == WAITING:

threads[id].state = RUNNABLE
release(t_lock)

6.033 | spring 2018 | Katrina LaCurts
13

http:threads[id].cv
http:threads[id].cv

yield_wait(): // called by wait()
acquire(t_lock)

id = cpus[CPU].thread
threads[id].state = RUNNABLE
threads[id].sp = SP
threads[id].ptr = PTR

do:
id = (id + 1) mod N

while threads[id].state != RUNNABLE

SP = threads[id].sp
PTR = threads[id].ptr
threads[id].state = RUNNING
cpus[CPU].thread = id

release(t_lock)

problem: wait() holds t_lock
6.033 | spring 2018 | Katrina LaCurts

14

http:threads[id].sp
http:threads[id].sp

yield_wait(): // called by wait()

id = cpus[CPU].thread
threads[id].state = RUNNABLE
threads[id].sp = SP
threads[id].ptr = PTR

do:
id = (id + 1) mod N

while threads[id].state != RUNNABLE

SP = threads[id].sp
PTR = threads[id].ptr
threads[id].state = RUNNING
cpus[CPU].thread = id

problem: current thread’s state shouldn’t be RUNNABLE

6.033 | spring 2018 | Katrina LaCurts
15

http:threads[id].sp
http:threads[id].sp

yield_wait(): // called by wait()

id = cpus[CPU].thread
threads[id].sp = SP
threads[id].ptr = PTR

do:
id = (id + 1) mod N

while threads[id].state != RUNNABLE

SP = threads[id].sp
PTR = threads[id].ptr
threads[id].state = RUNNING
cpus[CPU].thread = id

problem: deadlock (wait() holds t_lock)

6.033 | spring 2018 | Katrina LaCurts
16

http:threads[id].sp
http:threads[id].sp

yield_wait(): // called by wait()

id = cpus[CPU].thread
threads[id].sp = SP
threads[id].ptr = PTR

do:
id = (id + 1) mod N
release(t_lock)
acquire(t_lock)

while threads[id].state != RUNNABLE

SP = threads[id].sp
PTR = threads[id].ptr
threads[id].state = RUNNING
cpus[CPU].thread = id

problem: stack corruption

6.033 | spring 2018 | Katrina LaCurts
17

http:threads[id].sp
http:threads[id].sp

yield_wait(): // called by wait()

id = cpus[CPU].thread
threads[id].sp = SP
threads[id].ptr = PTR
SP = cpus[CPU].stack

do:
id = (id + 1) mod N
release(t_lock)
acquire(t_lock)

while threads[id].state != RUNNABLE

SP = threads[id].sp
PTR = threads[id].ptr
threads[id].state = RUNNING
cpus[CPU].thread = id

6.033 | spring 2018 | Katrina LaCurts
18

http:threads[id].sp
http:threads[id].sp

preemption: forcibly interrupt threads

timer_interrupt():
push PC
push registers
yield()
pop registers
pop PC

problem: what if timer interrupt occurs while running
yield() or yield_wait()?

6.033 | spring 2018 | Katrina LaCurts
19

preemption: forcibly interrupt threads

timer_interrupt():
push PC
push registers
yield()
pop registers
pop PC

solution: hardware mechanism to disable interrupts

6.033 | spring 2018 | Katrina LaCurts
20

• Threads virtualize a processor so that we can share it
among programs. yield() allows the kernel to suspend
the current thread and resume another.

• Condition Variables provide a more efficient API for
threads, where they wait for an event and are notified
when it occurs. wait() requires a new version of yield(),
yield_wait().

• Preemption forces a thread to be interrupted so that we
don’t have to rely on programmers correctly using yield().
Requires a special interrupt and hardware support to
disable other interrupts.

6.033 | spring 2018 | Katrina LaCurts
21

operating systems enforce modularity
on a single machine using virtualization

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory

2. programs should be able to
communicate

3. programs should be able to share a
CPU without one program halting the
progress of the others

virtual memory

bounded buffers
(virtualize communication links)

threads
(virtualize processors)

6.033 | spring 2018 | Katrina LaCurts
22

MIT OpenCourseWare
https://ocw.mit.edu

6.033 Computer System Engineering
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

23

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	cover_h.pdf
	Blank Page

