6.033 Spring 2018
Lecture #5

. Threads
. Condition Variables
- Preemption

operating systems enforce modularity
on a single machine using

in order to enforce modularity + build an effective operating system

1.

programs shouldn’t be able to refer to
(and corrupt) each others’ memory > virtual memory

programs should be able to

_ > bounded buffers
communicate

(virtualize communication links)

programs should be able to share a assume one program

CPU without one program halting the e per CPU
progress of the others

operating systems enforce modularity
on a single machine using

in order to enforce modularity + build an effective operating system

1.

programs shouldn’t be able to refer to
(and corrupt) each others’ memory > virtual memory

2. programs. should be able to - bounded buffers

communicate (virtualize communication links)
3. programs should be able to share a

CPU without one program halting the m—- il

orogress of the others (virtualize processors)
today’s goal: use to allow multiple programs to share a

CPU

thread: a virtual processor

thread API.
suspend(): save state of current thread
O memory
restore state from
resume():

memory

send(bb, message):
acquire(bb.lock)
while .1n - .out == N:
release(bb.lock)
acquire(bb.lock)
buf[bb.in mod N] <- message
.1n <- .in + 1
release(bb.lock)
return

http:bb.buf[bb.in

send(bb, message):
acquire(bb.lock)

while .1n - .out ==
release(bb.lock)
yield()

acquire(bb.lock)
.buf[bb.in mod N] <- message
.1n <- .in + 1
release(bb.lock)
return

http:bb.buf[bb.in

yield():
acquire(t lock)

id = cpus[CPU].thread
'id].state = RUNNABLE

'id].sp = SP

id].ptr = PTR

do:
id = (id + 1) mod N
while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id

release(t lock)

—

Suspend
current thread

Choose new
thread

Resume new
thread

http:threads[id].sp
http:threads[id].sp

send(bb, message):
acquire(bb.lock)

while .1n - .out ==
release(bb.lock)
yield()

acquire(bb.lock)
.buf[bb.in mod N] <- message
.1n <- .in + 1
release(bb.lock)
return

http:bb.buf[bb.in

condition variables: let threads walit for
events, and get notified when they occur

condition variable API:

wait(cv): Vield processor and wait to
be notified of cv

notify(cv): notify waiting threads of cv

send(bb, message):
acquire(bb.lock)
while .in - .out ==
release(bb.lock)

wait(bb.not full)
acquire(bb.lock)
.buf[bb.in mod N] <- message

.1n <- .in + 1
r‘elease(. lOCk) (threads in receive() will
. wait on bb.not_empty and
nOtl-Fy() nOt—empty) notify of bb.not_full)
return

problem: |ost notity

http:bb.buf[bb.in

condition variable API:

wait(cv,lock) : yield processor, release
lock, wait to be notitied
of cv

notify(cv): notify waiting threads of cv

send(bb, message):

acquire(bb.lock)

while .1n - .out == N:
wait(bb.not full, .lock)
buf[bb.in mod N] <- message
.1n <- .in + 1

release(bb.lock)

notify(bb.not empty)

return

http:bb.buf[bb.in

wait(cv, lock):

acquire(t lock)

release(lock)

id = cpus[CPU].thread
id].cv = cv
1d].state = WAITING
yield wait() ———
release(t lock)
acquire(lock)

will be different
than yield()

notify(cv):
acquire(t lock)
for 1id = © to N-1:
if [id].cv == cv &&
[id].state == WAITING:
[id].state = RUNNABLE

release(t lock)

http:threads[id].cv
http:threads[id].cv

yield wait(): // called by wait()
acquire(t lock)

id = cpus[CPU].thread
id].state = RUNNABLE
(id].sp = SP

id].ptr = PTR

do:
id = (id + 1) mod N
while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id

release(t lock)

problem: wait() holds t lock

http:threads[id].sp
http:threads[id].sp

yield wait(): // called by wait()

id = cpus[CPU].thread
'id].state = RUNNABLE

(id].sp = SP

id].ptr = PTR

do:
id = (id + 1) mod N
while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id

problem: current thread’s state shouldn’t be

SRUNNA

3L

http:threads[id].sp
http:threads[id].sp

yield wait(): // called by wait()

id = cpus[CPU].thread
[id].sp = SP
[id].ptr = PTR

do:
id = (id + 1) mod N
while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id

problem: deadlock (wait() holds t lock)

http:threads[id].sp
http:threads[id].sp

yield wait(): // called by wait()

id = cpus[CPU].thread
[id].sp = SP
[id].ptr = PTR

do:
id = (id + 1) mod N
release(t lock)
acquire(t lock)

while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id

problem: stack corruption

http:threads[id].sp
http:threads[id].sp

yield wait(): // called by wait()

id = cpus[CPU].thread
[id].sp = SP
[id].ptr = PTR

SP cpus[CPU].stack

do:
id = (id + 1) mod N
release(t lock)
acquire(t lock)

while [id].state != RUNNABLE
SP = [id].sp
PTR = [id].ptr

[id].state = RUNNING
cpus[CPU].thread = id

http:threads[id].sp
http:threads[id].sp

preemption: forcibly interrupt threads

timer interrupt():
push PC
push registers
yield()
pop registers
pop PC

problem: what if timer interrupt occurs while running
yield() oryield wait()?

preemption: forcibly interrupt threads

timer interrupt():
push PC
push registers
yield()
pop registers
pop PC

solution: hardware mechanism to disable interrupts

Threads virtualize a processor so that we can share it
among programs. yield() allows the kernel to suspena

the current thread and resume another.

Condition Variables provide a more efticient API for
threads, where they wait for an event and are notified

when it occurs. wait() requires a new version of yield(),
vield_wait().

Preemption forces a thread to be interrupted so that we

don’t have to rely on programmers correctly using yield().
Requires a special interrupt and hardware support to

disable other interrupts.

operating systems enforce modularity
on a single machine using

in order to enforce modularity + build an effective operating system

1. programs shouldn’t be able to refer to
(and corrupt) each others’ memory > virtual memory

2. programs should be able to

_ > bounded buffers
communicate

(virtualize communication links)

3. programs should be able to share a

CPU without one program halting the - | tllhreads
orogress of the others (virtualize processors)

22

MIT OpenCourseWare
https://ocw.mit.edu

6.033 Computer System Engineering
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

23

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	cover_h.pdf
	Blank Page

