
6.033 Spring 2018
Lecture #11

• Reliable Transport
• Window-based Congestion Control

6.033 | spring 2018 | Katrina LaCurts 1

How do we route (and address)
scalably, while dealing with

issues of policy and economy?

How do we transport data
scalably, while dealing with

varying application demands?

How do we adapt new
applications and technologies
to an inflexible architecture?

Internet of Problems

BGP

TCP

6.033 | spring 2018 | Katrina LaCurts 2

Reliable Transport

Sending
Application

Receiving
Application

unreliable networkReliable
Sender

Reliable
Receiver

each byte of data is
delivered exactly
once and in-order

6.033 | spring 2018 3

sender receiver

ti
me
ou
t

1

2
3
4
5

6

8
9
10

11
7

7

X

1
2
3
4
5

6

6
6
6

6
11

W
=
5

6.033 | spring 2018 4

sender receiver

ti
me
ou
t

1

2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

8
9
10

11
11

W
=
5

7

X
7

notice that (in this
example) the timeout

expired before the
sender got an ACK

indicating that 7 had
been received

6.033 | spring 2018 5

sender receiver

ti
me
ou
t

1

2
3
4
5

6

8
9
10

11
7

1
2
3
4
5

6

W
=
5

7

7
8
9
10

6.033 | spring 2018 6

question: what is the correct value for W?

too small → underutilized network
too large → congestion

6.033 | spring 2018 | Katrina LaCurts 7

question: how can a single reliable sender, using a
sliding-window protocol, set its window size to maximize
utilization — but prevent congestion and unfairness —
given that there are many other end points using the

network, all with different, changing demands?

6.033 | spring 2018 | Katrina LaCurts 8

AIMD

6.033 | spring 2018 | Katrina LaCurts 9

R1
(S

1’s
 s

en
di

ng
 ra

te
)

R2
(S2’s sending rate)

efficiency
(utilization)

R1 + R2 = B

B

B

under-utilization

congestion

the network is fully utilized
when the bottleneck link is “full”

6.033 | spring 2018 | Katrina LaCurts 10

R1
(S

1’s
 s

en
di

ng
 ra

te
)

R2
(S2’s sending rate)

efficiency
(utilization)

R1 + R2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
=
R2

S1 is
se

nding m
ore

than
 S2

S2 is
se

nding m
ore

than
 S1

6.033 | spring 2018 | Katrina LaCurts 11

R1
(S

1’s
 s

en
di

ng
 ra

te
)

R2
(S2’s sending rate)

efficiency
(utilization)

R1 + R2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
=
R2

6.033 | spring 2018 | Katrina LaCurts 12

efficiency
(utilization)

R1 + R2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
=
R2

R1
(S

1’s
 s

en
di

ng
 ra

te
)

R2
(S2’s sending rate)

6.033 | spring 2018 13

efficiency
(utilization)

R1 + R2 = B

B

B

the network is fully utilized
when the bottleneck link is “full”

fairness
the network is fair when S1 and
S2 are sending at the same rate

R1
=
R2

eventually, R1 and R2 will come to oscillate around the fixed point

R1
(S

1’s
 s

en
di

ng
 ra

te
)

R2
(S2’s sending rate)

6.033 | spring 2018 14

AIMD + Slow Start

6.033 | spring 2018 | Katrina LaCurts 15

something has
happened to

packet 7

sender receiver

ti
me
ou
t

1

2
3
4
5

6

8
9
10

11
7

7

X

1
2
3
4
5

6

6
6
6

6
11

W
=
5

6.033 | spring 2018 16

sender receiver

in practice, if a single packet is lost, the three “dup”
ACKs will be received before the RTO for that packet

expires

6.033 | spring 2018 | Katrina LaCurts 17

AIMD + Slow Start

retransmission due
to timeout

6.033 | spring 2018 | Katrina LaCurts 18

• TCP provides reliable transport along with congestion
control: senders increase their window additively until
they experience loss, and then back off multiplicatively.
Senders also use slow-start and fast-retransmit/fast-
recovery to quickly increase the window and recover from
loss.

• TCP has been a massive success, but senders don’t
react to congestion until queues are already full. Is
there a better way?

6.033 | spring 2018 | Katrina LaCurts 19

MIT OpenCourseWare
https://ocw.mit.edu

�.�����ompute����stem����i�ee�i��
Spring 201�

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

20

