

6.033 Spring 2018
Lecture #17

• Isolation
• Conflict serializability
• Conflict graphs
• Two-phase locking

6.033 | spring 2018 | Katrina LaCurts
1

goal: build reliable systems from unreliable components
the abstraction that makes that easier is

transactions, which provide atomicity and
isolation, while not hindering performance

shadow copies (simple, poor
performance) or logs (better atomicity

performance, a bit more complex)

?isolation

eventually, we also want transaction-based systems to
be distributed: to run across multiple machines

6.033 | spring 2018 | Katrina LaCurts
2

goal: build reliable systems from unreliable components
the abstraction that makes that easier is

transactions, which provide atomicity and
isolation, while not hindering performance

shadow copies (simple, poor
performance) or logs (better atomicity

performance, a bit more complex)

two-phase locking isolation

eventually, we also want transaction-based systems to
be distributed: to run across multiple machines

6.033 | spring 2018 | Katrina LaCurts
3

goal: run transactions T1, T2, .., TN concurrently, and
have it “appear” as if they ran sequentially

T1 T2
begin begin
read(x) write(x, 20)
tmp = read(y) write(y, 30)
write(y, tmp+10) commit
commit

naive approach: actually run them sequentially, via
(perhaps) a single global lock

6.033 | spring 2018 | Katrina LaCurts
4

goal: run transactions T1, T2, .., TN concurrently, and
have it “appear” as if they ran sequentially

what does this even mean?

T1 T2
begin begin
read(x) write(x, 20)
tmp = read(y) write(y, 30)
write(y, tmp+10) commit
commit

6.033 | spring 2018 | Katrina LaCurts
5

T1 T2
begin begin
read(x) write(x, 20)
tmp = read(y) write(y, 30)
write(y, tmp+10) commit
commit

T2: write(x, 20)
T1: read(x)
T2: write(y, 30)
T1: tmp = read(y)
T1: write(y, tmp+10)
at end:
x=20, y=40

possible sequential schedules

T1 -> T2: x=20, y=30
T2 -> T1: x=20, y=40

T1: read(x)
T2: write(x, 20)
T1: tmp = read(y)
T2: write(y, 30)
T1: write(y, tmp+10)
at end:
x=20, y=10
(assume x, y initialized to zero)

6.033 | spring 2018 | Katrina LaCurts
6

T1 T2
begin begin
read(x) write(x, 20)
tmp = read(y) write(y, 30)
write(y, tmp+10) commit
commit

T2: write(x, 20)
T1: read(x)
T2: write(y, 30)
T1: tmp = read(y)
T1: write(y, tmp+10)
at end:
x=20, y=40

possible sequential schedules

T1 -> T2: x=20, y=30
T2 -> T1: x=20, y=40

T1: read(x)
T2: write(x, 20)
T2: write(y, 30)
T1: tmp = read(y)
T1: write(y, tmp+10)
at end:
x=20, y=40

6.033 | spring 2018 | Katrina LaCurts
7

T1 T2
begin begin possible sequential schedules
read(x) write(x, 20) T1 -> T2: x=20, y=30
tmp = read(y) write(y, 30) T2 -> T1: x=20, y=40
write(y, tmp+10) commit
commit

T2: write(x, 20) T1: read(x) // x=0
T1: read(x) T2: write(x, 20)
T2: write(y, 30) T2: write(y, 30)
T1: tmp = read(y) T1: tmp = read(y) // y=30
T1: write(y, tmp+10) T1: write(y, tmp+10)

at end: at end:
x=20, y=40 x=20, y=40

In the second schedule, T1 reads x=0 and y=30; those two
reads together aren’t possible in a sequential schedule.

is that okay?
6.033 | spring 2018 | Katrina LaCurts

8

it depends.
there are many ways for multiple transactions to
“appear” to have been run in sequence; we say

there are different notions of serializability. what
type of serializability you want depends on what your

application needs.

6.033 | spring 2018 | Katrina LaCurts
9

conflicts

two operations conflict if they operate on the same
object and at least one of them is a write.

T1 T2
begin begin
T1.1 read(x) T2.1 write(x, 20)
T1.2 tmp = read(y) T2.2 write(y, 30)
T1.3 write(y, tmp+10) commit
commit

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, and T2.2 write(y, 30)
tmp+10)

6.033 | spring 2018 | Katrina LaCurts
10

conflicts

two operations conflict if they operate on the same
object and at least one of them is a write.

in any schedule, two conflicting operations A and B will
have an order: either A is executed before B, or B is

executed before A. we’ll call this the order of the conflict
(in that schedule).

6.033 | spring 2018 | Katrina LaCurts
11

T1 T2
begin begin
T1.1 read(x) T2.1 write(x, 20)
T1.2 tmp = read(y) T2.2 write(y, 30)
T1.3 write(y, tmp+10) commit
commit

conflicts

T1.1 read(x) and T2.1 write(x, 20)
T1.2 tmp = read(y) and T2.2 write(y, 30)

T1.3 write(y, and T2.2 write(y, 30)
tmp+10)

6.033 | spring 2018 | Katrina LaCurts
12

T1 T2
begin begin
T1.1 read(x) T2.1 write(x, 20)
T1.2 tmp = read(y) T2.2 write(y, 30)
T1.3 write(y, tmp+10) commit
commit

conflicts

T1.1 read(x) -> T2.1 write(x, 20)
T1.2 tmp = read(y) -> T2.2 write(y, 30)

T1.3 write(y, -> T2.2 write(y, 30)
tmp+10)

if we execute T1 before T2, within any conflict, T1’s
operation will occur first

6.033 | spring 2018 | Katrina LaCurts
13

T1 T2
begin begin
T1.1 read(x) T2.1 write(x, 20)
T1.2 tmp = read(y) T2.2 write(y, 30)
T1.3 write(y, tmp+10) commit
commit

conflicts

T1.1 read(x) <- T2.1 write(x, 20)
T1.2 tmp = read(y) <- T2.2 write(y, 30)

T1.3 write(y, <- T2.2 write(y, 30)
tmp+10)

if we execute T2 before T1, within any conflict, T2’s
operation will occur first

6.033 | spring 2018 | Katrina LaCurts
14

conflicts
two operations conflict if they operate on the same

object and at least one of them is a write.

conflict serializability

a schedule is conflict serializable if the order of all of its
conflicts is the same as the order of the conflicts in some

sequential schedule.

6.033 | spring 2018 | Katrina LaCurts
15

conflicts a schedule is conflict serializable if the order of all of
its conflicts is the same as the order of the conflicts in

T1.1, T2.1 some sequential schedule.
T1.2, T2.2

(here, that means we will see one transaction’s — T1’s or T2’s —T1.3, T2.2 operation occurring first in each conflict)

T2.1: write(x, 20) T1.1: read(x)
T1.1: read(x) T2.1: write(x, 20)
T2.2: write(y, 30) T2.2: write(y, 30)
T1.2: tmp = read(y) T1.2: tmp = read(y)
T1.3: write(y, tmp+10) T1.3: write(y, tmp+10)

T2.1 -> T1.1 T1.1 -> T2.1
T2.2 -> T1.2 T2.2 -> T1.2
T2.2 -> T1.3 T2.2 -> T1.3

6.033 | spring 2018 | Katrina LaCurts
16

conflict graph
edge from Ti to Tj iff Ti and Tj have a conflict between

them and the first step in the conflict occurs in Ti

T2: write(x, 20)
T1: read(x)
T2: write(y, 30)
T1: tmp = read(y)
T1: write(y, tmp+10)

T2.1 -> T1.1
T2.2 -> T1.2
T2.2 -> T1.3

T1: read(x)
T2: write(x, 20)
T2: write(y, 30)
T1: tmp = read(y)
T1: write(y, tmp+10)

T1.1 -> T2.1
T2.2 -> T1.2
T2.2 -> T1.3

6.033 | spring 2018 | Katrina LaCurts
17

conflict graph
edge from Ti to Tj iff Ti and Tj have a conflict between

them and the first step in the conflict occurs in Ti

T2: write(x, 20) T1: read(x)
T1: read(x) T2: write(x, 20)
T2: write(y, 30) T2: write(y, 30)
T1: tmp = read(y) T1: tmp = read(y)
T1: write(y, tmp+10) T1: write(y, tmp+10)

T2 T1 T2 T1

a schedule is conflict serializable iff it has an acyclic
conflict graph

6.033 | spring 2018 | Katrina LaCurts
18

problem: how do we generate schedules that are
conflict serializable? generate all possible
schedules and check their conflict graphs?

6.033 | spring 2018 | Katrina LaCurts
19

solution: two-phase locking (2PL)

1. each shared variable has a lock

2. before any operation on a variable,
the transaction must acquire the
corresponding lock

3. after a transaction releases a lock,
it may not acquire any other locks

we will usually release locks after commit or abort,
which is technically strict two-phase locking

6.033 | spring 2018 | Katrina LaCurts
20

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1
x1

T2
x2

T3
x3

…
xk-1

Tk
to cause the conflict, each pair of

conflicting transactions must have some
shared variable that they conflict on

xk

T1 acquires
T2 acquires

x1.lock
x1.lock

in the schedule, each pair of transactions
needs to acquire a lock on their shared

variable

T2 acquires
T3 acquires

x2.lock
x2.lock in order for the schedule to progress,

T1 must have released its lock on x1
… before T2 acquired it

Tk acquires xk.lock
T1 acquires xk.lock

6.033 | spring 2018 | Katrina LaCurts
21

2PL produces a conflict-serializable schedule
(equivalently, 2PL produces a conflict graph without a cycle)

proof: suppose not. then a cycle exists in the conflict graph

T1
x1

T2
x2

T3
x3

…
xk-1

Tk
to cause the conflict, each pair of

conflicting transactions must have some
shared variable that they conflict on

xk

T1 acquires
T1 releases
T2 acquires

T2 acquires
T3 acquires

x1.lock
x1.lock
x1.lock

x2.lock
x2.lock

in the schedule, each pair of transactions
needs to acquire a lock on their shared

variable

in order for the schedule to progress,
T1 must have released its lock on x1

before T2 acquired it
…

Tk acquires
T1 acquires

xk.lock
xk.lock

contradiction: this is not a valid 2PL
schedule

6.033 | spring 2018 | Katrina LaCurts
22

T1
acquire(x.lock)
read(x)
acquire(y.lock)
read(y)
release(y.lock)
release(x.lock)

T2
acquire(y.lock)
read(y)
acquire(x.lock)
read(x)
release(x.lock)
release(y.lock)

problem: 2PL can result in deadlock

6.033 | spring 2018 | Katrina LaCurts
23

T1
acquire(x.lock)
read(x)
acquire(y.lock)
read(y)
release(y.lock)
release(x.lock)

“solution”: global

T2
acquire(y.lock)
read(y)
acquire(x.lock)
read(x)
release(x.lock)
release(y.lock)

ordering on locks

6.033 | spring 2018 | Katrina LaCurts
24

T1
acquire(x.lock)
read(x)
acquire(y.lock)
read(y)
release(y.lock)
release(x.lock)

T2
acquire(y.lock)
read(y)
acquire(x.lock)
read(x)
release(x.lock)
release(y.lock)

better solution: take advantage of
atomicity and abort one of the transactions!

6.033 | spring 2018 | Katrina LaCurts
25

performance improvement: allow concurrent
reads with reader- and writer-locks

T1 T2
acquire(x.reader_lock) acquire(x.reader_lock)
read(x) read(x)
acquire(y.writer_lock) acquire(y.writer_lock)
write(y) write(y)
release(y.writer_lock) release(y.writer_lock)
release(x.reader_lock) release(x.reader_lock)

multiple transactions can hold reader locks for the same variable
at once. a transaction can only hold a writer lock for a variable if

there are no other locks held for that variable

6.033 | spring 2018 | Katrina LaCurts
26

• Different types of serializability allow us to specify
precisely what we want when we run transactions in
parallel. Conflict-serializability is common in practice.

• Two-phase locking allows us to generate conflict
serializable schedules. We can improve its performance
by allowing concurrent reads via reader- and writer-locks.

6.033 | spring 2018 | Katrina LaCurts
27

MIT OpenCourseWare
https://ocw.mit.edu

6.033 Computer System Engineering
Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

28

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	cover_h.pdf
	Blank Page

