

Midterm 2 Solutions — Spring 10 1

6.01 Midterm 2: Spring 2010
Name: Section:

Solutions: Not correct for the make-up exam.
Enter all answers in the boxes provided.
During the exam you may:

read any paper that you want to •

use a calculator •

You may not

use a computer, phone or music player •

For staff use:

1. /16

2. /16

3. /8

4. /25

5. /5

6. /8

7. /12

8. /10

total: /100

1

Midterm 2 Solutions — Spring 10 2

Pole Position (16 points)
The polar plot shows the dominant pole for several systems. Match each pole to the unit sample
response of the system.

�1.5 �1.0 �0.5 0.5 1.0 1.5

�1.5

�1.0

�0.5

0.5

1.0

1.5

1

8 7 65

4

3 2

10 20 30 40

-500 000

500 000

1.0 ´ 106

1.5 ´ 106

2.0 ´ 106

10 20 30 40

20

40

60

80

10 20 30 40

0.5

1.0

1.5

2.0

A = 1 B = 6 C = 7

10 20 30 40

-1.0

-0.5

0.5

1.0

1.5

2.0

10 20 30 40

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

10 20 30 40

0.5

1.0

1.5

2.0

D = 8 E = 3 F = 5

10 20 30 40

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

10 20 30 40

-0.5

0.5

1.0

1.5

2.0

G = 2 H = 4

2.2

2.3

2.4

Midterm 2 Solutions — Spring 10 3

2 What’s the difference? (16 points)
Assuming the voltage at node N0 = 0, compute the voltage at node N1 in each of these circuits.

2.1

R+_ +_ +_R R

R

V V V

N1

N0

V/2

R R R

RI

N1

N0

IR

R R R

RII I

N1

N0

3IR

R+_ +_ +_R R

R

V V V

N1

N0

3V/4

Midterm 2 Solutions — Spring 10 4

Scratch Paper

Midterm 2 Solutions — Spring 10 5

3 Op Amps (8 points)
For each of the following circuits, give the output voltage V0 as a function of the input voltage
sources, input current sources, and resistances. Assume the op-amps are ideal.

3.1

V1
-
+

+_

+_V3

V0

+_

V2

R

R

R

R

3.2

-
+

R1

R2

I

V0

V1 − V2

0

4

Midterm 2 Solutions — Spring 10 6

Motor control (25 points)
WhizzyLand engineers Kim, Pat, Jody, Chris, and Jamie are trying to design a controller for a
display of three dancing robotic mice, using a 10V power supply and three motors. The first is
supposed to spin as fast as possible (in one direction only), the second at half of the speed of the
first, and the third at half of the speed of the second.

Each engineer has come up with a design, as shown below. Assume the motors have a resistance
of approximately 5Ω and that rotational speed is proportional to voltage. For each design, indi
cate the voltage across each of the motors. Your answer only needs to be within 0.5V of the correct
answer.

4.1 Jody

M+ M-
motor

M+ M-
motor

M+ M-
motor

+10V

1KΩ

1KΩ 1KΩ

1KΩ

10

0.05

0

Midterm 2 Solutions — Spring 10 7

4.2 Chris

M+ M-
motor

M+ M-
motor

M+ M-
motor

+10V

100Ω

100Ω 100KΩ

100KΩ

10

0.45

0

4.3 Pat

M+ M-
motor

M+ M-
motor

M+ M-
motor

-
+

-
+

+10V

1KΩ

1KΩ 1KΩ

1KΩ

10

4

2

Midterm 2 Solutions — Spring 10 8

4.4 Kim

M+ M-
motor

M+ M-
motor

M+ M-
motor

-
+

-
+

+10V

100Ω

100Ω 100KΩ

100KΩ

10

5

2.5

4.5 Jamie

M+ M-
motor

M+ M-
motor

M+ M-
motor-

+

+10V

1KΩ

1KΩ 1KΩ

1KΩ

-
+

10

5

2.5

Midterm 2 Solutions — Spring 10 9

Scratch Paper

Midterm 2 Solutions — Spring 10 10

5 Composition (5 points)

—

n2
d2

n1
d1

n3
d3

+

Write an expression for the system function for this whole system, in terms of n1, d1, n2, d2, n3, d3,
which are the numerator and denominator polynomials of the system function for each of the
component systems.

d3n1n2

d1d2d3 + n1n2n3

Midterm 2 Solutions — Spring 10 11

6 OOP (6 points)
If a procedure has no side effects but may be used multiple times, then a convenient concept
for efficiency is called memoization – we keep track of whether the procedure has previously
been called with a particular argument, and the value computed at that time. If it has already
been computed, we just return the saved value, otherwise we do the computation, store away the
value for future use, and return the value.

Here is an object oriented approach for memoization, with one piece missing. We assume that
proc, the procedure to be “memoized”, has a single argument.

class Memo:
def __init__(self, proc):

self.proc = proc

self.history = {}

def val(self,arg):
if arg in self.history:

print ’found’, arg, ’in history’

return self.history[arg]

else:

YOUR ANSWER HERE

An example usage would be

>>> def sq(x): return x*x

>>> test = Memo(sq)

>>> test.val(2)

4

>>> test.val(3)

9

>>> test.val(3)

found 3 in history

9

>>> test.val(8)

64

>>> test.val(5)

25

>>> test.history

{8: 64, 2: 4, 3: 9, 5: 25}

6.2

Midterm 2 Solutions — Spring 10 12

6.1
Complete the definition of this class, by supplying the code for the else part of the val method.
Make sure that you do not execute the procedure more than once for any given argument.

self.history[arg] = self.proc(arg)
return self.history[arg]

The approach above works with any procedure of one argument that does not have side-effects.
However, if we know that the procedure has some additional structure, we can be even more
efficient. Assume we know that our procedure takes a single number as an argument and that the
procedure is even, that is, proc(arg) == proc(-arg). Examples of even procedures are abs,
math.cos and sq as defined above.

Write a definition for the MemoEven class. Your solution must use inheritance, and ensure that
there is a val method defined. Do not change the definition of Memo or repeat any of the code it
contains.

class MemoEven(Memo):
def val(self, arg):

return Memo.val(self, abs(arg))

Midterm 2 Solutions — Spring 10 13

7 Red vs Blue (12 points)
Let’s build a voting tabulator for the national elections (except that we’re going to assume that
there are only 4 states). The definitions below initialize the instance and allow us to enter votes,
by state, for each candidate.

We’re going to keep the votes data in the dictionary stateVotes. There is an entry in
stateVotes for each state. The value stored for a state is itself a dictionary that stores the votes
from that state for each candidate. A simple example, for two states (’MA’ and ’TX’) and two
candidates, ’O’ and ’M’, would be:

{’MA’: {’O’:100, ’M’:50}, ’TX’: {’O’:50, ’M’:100}}

class Votes:
def __init__(self):

self.states = [’MA’, ’TX’, ’CA’, ’FL’]

self.candidates = [’O’, ’M’, ’N’]

self.stateVotes = {}

def addVotes(self, cand, votes, state):

if not state in self.stateVotes:

self.stateVotes[state] = {cand : votes}

else:

if not cand in self.stateVotes[state]:

self.stateVotes[state][cand] = votes

else:

self.stateVotes[state][cand] += votes

7.1

Write a method for the Votes class, called popularVotesTotal, that computes the total number
of votes for a candidate, across all states.

Use a list comprehension, not a for loop.•

• Use the Python sum procedure, which takes a list of numbers as input and returns the sum.

def popularVotesTotal(self, cand):
return sum([self.stateVotes[state][cand] for state in self.states])

7.3

Midterm 2 Solutions — Spring 10 14

7.2

Write a method for the Votes class, called stateWinner, that computes the winner for a state,
that is, the candidate with the most votes in that state.

Use the procedure argmaxDict(d), which is called with a dictionary d and returns the key in d
whose associated value is highest.

def stateWinner(self, state):
return argmaxDict(self.stateVotes[state])

Write a method for the Votes class, called statesWon, that takes a candidate as an argument
and returns a list of the states that candidate won. Use the stateWinner method you just imple
mented.

def statesWon(self, cand):
return [state for state in self.states if self.stateWinner(state) == cand]

7.4

Midterm 2 Solutions — Spring 10 15

Write a method for the Votes class, called winnerOfMostStates, that returns the candidate that
won the most states. Use the statesWon method you just implemented. For full credit, use
util.argmax.

If l is a list of items and f is a procedure that maps an item into a numeric score, then
util.argmax(l, f) returns the element of l that has the highest score.

def winnerOfMostStates(self):
return util.argmax(self.candidates,

lambda cand: len(self.statesWon(cand)))

8

Midterm 2 Solutions — Spring 10 16

Balanced Machine (10 points)
Write a state machine that counts the depth of nesting of parens in a string. It takes a character
from the string as input and outputs an integer, indicating how many unmatched open parens
there are (on or) before this character or None if the parens are unbalanced. Note that once the
parens become unbalanced, all future outputs will be None. Here are some examples:

>>> bp = BalancedParens()

>>> bp.transduce(’(ab (c (d (e)) f))’)

[1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 2, 2, 2, 1, 0]

>>> bp.transduce(’(()) ((())) ()()()’)

[1, 2, 1, 0, 0, 0, 1, 2, 3, 2, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0]

>>> bp.transduce(’(())) ()()()’)

[1, 2, 1, 0, None, None, None, None, None, None, None, None, None]

Your state machine should be a subclass of sm.SM.

class BalancedParens(sm.SM):
startState = 0
def getNextValues(self, state, inp):

if state == None:
return (None, None)

elif inp == ’(’:
return (state+1, state+1)

elif inp == ’)’:
if state == 0:

return (None, None)
else:

return (state-1, state-1)
else:

return (state, state)

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

