Problem Wk.3.3.4: Representations

Derive the operator equation and difference equation for each of the LTI systems given by the block diagrams below.

A difference equation is in the form:
$y[n]=c_{0} y[n-1]+c_{1} y[n-2]+\ldots+c_{k-1} y[n-k]+d_{0} x[n]+d_{1} x[n-1]+\ldots+d_{j} x[n-j]$
To specify difference equations, enter sequences of coefficients for the y terms and a separate sequence of coefficients for the x terms. Do not enter any commas, just numbers separated by spaces. Specify the dcoeffs: $d_{0} \ldots d_{j}$ and the ccoeffs: $c_{0} \ldots c_{k-1}$ for each of the difference equations below. For each question, enter a sequence of numbers representing the coefficients.

If one set of coefficients is empty, enter none, otherwise enter a sequence of numbers separated by spaces (no commas, parens, brackets, etc).

Operator equation: The equation is expressed as:
$a_{0} y+a_{1} R y+a_{2} R^{2} y+\ldots=b_{0} x+b_{1} R x+\ldots$
The first entry in the sequence of $R y$ coefficients is for the constant term ($R^{0} y$), then for the $R y$ term ($R^{1} y$), then for the $R^{2} y$ term, and so on. Same for the $R x$ coefficients, start with the $R^{0} x$ term.

If one set of coefficients is empty, enter none, otherwise enter a sequence of numbers separated by spaces (no commas, parens, brackets, etc).
1.

Difference equation:

dCoeffs: \square cCoeffs:
Operator equation:
Rx coeffs: \square Ry coeffs: \qquad
2.

Difference equation:
dCoeffs (input):
cCoeffs (output): \qquad

Operator equation:
Rx coeffs:
Ry coeffs:

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

