6.01: Introduction to EECS I

Designing Control Systems

Signals and Systems

Multiple representations of systems, each with particular strengths. Difference equations are mathematically compact.

$$
y[n]=x[n]+p_{0} y[n-1]
$$

Block diagrams illustrate signal flow paths from input to output.

Operators use polynomials to represent signal flow compactly.

$$
Y=X+p_{0} \mathcal{R} Y
$$

System Functionals represent systems as operators.

$$
Y=H X ; \quad H=\frac{Y}{X}=\frac{1}{1-p_{0} \mathcal{R}}
$$

Designing a Control System

Today's goal: optimizing the design of a control system.

Midterm Examination \#1

Time:	Tonight, March 8, 7:30 PM to $9: 30$ PM
Location:	Walker Memorial (if last name starts with A-M)
	$10-250$ (if last name starts with N-Z)
Coverage:	Everything up to and including Design Lab 5.

You may refer to any printed materials that you bring to exam.
You may use a calculator.
You may not use a computer, phone, or music player.
No software lab this week.

Feedback, Cyclic Signal Paths, and Poles

The structure of feedback produces characteristic behaviors.
Feedback produces cyclic signal flow paths.

Cyclic signal flow paths \rightarrow persistent responses to transient inputs.

We can characterize persistent responses (called modes) with poles. $y[n]=p_{o}^{n} ; n \geq 0$

Example: wallFinder System

Using feedback to control position (lab 4) can lead to bad behaviors.

What causes these different types of responses ?
Is there a systematic way to optimize the gain k ?

Analysis of wallFinder System: Review

Response of system is concisely represented with difference equation.

$$
\begin{aligned}
\text { proportional controller: } & v[n]=k e[n]=k\left(d_{i}[n]-d_{s}[n]\right) \\
\text { Iocomotion: } & d_{o}[n]=d_{o}[n-1]-T v[n-1] \\
\text { sensor with no delay: } & d_{s}[n]=d_{o}[n]
\end{aligned}
$$

The difference equations provide a concise description of behavior.

$$
d_{o}[n]=d_{o}[n-1]-T v[n-1]=d_{o}[n-1]-T k\left(d_{i}[n-1]-d_{o}[n-1]\right)
$$

However it provides little insight into how to choose the gain k.

Analysis of wallFinder System: System Functions

Simplify block diagram with \mathcal{R} operator and system functions.
Start with accumulator.

What is the input/output relation for an accumulator?

$$
\begin{aligned}
& Y=\mathcal{R} W=\mathcal{R}(X+Y) \\
& \frac{Y}{X}=\frac{\mathcal{R}}{1-\mathcal{R}}
\end{aligned}
$$

This is an example of a recurring pattern: Black's equation.

Black's Equation

Black's equation has two common forms.

Difference: equivalent to changing sign of G.
Right form is useful in most control applications where the goal is to make Y converge to X.

Analysis of wallFinder System: Block Diagram

A block diagram for this system reveals two feedback paths.

proportional controller: $v[n]=k e[n]=k\left(d_{i}[n]-d_{s}[n]\right)$
locomotion: $d_{o}[n]=d_{o}[n-1]-T v[n-1]$
sensor with no delay: $d_{s}[n]=d_{o}[n]$

Check Yourself

$$
\text { Determine the system function } H=\frac{Y}{X}
$$

1. $\frac{F}{1-F G}$
2. $\frac{F}{1+F G}$
3. $F+\frac{1}{1-G}$
4. $F \times \frac{1}{1-G}$
5. none of the above

Analyzing wallFinder: System Functions

Simplify block diagram with \mathcal{R} operator and system functions.

Replace accumulator with equivalent block diagram.

Now apply Black's equation a second time:

$$
\frac{D_{o}}{D_{i}}=\frac{\frac{-k T \mathcal{R}}{1-\mathcal{R}}}{1+\frac{-k T \mathcal{R}}{1-\mathcal{R}}}=\frac{-k T \mathcal{R}}{1-\mathcal{R}-k T \mathcal{R}}=\frac{-k T \mathcal{R}}{1-(1+k T) \mathcal{R}}
$$

Analyzing wallFinder: System Functions

We can represent the entire system with a single system function.

Replace accumulator with equivalent block diagram.

Equivalent system with a single block:

$$
D_{i} \rightarrow \frac{-k T \mathcal{R}}{1-(1+k T) \mathcal{R}} \rightarrow D_{o}
$$

Modular! But we still need a way to choose k.

Analyzing wallFinder

We are often interested in the step response of a control system.

Start the output $d_{o}[n]$ at zero while the input is held constant at one.

Analyzing wallFinder

The step response of the wallFinder system is slow because the unit-sample response is slow.

Analyzing wallFinder: Poles

The system function contains a single pole at $z=1+k T$.

$$
\frac{D_{o}}{D_{i}}=\frac{-k T \mathcal{R}}{1-(1+k T) \mathcal{R}}
$$

The numerator is just a gain and a delay.
The whole system is equivalent to the following:

where $p_{o}=1+k T$. Here is the unit-sample response for $k T=-0.2$:

$$
0.2-\underbrace{h[n]}_{0} \text { 우 오 오 ○ ○ o... } n
$$

Step Response

Calculating the unit-step response.

Unit-step response $s[n]$ is response of H to the unit-step signal $u[n]$, which is constructed by accumulation of the unit-sample signal $\delta[n]$.

Commute and relabel signals.

The unit-step response $s[n]$ is equal to the accumulated responses to the unit-sample response $h[n]$.

Analyzing wallFinder

The step response is faster if $k T=-0.8$ (i.e., $p_{0}=0.2$).

Analyzing wallFinder: Poles

The poles of the system function provide insight for choosing k.

$$
\frac{D_{o}}{D_{i}}=\frac{-k T \mathcal{R}}{1-(1+k T) \mathcal{R}}=\frac{\left(1-p_{o}\right) \mathcal{R}}{1-p_{o} \mathcal{R}} ; \quad p_{0}=1+k T
$$

Analyzing wallFinder

The optimum gain k moves robot to desired position in one step.

$$
\begin{aligned}
& k T=-1 \\
& k=-\frac{1}{T}=-\frac{1}{1 / 10}=-10 \\
& v[n]=k\left(d_{i}[n]-d_{o}[n]\right)=-10(1-2)=10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

exactly the right speed to get there in one step!

Analysis of wallFinder System: Adding Sensory Delay

 Adding delay tends to destabilize control systems.

$$
\begin{aligned}
\text { proportional controller: } & v[n]=k e[n]=k\left(d_{i}[n]-d_{s}[n]\right) \\
\text { Iocomotion: } & d_{o}[n]=d_{o}[n-1]-T v[n-1] \\
\text { sensor with delay: } & d_{s}[n]=d_{o}[\mathbf{n}-\mathbf{1}]
\end{aligned}
$$

Check Yourself

Find $k T$ for fastest convergence of unit-sample response.

$$
\frac{D_{o}}{D_{i}}=\frac{-k T \mathcal{R}}{1-(1+k T) \mathcal{R}}
$$

1. $k T=-2$
2. $k T=-1$
3. $k T=0$
4. $k T=1$
5. $k T=2$

0 . none of the above

Analyzing wallFinder: Space-Time Diagram

The optimum gain k moves robot to desired position in one step.

Analysis of wallFinder System: Adding Sensory Delay
Adding delay tends to destabilize control systems.

Analysis of wallFinder System: Block Diagram

Incorporating sensor delay in block diagram.

proportional controller: $\quad v[n]=k e[n]=k\left(d_{i}[n]-d_{s}[n]\right)$
Iocomotion: $\quad d_{o}[n]=d_{o}[n-1]-T v[n-1]$
sensor with delay: $d_{s}[n]=d_{o}[n-1]$

Check Yourself

Find the system function $H=\frac{D_{o}}{D_{i}}$.

1. $\frac{k T \mathcal{R}}{1-\mathcal{R}}$
2. $\frac{-k T \mathcal{R}}{1+\mathcal{R}-k T \mathcal{R}^{2}}$
3. $\frac{k T \mathcal{R}}{1-\mathcal{R}}-k T \mathcal{R}$
4. $\frac{-k T \mathcal{R}}{1-\mathcal{R}-k T \mathcal{R}^{2}}$
5. none of the above

Poles

Poles can be identified by expanding the system functional in partial fractions.

$$
\frac{Y}{X}=\frac{b_{0}+b_{1} \mathcal{R}+b_{2} \mathcal{R}^{2}+b_{3} \mathcal{R}^{3}+\cdots}{1+a_{1} \mathcal{R}+a_{2} \mathcal{R}^{2}+a_{3} \mathcal{R}^{3}+\cdots}
$$

Factor denominator:

$$
\frac{Y}{X}=\frac{b_{0}+b_{1} \mathcal{R}+b_{2} \mathcal{R}^{2}+b_{3} \mathcal{R}^{3}+\cdots}{\left(1-p_{0} \mathcal{R}\right)\left(1-p_{1} \mathcal{R}\right)\left(1-p_{2} \mathcal{R}\right)\left(1-p_{3} \mathcal{R}\right) \cdots}
$$

Partial fractions:

$$
\frac{Y}{X}=\frac{e_{0}}{1-p_{0} \mathcal{R}}+\frac{e_{1}}{1-p_{1} \mathcal{R}}+\frac{e_{2}}{1-p_{2} \mathcal{R}}+\cdots+f_{0}+f_{1} \mathcal{R}+f_{2} \mathcal{R}^{2}+\cdots
$$

The poles are p_{i} for $0 \leq i<n$ where n is the order of the denominator. One geometric mode p_{i}^{n} arises from each factor of the denominator.

Analyzing wallFinder: System Functions

We can represent the entire system with a single system function.

Analyzing wallFinder: Poles

Substitute $\frac{1}{z}$ for \mathcal{R} in the system functional to find the poles.

The poles are then the roots of the denominator.

$$
z=\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}+k T}
$$

Feedback and Control: Poles

If $k T$ is small, the poles are at $z \approx-k T$ and $z \approx 1+k T$.

$$
z=\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}+k T}=\frac{1}{2}(1 \pm \sqrt{1+4 k T}) \approx \frac{1}{2}(1 \pm(1+2 k T))=1+k T,-k T
$$

Pole near 0 generates fast response.
Pole near 1 generates slow response.
Slow mode (pole near 1) dominates the response.

6.01: Introduction to EECS I

Feedback and Control: Poles

As $k T$ becomes more negative, the poles move toward each other and collide at $z=\frac{1}{2}$ when $k T=-\frac{1}{4}$.
$z=\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}+k T}=\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}-\frac{1}{4}}=\frac{1}{2}, \frac{1}{2}$

Persistent responses decay. The system is stable.

Same oscillation we saw earlier!

Adding delay tends to destabilize control systems.

Feedback and Control: Poles

The closed-loop poles depend on the gain.

If $k T: 0 \rightarrow-\infty$: then $z_{1}, z_{2}: 0,1 \rightarrow \frac{1}{2}, \frac{1}{2} \rightarrow \frac{1}{2} \pm j \infty$

Feedback and Control: Poles

If $k T<-1 / 4$, the poles are complex.

$$
z=\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}+k T}=\frac{1}{2} \pm j \sqrt{-k T-\left(\frac{1}{2}\right)^{2}}
$$

Complex poles \rightarrow oscillations.

Check Yourself

What is the period of the oscillation?

1. 1
2. 2
3. 3
4. 4
5. 6
6. none of above

Check Yourself

closed-loop poles

$$
\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^{2}+k T}
$$

Find $k T$ for fastest response.

1. 0
2. $-\frac{1}{4}$
3. $-\frac{1}{2}$
4. -1
5. $-\infty$
6. none of above

Destabilizing Effect of Delay

Adding delay in the feedback loop makes it more difficult to stabilize.
Ideal sensor: $d_{s}[n]=d_{o}[n]$
More realistic sensor (with delay): $d_{s}[n]=d_{o}[n-1]$

Fastest response without delay: single pole at $z=0$.
Fastest response with delay: double pole at $z=\frac{1}{2}$. much slower!

Check Yourself

How many of the following statements are true?

1. This system has 3 poles.
2. unit-sample response is the sum of 3 geometric sequences.
3. Unit-sample response is $y[n]: 0,0,0,1,0,0,1,0,0,1,0,0,1 \ldots$
4. Unit-sample response is $y[n]: 1,0,0,1,0,0,1,0,0,1,0,0,1 \ldots$
5. One of the poles is at $z=1$.

Destabilizing Effect of Delay

Adding more delay in the feedback loop is even worse.
More realistic sensor (with delay): $d_{s}[n]=d_{o}[n-1]$
Even more delay: $d_{s}[n]=d_{o}[n-2]$

Fastest response with delay: double pole at $z=\frac{1}{2}$.
Fastest response with more delay: double pole at $z=0.682$.
\rightarrow even slower

Designing Control Systems: Summary

System Functions provide a convenient summary of information that is important for designing control systems.

The long-term response of a system is determined by its dominant pole - i.e., the pole with the largest magnitude.

A system is unstable if the magnitude of its dominant pole is >1.
A system is stable if the magnitude of its dominant pole is <1.
Delays tend to decrease the stability of a feedback system.

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

