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6.01: Introduction to EECS I 

Designing Control Systems 

March 8, 2011 

Signals and Systems 

Multiple representations of systems, each with particular strengths. 

Difference equations are mathematically compact. 

y[n] = x[n] + p0 y[n− 1] 

Block diagrams illustrate signal flow paths from input to output. 

Delay 

+ 

p0 

X Y 

Operators use polynomials to represent signal flow compactly. 

Y = X + p0RY 
System Functionals represent systems as operators. 

Y = HX  ; H = 
Y 
X 

= 
1 

1− p0R 

Designing a Control System 

Today’s goal: optimizing the design of a control system. 

Midterm Examination #1 

Time: Tonight, March 8, 7:30 pm to 9:30 pm 

Location: Walker Memorial (if last name starts with A-M) 

10-250 (if last name starts with N-Z) 

Coverage: Everything up to and including Design Lab 5. 

You may refer to any printed materials that you bring to exam.


You may use a calculator.


You may not use a computer, phone, or music player.


No software lab this week.


Feedback, Cyclic Signal Paths, and Poles 

The structure of feedback produces characteristic behaviors. 

Feedback produces cyclic signal flow paths. 

Delay 

+X Y 

Cyclic signal flow paths → persistent responses to transient inputs. 

Delay 

+ 

p0 

X Y 

We can characterize persistent responses (called modes) with poles. 

−1  0  1 2 3  4 
n 

y[n] = pn 
o ; n ≥ 0 

Example: wallFinder System 

Using feedback to control position (lab 4) can lead to bad behaviors. 

di[n] =  desiredFront 
do[n] =  distanceFront 

t 

do 

k = −0.5 t 

do 

k = −1 

t 

do 

k = −2 t 

do 

k = −8 

What causes these different types of responses ? 

Is there a systematic way to optimize the gain k ? 
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Analysis of wallFinder System: Review Analysis of wallFinder System: Block Diagram 

Response of system is concisely represented with difference equation. A block diagram for this system reveals two feedback paths. 

di[n] =  desiredFront 
do[n] =  distanceFront 

di[n] =  desiredFront 
do[n] =  distanceFront 

proportional controller: 

locomotion: 

sensor with no delay: 

v[n] = ke[n] = k 
� 
di[n]− ds[n]

� 
do[n] = do[n − 1]− Tv[n − 1] 

ds[n] = do[n] 

proportional controller: 

locomotion: 

sensor with no delay: 

v[n] = ke[n] = k 
� 
di[n]− ds[n]

� 
do[n] = do[n − 1]− Tv[n − 1] 

ds[n] = do[n] 

The difference equations provide a concise description of behavior. 

do[n] = do[n − 1]− Tv[n − 1] = do[n − 1]− Tk  
� 
di[n − 1]− do[n − 1]

� Di + k −T + R Do 
− 

V 

However it provides little insight into how to choose the gain k. 

Analysis of wallFinder System: System Functions 

Simplify block diagram with R operator and system functions. 

Start with accumulator. 

+ k −T + RDi Do 
− 

What is the input/output relation for an accumulator? 

+ RX Y 
W 

Y = RW = R(X + Y ) 

Y 
X 

= 
R 

1−R  

This is an example of a recurring pattern: Black’s equation. 

Check Yourself 

Determine the system function H = 
Y 
X 

. 

+ F 

G 

X Y 

1. 
F 

1− FG  
2. 

F 
1 + FG  

3. F + 
1 

1−G 
4. F × 

1 
1−G 

5. none of the above 

Black’s Equation 

Black’s equation has two common forms. 

+ F 

G 

X Y 
W + F 

G 

X Y 
W 

− 

Difference: equivalent to changing sign of G. 

Right form is useful in most control applications where the goal is 

to make Y converge to X. 

Analyzing wallFinder: System Functions 

Simplify block diagram with R operator and system functions. 

Di + k −T + R Do 
− 

Replace accumulator with equivalent block diagram. 

Di k −T+ 
R 

1−R  
Do 

− 

Now apply Black’s equation a second time: 

−kTR 
Do 1−R  −kTR −kTR = = = 
Di 1 + −kTR 1−R− kTR 1− (1 + kT )R 

1−R  
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Analyzing wallFinder: System Functions 

We can represent the entire system with a single system function. 

+ k −T + RDi Do 
− 

Replace accumulator with equivalent block diagram. 

+ k −T R 
1−R  

Di Do 
− 

Equivalent system with a single block: 

−kTR 
1− (1 + kT )R 

Di Do 

Modular! But we still need a way to choose k. 

Analyzing wallFinder: Poles 

The system function contains a single pole at z = 1 + kT . 

Do 
Di 

= 
−kTR 

1− (1 + kT )R 

The numerator is just a gain and a delay. 

The whole system is equivalent to the following: 

R 1−p0 + 

p0 R 

Di Do 

where po = 1 + kT . Here is the unit-sample response for kT = −0.2: 

0 
n 

h[n] 

0.2 

Analyzing wallFinder 

We are often interested in the step response of a control system. 

di[n] =  desiredFront 
do[n] =  distanceFront 

Start the output do[n] at zero while the input is held constant at one. 

Step Response 

Calculating the unit-step response. 

Unit-step response s[n] is response of H to the unit-step signal u[n], 
which is constructed by accumulation of the unit-sample signal δ[n]. 

δ[n] + 

R 

Hu[n] s[n] 

Commute and relabel signals. 

δ[n] + 

R 

H h[n] s[n] 

The unit-step response s[n] is equal to the accumulated responses 

to the unit-sample response h[n]. 

Analyzing wallFinder 

The step response of the wallFinder system is slow because the 

unit-sample response is slow. 

0 
n 

h[n] 

0.2 

1 

0 
n 

s[n] 

Analyzing wallFinder 

The step response is faster if kT = −0.8 (i.e., p0 = 0.2). 

0.8 

0 
n 

h[n] 

0 
n 

s[n] 

1 
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Analyzing wallFinder: Poles Check Yourself 

The poles of the system function provide insight for choosing k. 

Do −kTR (1− po)R

Di 

= 1− (1 + kT )R 
= 1− poR 

; p0 = 1 + kT


Do 
Di 

= 
−kTR 

1− (1 + kT )R 

1. kT = −2 

2. kT = −1 

3. kT = 0  

4. kT = 1  

5. kT = 2  

0. none of the above 

Find kT for fastest convergence of unit-sample response. 

Im z Im z Im z 

1 Re z 1 Re z 1 Re z 

−1 < kT  <  0 −2 < kT  <  −1 kT < −2

0 < p0 < 1 −1 < p0 < 0 p0 < −1


monotonic alternating alternating

converging converging diverging


Analyzing wallFinder 

The optimum gain k moves robot to desired position in one step. 

di[n] =  desiredFront=1 m 
do[n] =  distanceFront=2 m 

kT = −1 

k = − 
1 
T 

= − 
1 

1/10 
= −10 

v[n] = k 
� 
di[n]− do[n]

� 
= −10

�
1− 2
� 

= 10  m/s 

exactly the right speed to get there in one step! 

Analyzing wallFinder: Space-Time Diagram 

The optimum gain k moves robot to desired position in one step. 

di[n] =  desiredFront 
do[n] =  distanceFront 

position 

time 

v = 10  
v = 0  
v = 0  
v = 0  
v = 0  
v = 0  
v = 0  

Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] =  desiredFront 
do[n] =  distanceFront 

proportional controller: v[n] = ke[n] = k 
� 
di[n]− ds[n]

� 
locomotion: do[n] = do[n − 1]− Tv[n − 1] 

sensor with delay: ds[n] = do[n − 1] 

Analysis of wallFinder System: Adding Sensory Delay 

Adding delay tends to destabilize control systems. 

di[n] =  desiredFront 
do[n] =  distanceFront 

position 

time 

v = 10  
v = 0  
v = −10 
v = −10 
v = 0  
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Analysis of wallFinder System: Block Diagram 

Incorporating sensor delay in block diagram. 

Analyzing wallFinder: System Functions 

We can represent the entire system with a single system function. 

+ k −T + R 

R 

Di Do 
− 

V 

di[n] =  desiredFront 
do[n] =  distanceFront 

proportional controller: v[n] = ke[n] = k di[n]− ds[n]
locomotion: do[n] = do[n − 1]− Tv[n − 1] 

sensor with delay: ds[n] = do[n − 1] 

V 
Di + k −T + R 

R 

− 
Do 

Check Yourself 

+ k −T + R 

R 

Di Do 
− 

V 

Find the system function H = 
Do 
Di 

. 

1. 
kTR 
1−R  

2. 
−kTR 

1 +R− kTR2 

3. 
kTR 
1−R  

− kTR 4. 
−kTR 

1−R− kTR2 

5. none of the above 

Analyzing wallFinder: Poles 

1 
Substitute for R in the system functional to find the poles. 

z 

The poles are then the roots of the denominator. 

1 
�

1
�2


z = + kT2 ± 2 

Poles Feedback and Control: Poles 

Poles can be identified by expanding the system functional in partial 

fractions. 

Y b0 + b1R+ b2R2 + b3R3 + · · ·  = 
X 1 + a1R+ a2R2 + a3R3 + · · ·  

Factor denominator: 

Y b0 + b1R+ b2R2 + b3R3 + · · ·  = 
X (1− p0R)(1− p1R)(1− p2R)(1− p3R) · · ·  

Partial fractions: 

Y e0 e1 e2= + + + · · ·+ f0 + f1R+ f2R2 + · · ·  
X 1− p0R 1− p1R 1− p2R 

If kT is small, the poles are at z ≈ −kT and z ≈ 1 + kT . 

z = 1
2 ± 

�
2
1 �2 + kT = 1

2 

�
1±√1 + 4kT 

� ≈ 1
2 (1± (1 + 2kT )) = 1 + kT, −kT 

Im z 

1 
Re z 

z-planekT ≈ 0 

The poles are pi for 0 ≤ i < n  where n is the order of the denominator.


One geometric mode pi
n arises from each factor of the denominator.


Pole near 0 generates fast response.


Pole near 1 generates slow response.


Slow mode (pole near 1) dominates the response.
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Feedback and Control: Poles 

As kT becomes more negative, the poles move toward each other 

and collide at z = when kT = − . 

� �2 � �2 

1 z-plane 
4 

2
1 

Re z 

Persistent responses decay. The system is stable. 

1
2 

1+= ± = ± − =kTz 2 , 

1
4

1
4 

Im z 

1
2 

1
2

−kT =

1
2

1
2 

1
2

Feedback and Control: Poles 

If kT < −1/4, the poles are complex. 

� �2 � �2 
z = ± + kT = ± j −kT − 

Im z 
kT = −1 z-plane 

1
2 

1 
Re z 

1
2

Complex poles → oscillations. 

1
2 

1
2

Same oscillation we saw earlier! 

Adding delay tends to destabilize control systems. 

di[n] =  desiredFront 
do[n] =  distanceFront 

position 

time 

v = 10  
v = 0  
v = −10 
v = −10 
v = 0  

Check Yourself 

1 
Re z 

Im z 
z-planekT = −1 

What is the period of the oscillation? 

1. 1 2. 2 3. 3 

4. 4 5. 6 0. none of above 

1
2

1
2

1
2

Feedback and Control: Poles 

The closed-loop poles depend on the gain. 

Im z 
z-plane 

1 
Re z 

If kT : 0→ −∞: then z1, z2 : 0, 1→ , → ± j∞ 

Check Yourself 

1 
Re z 

Im z 
z-plane 

closed-loop poles 

1 
2 ± 

� �
1 
2 

�2 

+ kT 

Find kT for fastest response. 

1. 0 2. −1
4 3. −1

2 
4. −1 5. −∞ 0. none of above 
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Destabilizing Effect of Delay 

Adding delay in the feedback loop makes it more difficult to stabilize.


Ideal sensor: ds[n] = do[n]


More realistic sensor (with delay): ds[n] = do[n− 1]


Im z Im z 

1 
Re z 1 

Re z 

Fastest response without delay: single pole at z = 0. 
1 

Fastest response with delay: double pole at z = . much slower! 2

Check Yourself 

R R R+X Y 

How many of the following statements are true? 

1. This system has 3 poles. 

2. unit-sample response is the sum of 3 geometric sequences. 

3. Unit-sample response is y[n] : 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . .  
4. Unit-sample response is y[n] : 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 . . .  
5. One of the poles is at z = 1. 

Lecture 6 March 8, 2011


Destabilizing Effect of Delay 

Adding more delay in the feedback loop is even worse.


More realistic sensor (with delay): ds[n] = do[n− 1]


Even more delay: ds[n] = do[n− 2]

Im z Im z 

1 
Re z 

2 
1 

Fastest response with delay: double pole at z = 
1 
2 . 

Re z 

Fastest response with more delay: double pole at z = 0.682. 

→ even slower 

Designing Control Systems: Summary 

System Functions provide a convenient summary of information that


is important for designing control systems.


The long-term response of a system is determined by its dominant


pole — i.e., the pole with the largest magnitude.


A system is unstable if the magnitude of its dominant pole is > 1.


A system is stable if the magnitude of its dominant pole is < 1.


Delays tend to decrease the stability of a feedback system.
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