6.01: Introduction to EECS I

Designing Control Systems

Midterm Examination #1

Time: Tonight, March 8, 7:30 PM to 9:30 PM

Location: Walker Memorial (if last name starts with A-M)

10-250 (if last name starts with N-Z)

Coverage: Everything up to and including Design Lab 5.

You may refer to any printed materials that you bring to exam.

You may use a calculator.

You may not use a computer, phone, or music player.

No software lab this week.

Signals and Systems

Multiple representations of systems, each with particular strengths.

Difference equations are mathematically compact.

$$y[n] = x[n] + p_0 y[n-1]$$

Block diagrams illustrate signal flow paths from input to output.

Operators use polynomials to represent signal flow compactly.

$$Y = X + p_0 \mathcal{R} Y$$

System Functionals represent systems as operators.

$$Y = H X \; ; \quad H = \frac{Y}{X} = \frac{1}{1 - p_0 \mathcal{R}}$$

Feedback, Cyclic Signal Paths, and Poles

The structure of feedback produces characteristic behaviors.

Feedback produces cyclic signal flow paths.

Cyclic signal flow paths \rightarrow persistent responses to transient inputs.

We can characterize persistent responses (called modes) with poles.

$$y[n] = p_o^n \; ; \; n \ge 0$$

Designing a Control System

Today's goal: optimizing the design of a control system.

Example: wallFinder System

Using feedback to control position (lab 4) can lead to bad behaviors.

What causes these different types of responses? Is there a systematic way to optimize the gain k?

Analysis of wallFinder System: Review

Response of system is concisely represented with difference equation.

proportional controller:
$$v[n] = ke[n] = k(d_i[n] - d_s[n])$$

locomotion:
$$d_o[n] = d_o[n-1] - Tv[n-1]$$

sensor with no delay: $d_s[n] = d_o[n]$

The difference equations provide a concise description of behavior.

$$d_o[n] = d_o[n-1] - Tv[n-1] = d_o[n-1] - Tk(d_i[n-1] - d_o[n-1])$$

However it provides little insight into how to choose the gain k.

Analysis of wallFinder System: Block Diagram

A block diagram for this system reveals two feedback paths.

proportional controller: $v[n] = ke[n] = k(d_i[n] - d_s[n])$

locomotion: $d_o[n] = d_o[n-1] - Tv[n-1]$

sensor with no delay: $d_s[n] = d_o[n]$

Analysis of wallFinder System: System Functions

Simplify block diagram with $\ensuremath{\mathcal{R}}$ operator and system functions.

Start with accumulator.

What is the input/output relation for an accumulator?

$$Y = \mathcal{R}W = \mathcal{R}(X+Y)$$

$$\frac{Y}{X} = \frac{\mathcal{R}}{1 - \mathcal{R}}$$

This is an example of a recurring pattern: Black's equation.

Check Yourself

Determine the system function $H = \frac{Y}{X}$.

$$1. \ \frac{F}{1 - FG}$$

$$\frac{F}{G}$$
 2. $\frac{F}{1+FG}$

3.
$$F + \frac{1}{1 - G}$$

4.
$$F \times \frac{1}{1-G}$$

5. none of the above

Black's Equation

Determine the system function $H = \frac{Y}{X}$.

$$Y = FW = F(X + GY) = FX + FGY$$

$$\frac{Y}{X} \equiv H = \frac{F}{1 - FG}$$

$${\bf closed\text{-}loop \ gain} \ H = \frac{{\bf forward \ gain} \ F}{1 - {\bf loop \ gain} \ FG}$$

Check Yourself

Determine the system function $H = \frac{Y}{Y}$. 1

$$1. \ \frac{F}{1 - FG}$$

$$\frac{F}{1+FG}$$

3.
$$F + \frac{1}{1 - G}$$

4.
$$F \times \frac{1}{1-G}$$

5. none of the above

Black's Equation

Black's equation has two common forms.

Difference is equivalent to changing sign of G.

Right form is useful in most **control** applications where the goal is to make Y converge to X.

Analyzing wallFinder: System Functions

Simplify block diagram with $\ensuremath{\mathcal{R}}$ operator and system functions.

Replace accumulator with equivalent block diagram.

Now apply Black's equation a second time:

$$\frac{D_o}{D_i} = \frac{\frac{-kT\mathcal{R}}{1-\mathcal{R}}}{1+\frac{-kT\mathcal{R}}{1-\mathcal{R}}} = \frac{-kT\mathcal{R}}{1-\mathcal{R}-kT\mathcal{R}} = \frac{-kT\mathcal{R}}{1-(1+kT)\mathcal{R}}$$

Analyzing wallFinder: System Functions

We can represent the entire system with a single system function.

Replace accumulator with equivalent block diagram.

Equivalent system with a single block:

$$D_i \longrightarrow \boxed{\frac{-kT\mathcal{R}}{1-(1+kT)\mathcal{R}}} \longrightarrow D_o$$

Modular! But we still need a way to choose k.

Analyzing wallFinder: Poles

The system function contains a single **pole** at z = 1 + kT.

$$\frac{D_o}{D_i} = \frac{-kT\mathcal{R}}{1 - (1 + kT)\mathcal{R}}$$

The numerator is just a gain and a delay.

The whole system is equivalent to the following:

where $p_o = 1 + kT$. Here is the unit-sample response for kT = -0.2:

Analyzing wallFinder

We are often interested in the **step response** of a control system.

Start the output $d_o[n]$ at zero while the input is held constant at one.

Step Response

Calculating the unit-step response.

Unit-step response s[n] is response of H to the unit-step signal u[n], which is constructed by accumulation of the unit-sample signal $\delta[n]$.

Commute and relabel signals.

The unit-step response s[n] is equal to the accumulated responses to the unit-sample response h[n].

Analyzing wallFinder

The step response of the wallFinder system is slow because the unit-sample response is slow.

Analyzing wallFinder

The step response is faster if kT=-0.8 (i.e., $p_0=0.2$).

Analyzing wallFinder: Poles

The poles of the system function provide insight for choosing k.

$$\frac{D_o}{D_i} = \frac{-kT\mathcal{R}}{1 - (1 + kT)\mathcal{R}} = \frac{(1 - p_o)\mathcal{R}}{1 - p_o\mathcal{R}} \; ; \quad p_0 = 1 + kT$$

Check Yourself

Find $\it kT$ for fastest convergence of unit-sample response.

$$\frac{D_o}{D_i} = \frac{-kT\mathcal{R}}{1 - (1 + kT)\mathcal{R}}$$

- 1. kT = -2
- 2. kT = -1
- 3. kT = 0
- 4. kT = 1
- 5. kT = 2
- 0. none of the above

Check Yourself

Find kT for fastest convergence of unit-sample response.

$$\frac{D_o}{D_i} = \frac{-kT\mathcal{R}}{1 - (1 + kT)\mathcal{R}}$$

If kT = -1 then the pole is at z = 0.

$$\frac{D_o}{D_i} = \frac{-kT\mathcal{R}}{1 - (1 + kT)\mathcal{R}} = \mathcal{R}$$

unit-sample response has a single non-zero output sample, at n = 1.

Find kT for fastest convergence of unit-sample response. 2

$$\frac{D_o}{D_i} = \frac{-kT\mathcal{R}}{1 - (1 + kT)\mathcal{R}}$$

- 1. kT = -2
- 2. kT = -1
- 3. kT = 0
- 4. kT = 1
- 5. kT = 2
- 0. none of the above

Analyzing wallFinder

The optimum gain k moves robot to desired position in **one** step.

$$kT = -1$$

$$k = -\frac{1}{T} = -\frac{1}{1/10} = -10$$

$$v[n] = k \left(d_i[n] - d_o[n] \right) = -10 \left(1 - 2 \right) = 10 \text{ m/s}$$

exactly the right speed to get there in one step!

Adding delay tends to destabilize control systems.

proportional controller: $v[n] = ke[n] = k(d_i[n] - d_s[n])$

locomotion: $d_o[n] = d_o[n-1] - Tv[n-1]$

sensor with delay: $d_s[n] = d_o[\mathbf{n} - \mathbf{1}]$

Adding delay tends to destabilize control systems.

Adding delay tends to destabilize control systems.

Adding delay tends to destabilize control systems.

Analysis of wallFinder System: Block Diagram

Incorporating sensor delay in block diagram.

proportional controller: $v[n] = ke[n] = k(d_i[n] - d_s[n])$

locomotion: $d_o[n] = d_o[n-1] - Tv[n-1]$

sensor with delay: $d_s[n] = d_o[n-1]$

Analyzing wallFinder: System Functions

We can represent the entire system with a single system function.

Find the system function $H=rac{D_o}{D_i}$.

1.
$$\frac{kTR}{1-R}$$

$$2. \ \frac{-kT\mathcal{R}}{1+\mathcal{R}-kT\mathcal{R}^2}$$

3.
$$\frac{kTR}{1-R} - kTR$$

4.
$$\frac{-kT\mathcal{R}}{1-\mathcal{R}-kT\mathcal{R}^2}$$

5. none of the above

Find the system function $H = \frac{D_o}{D_i}$.

Replace accumulator with equivalent block diagram.

$$\frac{D_o}{D_i} = \frac{\frac{-kT\mathcal{R}}{1-\mathcal{R}}}{1+\frac{-kT\mathcal{R}^2}{1-\mathcal{R}}} = \frac{-kT\mathcal{R}}{1-\mathcal{R}-kT\mathcal{R}^2}$$

Find the system function $H = \frac{D_o}{D_i}$. 4

1.
$$\frac{kTR}{1-R}$$

$$2. \ \frac{-kT\mathcal{R}}{1+\mathcal{R}-kT\mathcal{R}^2}$$

3.
$$\frac{kT\mathcal{R}}{1-\mathcal{R}} - kT\mathcal{R}$$

4.
$$\frac{-kT\mathcal{R}}{1-\mathcal{R}-kT\mathcal{R}^2}$$

5. none of the above

Analyzing wallFinder: Poles

Substitute $\frac{1}{z}$ for \mathcal{R} in the system functional to find the poles.

$$\frac{D_o}{D_i} = \frac{-kT\mathcal{R}}{1 - \mathcal{R} - kT\mathcal{R}^2} = \frac{-kT\frac{1}{z}}{1 - \frac{1}{z} - kT\frac{1}{z^2}} = \frac{-kTz}{z^2 - z - kT}$$

The poles are then the roots of the denominator.

$$z = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 + kT}$$

Poles

Poles can be identified by expanding the system functional in partial fractions.

$$\frac{Y}{X} = \frac{b_0 + b_1 \mathcal{R} + b_2 \mathcal{R}^2 + b_3 \mathcal{R}^3 + \cdots}{1 + a_1 \mathcal{R} + a_2 \mathcal{R}^2 + a_3 \mathcal{R}^3 + \cdots}$$

Factor denominator:

$$\frac{Y}{X} = \frac{b_0 + b_1 \mathcal{R} + b_2 \mathcal{R}^2 + b_3 \mathcal{R}^3 + \cdots}{(1 - p_0 \mathcal{R})(1 - p_1 \mathcal{R})(1 - p_2 \mathcal{R})(1 - p_3 \mathcal{R}) \cdots}$$

Partial fractions:

$$\frac{Y}{X} = \frac{e_0}{1 - n_0 \mathcal{R}} + \frac{e_1}{1 - n_1 \mathcal{R}} + \frac{e_2}{1 - n_0 \mathcal{R}} + \dots + f_0 + f_1 \mathcal{R} + f_2 \mathcal{R}^2 + \dots$$

The poles are p_i for $0 \le i < n$ where n is the order of the denominator.

One geometric mode p_i^n arises from each factor of the denominator.

If kT is small, the poles are at $z \approx -kT$ and $z \approx 1 + kT$.

$$z = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 + kT} = \frac{1}{2} \left(1 \pm \sqrt{1 + 4kT}\right) \approx \frac{1}{2} (1 \pm (1 + 2kT)) = 1 + kT, -kT$$

Pole near 0 generates fast response.

Pole near 1 generates slow response.

Slow mode (pole near 1) dominates the response.

As kT becomes more negative, the poles move toward each other and collide at $z=\frac{1}{2}$ when $kT=-\frac{1}{4}$.

$$z = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 + kT} = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 - \frac{1}{4}} = \frac{1}{2}, \frac{1}{2}$$

Persistent responses decay. The system is stable.

If kT < -1/4, the poles are complex.

$$z = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 + kT} = \frac{1}{2} \pm j\sqrt{-kT - \left(\frac{1}{2}\right)^2}$$

Complex poles \rightarrow oscillations.

Same oscillation we saw earlier!

What is the period of the oscillation?

- 1. 1 2. 2 3. 3
- 4. 4 5. 6 0. none of above

$$p_0 = \frac{1}{2} \pm j \frac{\sqrt{3}}{2} = e^{\pm j\pi/3}$$

$$p_0^n = e^{\pm j\pi n/3}$$

$$\underbrace{e^{\pm j0\pi/3}}_{1}, \ e^{\pm j\pi/3}, \ e^{\pm j2\pi/3}, \ e^{\pm j3\pi/3}, \ e^{\pm j4\pi/3}, \ e^{\pm j5\pi/3}, \ \underbrace{e^{\pm j6\pi/3}}_{e^{\pm j2\pi}=1}$$

What is the	period	of the	oscillation?	5
-------------	--------	--------	--------------	---

- 1. 1 2. 2 3. 3
- 4. 4 5. 6 0. none of above

The closed-loop poles depend on the gain.

If $kT: 0 \to -\infty$: then $z_1, z_2: 0, 1 \to \frac{1}{2}, \frac{1}{2} \to \frac{1}{2} \pm j\infty$

closed-loop poles

$$\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 + kT}$$

Find kT for fastest response.

- 1. 0 2. $-\frac{1}{4}$ 3. $-\frac{1}{2}$
- 4. -1 5. $-\infty$ 0. none of above

$$z = \frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 + kT}$$

The dominant pole always has a magnitude that is $\geq \frac{1}{2}$.

It is smallest when there is a double pole at $z = \frac{1}{2}$.

Therefore, $kT = -\frac{1}{4}$.

closed-loop poles

$$\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 + kT}$$

Find
$$kT$$
 for fastest response. 2

- 1. 0 2. $-\frac{1}{4}$ 3. $-\frac{1}{2}$

- 4. -1 5. $-\infty$ 0. none of above

Destabilizing Effect of Delay

Adding delay in the feedback loop makes it more difficult to stabilize.

Ideal sensor: $d_s[n] = d_o[n]$

More realistic sensor (with delay): $d_s[n] = d_o[n-1]$

Fastest response without delay: single pole at z = 0.

Fastest response with delay: double pole at $z = \frac{1}{2}$. much slower!

Destabilizing Effect of Delay

Adding more delay in the feedback loop is even worse.

More realistic sensor (with delay): $d_s[n] = d_o[n-1]$

Even more delay: $d_s[n] = d_o[n-2]$

Fastest response with delay: double pole at $z = \frac{1}{2}$.

Fastest response with more delay: double pole at z=0.682.

→ even slower

How many of the following statements are true?

- 1. This system has 3 poles.
- 2. unit-sample response is the sum of 3 geometric sequences.
- 3. Unit-sample response is $y[n]: 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 \dots$
- 4. Unit-sample response is $y[n]: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 \dots$
- 5. One of the poles is at z = 1.

How many of the following statements are true? 4

- 1. This system has 3 poles.
- 2. unit-sample response is the sum of 3 geometric sequences.
- 3. Unit-sample response is $y[n]: 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 \dots$
- 4. Unit-sample response is $y[n]: 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, \dots$
- 5. One of the poles is at z = 1.

Designing Control Systems: Summary

System Functions provide a convenient summary of information that is important for designing control systems.

The long-term response of a system is determined by its dominant pole — i.e., the pole with the largest magnitude.

A system is unstable if the magnitude of its dominant pole is >1.

A system is stable if the magnitude of its dominant pole is $<1. \label{eq:constraint}$

Delays tend to decrease the stability of a feedback system.

6.01SC Introduction to Electrical Engineering and Computer Science Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.