Problem Wk.5.5.4: Analyzing the System

Read the handout for Homework Assignment 2.

Gains

Best Gain

Enter the best value you found for k_{c} you found for when $T=0.005$ seconds. Make sure your answer is accurate to within 0.0001 of the theoretical best gain.

Best value of k_{c} when $T=0.005$ seconds: \qquad
Enter the poles associated with these values of k_{c} and T. If a pole appears n times, enter it into n boxes. If there are more boxes than poles, enter "none" in the remaining boxes.
\qquad

Rationale

Use the following text box to answer these questions:

- Why must the gain be positive?
- How did you find the best gain?

Regions

Answer the following questions about how the behavior of the system depends on the gain k_{c}, when $T=0.005$ If you used empirical methods, make sure your answer is accurate to within 0.0001 of the theoretical best answer.

- For what range of k_{c} is the system monotonically convergent?

$$
\square<k_{c} \leq
$$

- For what range of k_{c} is the system oscillatory and convergent?

$$
<k_{c}<
$$

- What is the lowest positive value of k_{c} for which the system is unstable? $k_{c}=$

Plots

Upload a single PDF containing plots of the following. Clearly label each plot with the value of k_{c} used to generate the plot.

- The best non-oscillatory response
- An oscillatory but stable response
- An oscillatory, unstable response

Browse... Upload File

Effect of T

In the following textbox, answer these questions:

- What happened when you increased/decreased T ?
- Why?

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

