Problem Wk.5.5.4: Analyzing the System

Read the handout for Homework Assignment 2.

_				
G	а	ı	n	S

Re	ct	Ga	in
		J.	

Best Gain	
Enter the best value you found for k_c you found for when $T=0.005$ seconds. Mak sure your answer is accurate to within 0.0001 of the theoretical best gain.	е
Best value of k_c when $T = 0.005$ seconds:	
Enter the poles associated with these values of k_e and T . If a pole appears n times enter it into n boxes. If there are more boxes than poles, enter "none" in the remain boxes.	
Rationale	
Use the following text box to answer these questions:	
Why must the gain be positive?How did you find the best gain?	

Regions

Answer the following questions about how the behavior of the system depends on the gain k_c , when T = 0.005 If you used empirical methods, make sure your answer is accurate to within 0.0001 of the theoretical best answer.

• For what range of k_c is the system monotonically convergent?

		$< k_c \le$				
•	For what ra	ange of	k_c is the sy	ystem oscillato	ory and converg	ent?
		$< k_c <$				
•	What is the	e lowest	positive v	alue of k_c for γ	which the syster	n is unstable?
	$k_c =$		-		-	

Plots

Upload a single PDF containing plots of the following. Clearly label each plot with the value of k_c used to generate the plot.

- The best non-oscillatory response
- An oscillatory but stable response
- An oscillatory, unstable response

Effect of T

In the following textbox, answer these questions:

What happened when you increased/decreased T?Why?				

MIT OpenCourseWar	е
http://ocw.mit.edu	

6.01SC Introduction to Electrical Engineering and Computer Science Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.