MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.012 Microelectronic Devices and Circuits Homework #6

Problem 1

You are given an npn bipolar transistor which has uniform doping concentrations $N_{dE} = 10^{19} \text{ cm}^{-3}$ $N_{aB} = 10^{17} \text{ cm}^{-3}$ $N_{dC} = 10^{16} \text{ cm}^{-3}$. Assume the base width is 1 µm from the B-E junction to the B-C junction. The area of the emitter and collector is 10^{-6} cm^2 , $\mu_n = 1000 \text{ cm}^2/\text{V-sec}$, $\mu_p = 500 \text{ cm}^2/\text{V-sec}$. Ignore the depletion region width of forward biased junctions.

Emitter		Base		Collector		
-W _E	0	1 um	1 - x _n	um 1 um	+ x _n	Wo

- a) Given $V_{BE} = 0.66V$ and $V_{BC} = -3V$ sketch the minority carrier concentration vs. x in all three regions of the device.
- b) Calculate x_n and x_p at the base-collector junction.
- c) Find the emitter width W_E such that $\beta_F = 200$.
- d) Find the collector width W_C such that $\beta_R = 5$.
- e) Calculate IS

Problem 2

You are given the npn transistor with the parameters and operating point from Problem 1 above, with the additional information that $V_{an} = 20V$.

- a) Find the transconductance, g_m
- b) Find the input resistance, r_{π}
- c) Find the output resistance r_o
- d) What is the minority electron storage Q_{NB} ?
- e) Find C_{π}
- f) At what frequency does $|1/j\omega C_{\pi}| = r_{\pi}$?

Problem 3

Silicon-Germanium bipolar transistors were developed in the late 1980's to improve the current gain β_F over that of conventional silicon transistors. When the emitter is made of this material we can assume that the intrinsic carrier concentration in the emitter is reduced to 10^9 cm⁻³. This transistor is biased in the forward active region and has a collector current I_C = 100μ A. Use the same dimensions and doping concentrations as Problem 1 for this problem.

- a) Calculate the new V_{BE} such that $I_C = 10 \mu A$
- b) Find the forward active current gain, β_F .
- c) Determine the base doping level that will yield the same value of β_F as the transistor would have if its emitter were silicon instead of SiGe?

Problem 4

Howe and Sodini P7.6

6.012 Microelectronic Devices and Circuits Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.