

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 10: Depth-First Search

Lecture 10: Depth-First Search

Previously
• Graph definitions (directed/undirected, simple, neighbors, degree)

• Graph representations (Set mapping vertices to adjacency lists)

• Paths and simple paths, path length, distance, shortest path

• Graph Path Problems

– Single Pair Reachability(G,s,t)

– Single Source Reachability(G,s)

– Single Pair Shortest Path(G,s,t)

– Single Source Shortest Paths(G,s) (SSSP)

• Breadth-First Search (BFS)

– algorithm that solves Single Source Shortest Paths

– with appropriate data structures, runs in O(|V | + |E|) time (linear in input size)

Examples

G1

a

d

b

e

c

f

G2

a

d

b

e

c

f

2 Lecture 10: Depth-First Search

Depth-First Search (DFS)
• Searches a graph from a vertex s, similar to BFS

• Solves Single Source Reachability, not SSSP. Useful for solving other problems (later!)

• Return (not necessarily shortest) parent tree of parent pointers back to s

• Idea! Visit outgoing adjacencies recursively, but never revisit a vertex

• i.e., follow any path until you get stuck, backtrack until finding an unexplored path to explore

• P (s) = None, then run visit(s), where

• visit(u) :

– for every v ∈ Adj(u) that does not appear in P :

∗ set P (v) = u and recursively call visit(v)

– (DFS finishes visiting vertex u, for use later!)

• Example: Run DFS on G1 and/or G2 from a

Correctness
• Claim: DFS visits v and correctly sets P (v) for every vertex v reachable from s

• Proof: induct on k, for claim on only vertices within distance k from s

– Base case (k = 0): P (s) is set correctly for s and s is visited

– Inductive step: Consider vertex v with δ(s, v) = k0 + 1

– Consider vertex u, the second to last vertex on some shortest path from s to v

– By induction, since δ(s, u) = k0, DFS visits u and sets P (u) correctly

– While visiting u, DFS considers v ∈ Adj(u)

– Either v is in P , so has already been visited, or v will be visited while visiting u

– In either case, v will be visited by DFS and will be added correctly to P

Running Time
• Algorithm visits each vertex u at most once and spends O(1) time for each v ∈ Adj(u) P
• Work upper bounded by O(1) × deg(u) = O(|E|)u∈V

• Unlike BFS, not returning a distance for each vertex, so DFS runs in O(|E|) time

3 Lecture 10: Depth-First Search

Full-BFS and Full-DFS
• Suppose want to explore entire graph, not just vertices reachable from one vertex

• Idea! Repeat a graph search algorithm A on any unvisited vertex

• Repeat the following until all vertices have been visited:

– Choose an arbitrary unvisited vertex s, use A to explore all vertices reachable from s

• We call this algorithm Full-A, specifically Full-BFS or Full-DFS if A is BFS or DFS

• Visits every vertex once, so both Full-BFS and Full-DFS run in O(|V | + |E|) time

• Example: Run Full-DFS/Full-BFS on G1 and/or G2

G1

a

d

b

e

c

f

G2

a

d

b

e

c

f

Graph Connectivity
• An undirected graph is connected if there is a path connecting every pair of vertices

• In a directed graph, vertex u may be reachable from v, but v may not be reachable from u

• Connectivity is more complicated for directed graphs (we won’t discuss in this class)

• Connectivity(G): is undirected graph G connected?

• Connected Components(G): given undirected graph G = (V, E), return partition of V
into subsets Vi ⊆ V (connected components) where each Vi is connected in G and there are
no edges between vertices from different connected components

• Consider a graph algorithm A that solves Single Source Reachability

• Claim: A can be used to solve Connected Components

• Proof: Run Full-A. For each run of A, put visited vertices in a connected component

4 Lecture 10: Depth-First Search

Topological Sort
• A Directed Acyclic Graph (DAG) is a directed graph that contains no directed cycle.

• A Topological Order of a graph G = (V, E) is an ordering f on the vertices such that:
every edge (u, v) ∈ E satisfies f(u) < f(v).

• Exercise: Prove that a directed graph admits a topological ordering if and only if it is a DAG.

• How to find a topological order?

• A Finishing Order is the order in which a Full-DFS finishes visiting each vertex in G

• Claim: If G = (V, E) is a DAG, the reverse of a finishing order is a topological order

• Proof: Need to prove, for every edge (u, v) ∈ E that u is ordered before v,
i.e., the visit to v finishes before visiting u. Two cases:

– If u visited before v:
∗ Before visit to u finishes, will visit v (via (u, v) or otherwise)
∗ Thus the visit to v finishes before visiting u

– If v visited before u:
∗ u can’t be reached from v since graph is acyclic
∗ Thus the visit to v finishes before visiting u

Cycle Detection
• Full-DFS will find a topological order if a graph G = (V, E) is acyclic

• If reverse finishing order for Full-DFS is not a topological order, then G must contain a cycle

• Check if G is acyclic: for each edge (u, v), check if v is before u in reverse finishing order

• Can be done in O(|E|) time via a hash table or direct access array

• To return such a cycle, maintain the set of ancestors along the path back to s in Full-DFS

• Claim: If G contains a cycle, Full-DFS will traverse an edge from v to an ancestor of v.

• Proof: Consider a cycle (v0, v1, . . . , vk, v0) in G

– Without loss of generality, let v0 be the first vertex visited by Full-DFS on the cycle
– For each vi, before visit to vi finishes, will visit vi+1 and finish
– Will consider edge (vi, vi+1), and if vi+1 has not been visited, it will be visited now
– Thus, before visit to v0 finishes, will visit vk (for the first time, by v0 assumption)
– So, before visit to vk finishes, will consider (vk, v0), where v0 is an ancestor of vk

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

