
   

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 10: Depth-First Search 

Lecture 10: Depth-First Search 

Previously 
• Graph definitions (directed/undirected, simple, neighbors, degree) 

• Graph representations (Set mapping vertices to adjacency lists) 

• Paths and simple paths, path length, distance, shortest path 

• Graph Path Problems 

– Single Pair Reachability(G,s,t) 

– Single Source Reachability(G,s) 

– Single Pair Shortest Path(G,s,t) 

– Single Source Shortest Paths(G,s) (SSSP) 

• Breadth-First Search (BFS) 

– algorithm that solves Single Source Shortest Paths 

– with appropriate data structures, runs in O(|V | + |E|) time (linear in input size) 

Examples 
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Depth-First Search (DFS) 
• Searches a graph from a vertex s, similar to BFS 

• Solves Single Source Reachability, not SSSP. Useful for solving other problems (later!) 

• Return (not necessarily shortest) parent tree of parent pointers back to s 

• Idea! Visit outgoing adjacencies recursively, but never revisit a vertex 

• i.e., follow any path until you get stuck, backtrack until finding an unexplored path to explore 

• P (s) = None, then run visit(s), where 

• visit(u) : 

– for every v ∈ Adj(u) that does not appear in P : 

∗ set P (v) = u and recursively call visit(v) 

– (DFS finishes visiting vertex u, for use later!) 

• Example: Run DFS on G1 and/or G2 from a 

Correctness 
• Claim: DFS visits v and correctly sets P (v) for every vertex v reachable from s 

• Proof: induct on k, for claim on only vertices within distance k from s 

– Base case (k = 0): P (s) is set correctly for s and s is visited 

– Inductive step: Consider vertex v with δ(s, v) = k0 + 1 

– Consider vertex u, the second to last vertex on some shortest path from s to v 

– By induction, since δ(s, u) = k0, DFS visits u and sets P (u) correctly 

– While visiting u, DFS considers v ∈ Adj(u) 

– Either v is in P , so has already been visited, or v will be visited while visiting u 

– In either case, v will be visited by DFS and will be added correctly to P 

Running Time 
• Algorithm visits each vertex u at most once and spends O(1) time for each v ∈ Adj(u) P 
• Work upper bounded by O(1) × deg(u) = O(|E|)u∈V 

• Unlike BFS, not returning a distance for each vertex, so DFS runs in O(|E|) time 
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Full-BFS and Full-DFS 
• Suppose want to explore entire graph, not just vertices reachable from one vertex 

• Idea! Repeat a graph search algorithm A on any unvisited vertex 

• Repeat the following until all vertices have been visited: 

– Choose an arbitrary unvisited vertex s, use A to explore all vertices reachable from s 

• We call this algorithm Full-A, specifically Full-BFS or Full-DFS if A is BFS or DFS 

• Visits every vertex once, so both Full-BFS and Full-DFS run in O(|V | + |E|) time 

• Example: Run Full-DFS/Full-BFS on G1 and/or G2 
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Graph Connectivity 
• An undirected graph is connected if there is a path connecting every pair of vertices 

• In a directed graph, vertex u may be reachable from v, but v may not be reachable from u 

• Connectivity is more complicated for directed graphs (we won’t discuss in this class) 

• Connectivity(G): is undirected graph G connected? 

• Connected Components(G): given undirected graph G = (V, E), return partition of V 
into subsets Vi ⊆ V (connected components) where each Vi is connected in G and there are 
no edges between vertices from different connected components 

• Consider a graph algorithm A that solves Single Source Reachability 

• Claim: A can be used to solve Connected Components 

• Proof: Run Full-A. For each run of A, put visited vertices in a connected component 
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Topological Sort 
• A Directed Acyclic Graph (DAG) is a directed graph that contains no directed cycle. 

• A Topological Order of a graph G = (V, E) is an ordering f on the vertices such that: 
every edge (u, v) ∈ E satisfies f(u) < f(v). 

• Exercise: Prove that a directed graph admits a topological ordering if and only if it is a DAG. 

• How to find a topological order? 

• A Finishing Order is the order in which a Full-DFS finishes visiting each vertex in G 

• Claim: If G = (V, E) is a DAG, the reverse of a finishing order is a topological order 

• Proof: Need to prove, for every edge (u, v) ∈ E that u is ordered before v, 
i.e., the visit to v finishes before visiting u. Two cases: 

– If u visited before v: 
∗ Before visit to u finishes, will visit v (via (u, v) or otherwise) 
∗ Thus the visit to v finishes before visiting u 

– If v visited before u: 
∗ u can’t be reached from v since graph is acyclic 
∗ Thus the visit to v finishes before visiting u 

Cycle Detection 
• Full-DFS will find a topological order if a graph G = (V, E) is acyclic 

• If reverse finishing order for Full-DFS is not a topological order, then G must contain a cycle 

• Check if G is acyclic: for each edge (u, v), check if v is before u in reverse finishing order 

• Can be done in O(|E|) time via a hash table or direct access array 

• To return such a cycle, maintain the set of ancestors along the path back to s in Full-DFS 

• Claim: If G contains a cycle, Full-DFS will traverse an edge from v to an ancestor of v. 

• Proof: Consider a cycle (v0, v1, . . . , vk, v0) in G 

– Without loss of generality, let v0 be the first vertex visited by Full-DFS on the cycle 
– For each vi, before visit to vi finishes, will visit vi+1 and finish 
– Will consider edge (vi, vi+1), and if vi+1 has not been visited, it will be visited now 
– Thus, before visit to v0 finishes, will visit vk (for the first time, by v0 assumption) 
– So, before visit to vk finishes, will consider (vk, v0), where v0 is an ancestor of vk 
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