Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 10: Depth-First Search

Lecture 10: Depth-First Search

Previously

e Graph definitions (directed/undirected, simple, neighbors, degree)

Graph representations (Set mapping vertices to adjacency lists)

Paths and simple paths, path length, distance, shortest path

Graph Path Problems

— Single_Pair_Reachability (G, s,t)
— Single_Source_Reachability (G, s)
— Single_Pair_Shortest_Path (G, s, t)

— Single_Source_Shortest_Paths (G, s) (SSSP)

Breadth-First Search (BFS)

— algorithm that solves Single Source Shortest Paths

— with appropriate data structures, runs in O(|V| 4 | E|) time (linear in input size)

Examples

Gl G2

() (&
O— © O

Lecture 10: Depth-First Search

Depth-First Search (DFS)

Searches a graph from a vertex s, similar to BFS
Solves Single Source Reachability, not SSSP. Useful for solving other problems (later!)

Return (not necessarily shortest) parent tree of parent pointers back to s

Idea! Visit outgoing adjacencies recursively, but never revisit a vertex

1.e., follow any path until you get stuck, backtrack until finding an unexplored path to explore
P(s) = None, then run visit(s), where

visit(u)

— for every v € Adj(u) that does not appear in P:
* set P(v) = u and recursively call visit(v)

— (DFS finishes visiting vertex u, for use later!)

Example: Run DFS on GG; and/or G5 from a

Correctness

Claim: DFS visits v and correctly sets P(v) for every vertex v reachable from s

Proof: induct on £, for claim on only vertices within distance %k from s

Base case (k = 0): P(s) is set correctly for s and s is visited

Inductive step: Consider vertex v with d(s,v) = k' + 1

Consider vertex u, the second to last vertex on some shortest path from s to v

By induction, since §(s,u) = k', DFS visits u and sets P(u) correctly

While visiting u, DFS considers v € Adj(u)

Either v is in P, so has already been visited, or v will be visited while visiting «
In either case, v will be visited by DFS and will be added correctly to P [

Running Time

Algorithm visits each vertex u at most once and spends O(1) time for each v € Adj(u)

Work upper bounded by O(1) x > _,,deg(u) = O(|E|)

ueV

Unlike BFS, not returning a distance for each vertex, so DFS runs in O(|E|) time

Lecture 10: Depth-First Search 3

Full-BFS and Full-DFS

e Suppose want to explore entire graph, not just vertices reachable from one vertex

Idea! Repeat a graph search algorithm A on any unvisited vertex

Repeat the following until all vertices have been visited:

— Choose an arbitrary unvisited vertex s, use A to explore all vertices reachable from s

We call this algorithm Full- A, specifically Full-BFS or Full-DFS if A is BFS or DFS

Visits every vertex once, so both Full-BFS and Full-DFS run in O(|V| + |E|) time

Example: Run Full-DFS/Full-BFS on (G; and/or G,

G1 GQ

()
O— O O

Graph Connectivity

e An undirected graph is connected if there is a path connecting every pair of vertices

In a directed graph, vertex u may be reachable from v, but v may not be reachable from «
e Connectivity is more complicated for directed graphs (we won’t discuss in this class)
e Connectivity (G): is undirected graph G connected?

e Connected_Components (G): given undirected graph G = (V, E'), return partition of V'
into subsets V; C V' (connected components) where each V; is connected in GG and there are
no edges between vertices from different connected components

e Consider a graph algorithm A that solves Single Source Reachability
e Claim: A can be used to solve Connected Components

e Proof: Run Full-A. For each run of A, put visited vertices in a connected component [

4 Lecture 10: Depth-First Search

Topological Sort
e A Directed Acyclic Graph (DAG) is a directed graph that contains no directed cycle.

e A Topological Order of a graph G = (V| F) is an ordering f on the vertices such that:
every edge (u,v) € E satisfies f(u) < f(v).

e Exercise: Prove that a directed graph admits a topological ordering if and only if it is a DAG.
e How to find a topological order?

e A Finishing Order is the order in which a Full-DFS finishes visiting each vertex in G

e Claim: If G = (V| E) is a DAG, the reverse of a finishing order is a topological order

e Proof: Need to prove, for every edge (u,v) € E that u is ordered before v,
i.e., the visit to v finishes before visiting u. Two cases:
— If u visited before v:
« Before visit to u finishes, will visit v (via (u, v) or otherwise)
* Thus the visit to v finishes before visiting u
— If v visited before wu:

* wu can’t be reached from v since graph is acyclic
* Thus the visit to v finishes before visiting u [

Cycle Detection
e Full-DFS will find a topological order if a graph G = (V, E) is acyclic

e If reverse finishing order for Full-DFS is not a topological order, then G must contain a cycle

Check if G is acyclic: for each edge (u, v), check if v is before u in reverse finishing order

Can be done in O(|E|) time via a hash table or direct access array

To return such a cycle, maintain the set of ancestors along the path back to s in Full-DFS

Claim: If GG contains a cycle, Full-DFS will traverse an edge from v to an ancestor of v.

Proof: Consider a cycle (vg, v1, ..., 0, v) in G

Without loss of generality, let vy be the first vertex visited by Full-DFS on the cycle

For each v;, before visit to v; finishes, will visit v;; and finish

Will consider edge (v;, v;11), and if v;,; has not been visited, it will be visited now

Thus, before visit to vy finishes, will visit vy (for the first time, by vy assumption)

So, before visit to vy finishes, will consider (vy, vg), where vy is an ancestor of v, [

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

