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Instructors: Erik Demaine, Jason Ku, and Justin Solomon Quiz 1 Review 

Quiz 1 Review 

High Level 
• Need to solve large problems n with constant-sized code, correctly and efficiently 

• Analyzing running time: How to count? 

– Asymptotics 
– Recurrences (substitution, tree method, Master Theorem) 

– Model of computation: Word-RAM, Comparison 

• How to solve an algorithms problem 

– Reduce to a problem you know how to solve 

∗ Use an algorithm you know (e.g. sort) 
∗ Use a data structure you know (e.g. search) 

– Design a new recursive algorithm (harder, mostly in 6.046) 

∗ Brute Force 
∗ Decrease & Conquer 
∗ Divide & Conquer (like merge sort) 
∗ Dynamic Programming (later in 6.006!) 
∗ Greedy/Incremental 

Algorithm: Sorting 
Reduce your problem to a problem you already know how to solve using known algorithms. You 
should know how each of these sorting algorithms are implemented, as well as be able to choose 
the right algorithm for a given task. 

Algorithm Time O(·) In-place? Stable? Comments 

Insertion Sort 2n Y Y O(nk) for k-proximate 
Selection Sort 2n Y N O(n) swaps 
Merge Sort n log n N Y stable, optimal comparison 
AVL Sort n log n N Y good if also need dynamic 
Heap Sort n log n Y N low space, optimal comparison 
Counting Sort n + u N Y O(n) when u = O(n) 

Radix Sort n + n log un N Y O(n) when u = O(nc) 
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Data Structures 
Reduce your problem to using a data structure storing a set of items, supporting certain search and 
dynamic operations efficiently. You should know how each of these data structures implement the 
operations they support, as well as be able to choose the right data structure for a given task. 

Sequence data structures support extrinsic operations that maintain, query, and modify an exter-
nally imposed order on items. 

Sequence 
Operations O(·) 

Container Static Dynamic 
Data Structure build(X) get at(i) 

set at(i,x) 

insert first(x) 

delete first() 

insert last(x) 

delete last() 

insert at(i,x) 

delete at(i) 

Array n 1 n n n 

Linked List n n 1 n n 

Dynamic Array n 1 n 1(a) n 

Sequence AVL n log n log n log n log n 

Set data structures support intrinsic operations that maintain, query, and modify a set of items 
based on what the items are, i.e., based on the unique key associated with each item. 

Set 
Data Structure 

Operations O(·) 
Container Static Dynamic Order 
build(X) find(k) insert(x) 

delete(k) 

find min() 

find max() 

find prev(k) 

find next(k) 

Array n n n n n 

Sorted Array n log n log n n 1 log n 

Direct Access u 1 1 u u 

Hash Table n(e) 1(e) 1(a)(e) n n 

Set AVL n log n log n log n log n log n 

Priority Queues support a limited number of Set operations. 

Priority Queue Operations O(·) 
Data Structure build(X) insert(x) delete max() find max() 

Dynamic Array n 1(a) n n 

Sorted Dyn. Array n log n n 1(a) 1 

Set AVL n log n log n log n log n 

Binary Heap n log n(a) log n(a) 1 
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Problem Solving 
Testing Strategies 

• Read every problem first, rank them in the order of your confidence 

• For most problems, you can receive ≥ 50% of points in two sentences or less 

• Probably better to do half the problems well than all the problems poorly 

Types of problems 

Type Internals Externals Tests understanding of: 
Mechanical Y N how core material works 
Reduction N Y how to apply core material 
Modification Y Y how to adapt core material 

(augmentation, divide & conquer, amortization, etc.) 

Questions to ask: 

• Is this a Mechanical, Reduction, or Modification type problem? 

• Is this problem about data structures? sorting? both? 

• If data structures, do you need to support Sequence ops? Set ops? both? 

• If stuck, is there an easy way to get a correct but inefficient algorithm? 

Question yourself if you are: 

• Trying to compute decimals, rationals, or real numbers 

• Using Radix sort for every answer 

• Augmenting a binary tree with something other than a subtree property 

Data Structures Problems 

• First solve using Sorting or Set/Sequence interfaces, choose algorithm/data structure after 

• Describe all data structure(s) used (including what data they store) and their invariants 

• Implement every operation we ask for in terms of your data structures 

• Separate and label parts of your solution! 
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Problem 1. Restaurant Lineup (S19 Q1) 
Popular restaurant Criminal Seafood does not take reservations, but maintains a wait list where 
customers who have been on the wait list longer are seated earlier. Sometimes customers decide to 
eat somewhere else, so the restaurant must remove them from the wait list. Assume each customer 
has a different name, and no two customers are added to the wait list at the exact same time. Design 
a database to help Criminal Seafood maintain its wait list supporting the following operations, each 
in O(1) time. State whether each operation running time is worst-case, amortized, and/or expected. 

build() initialize an empty database 
add name(x) add name x to the back of the wait list 
remove name(x) remove name x from the wait list 
seat() remove and return the name of the customer from the front of the wait list 

Solution: Maintain a doubly-linked list containing customers on the wait list in order, maintaining 
a pointer to the front of the linked list corresponding to the front of the wait list, and a pointer to 
the back of the linked list corresponding to the back of the wait list. Also maintain a hash table 
mapping each customer name to the linked list node containing that customer. To implement 
add name(x), create a new linked list node containing name x and add it to the back of the 
linked list in worst-case O(1) time. Then add name x to the hash table pointing to the newly 
created node in amortized expected O(1) time. To implement remove name(x), lookup name 
x in the hash table in and remove the mapped node from the linked list in expected O(1) time. 
Lastly, to implement seat(), remove the node from the front of the linked list containing name 
x, remove name x from the hash table, and then return x, in amortized expected O(1) time. 
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Problem 2. Rainy Research (S19 Q1) 
Mether Wan is a scientist who studies global rainfall. Mether often receives data measurements 
from a large set of deployed sensors. Each collected data measurement is a triple of integers 
(r, ̀ , t), where r is a positive amount of rainfall measured at latitude ` at time t. The peak rainfall 
at latitude ` since time t is the maximum rainfall of any measurement at latitude ` measured at a 
time greater than or equal to t (or zero if no such measurement exists). Describe a database that 
can store Mether’s sensor data and support the following operations, each in worst-case O(log n) 
time where n is the number of measurements in the database at the time of the operation. 

build() initialize an empty database 
record data(r, ̀ , t) add a rainfall measurement r at latitude ` at time t 
peak rainfall(`, t) return the peak rainfall at latitude ` since time t 

Solution: Maintain a Set AVL tree L storing distinct measurement latitudes, where each latitude 
` maps to a rainfall Set AVL tree R(`) containing all measurement triples with latitude `, keyed 
by time. We only store nodes associated with measurements, so the height of each Set AVL tree 
is bounded by O(log n). For each rainfall tree, augment each node p with the maximum rainfall 
p.m of any measurement within p’s subtree. This augmentation can be maintained in constant time 
at a node p by taking the maximum of the rainfall at p and the augmented maximums of p’s left 
and right children (if they exist); thus this augmentation can be maintained without effecting the 
asymptotic running time of standard AVL tree operations. 

To implement record data(r, ̀ , t), search L for latitude ̀  in worst-case O(log n) time. If ̀  does 
not exist in L, insert a new node corresponding to ` mapping to a new empty rainfall Set AVL tree, 
also in O(log n) time. In either case, insert the measurement triple to R(`), for a total running time 
of worst-case O(log n). 

To implement peak rainfall(`, t), search L for latitude ` in worst-case O(log n) time. If 
` does not exist, return zero. Otherwise, perform a one-sided range query on R(`) to find the 
peak rainfall at latitude ` since time t. Specifically, let peak(v, t) be the maximum rainfall of any 
measurement in node v’s subtree measured at time ≥ t (or zero if v is not a node): ( 

max {v.item.r, v.right.m, peak(v.left, t)} if v.t ≥ t 
peak(v, t) = . 

peak(v.right, t) if v.t < t 

Then peak rainfall is simply peak(v, t) with v being the root of the tree, which can be computed 
using at most O(log n) recursive calls. So this operation runs in worst-case O(log n) time. 

Note, this problem can also be solved where each latitude AVL tree is keyed by rainfall, augment-
ing nodes with maximum time in subtree. We leave this as an exercise to the reader. 
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