
�

�

� �

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Session 2

Problem Session 2

Problem 1-1. Solving recurrences

Derive solutions to the following recurrences in two ways: via a recursion tree and via Master
Theorem. A solution should include the tightest upper and lower bounds that the recurrence will
allow. Assume T (1) 2 ⇥(1).

p
(a) T (n) = 2 T (n

2) + O(n)

Solution: T (n) 2 ⇥(n) by case 1 of the Master Theorem, since:

p
log2 2).O(n) ✓ O(n) = O(n

c
p
n

c
p
n 2�i

c ⇥2log n = n

⇥2i

⇥1

p
Drawing a tree, there are 2i vertices at depth i each doing at most c n 2 i work, so p
the total work at depth i is at most c 2i/2 n. Summing over the entire tree, the total plog n log nX p p X 2

c 2i/2 2i/2work is at most n = c n = cn p 2 O(n). Since ⇥(1)
2 1

i=0 i=0

work is done at each leaf, and there are n leaves, the total work is also ⌦(n) leading
to ⇥(n) running time.

p
(b) T (n) = 8 T (n

4) + O(n n)

Solution: T (n) 2 O(n3/2 log n) by case 2 of the Master Theorem, since:

p
log4 8).O(n n) = O(n 3/2) = O(n

c n3/2
⇥1

3
n 2 ⇥8i c 4i

c ⇥8log4 n 3/2= n

�

�

�

�

� �

� �

2 Problem Session 2

Drawing a tree, there are 8i vertices at depth i each doing at most c (n 4 i)
3/2

=
3/2 8 3/2c n i

work, so the total work at depth i is at most c n . Summing over the entire
log4 nX c

tree, the total work is at most c n 3/2 = n 3/2 log n 2 O(n 3/2 log n).
2

i=0

(c) T (n) = T (n
3) + T (n

4) + ⇥(n) assuming T (a) < T (b) for all a < b

Solution: By monotonicity, T (n)  2 T (n
3) + ⇥(n). Then T (n) 2 O(n) by case 3

of the Master Theorem, since ⇥(n) ⇢ ⌦(nlog3 2+✏) for some ✏ > 0 (e.g. ✏ = 1/3). On
the other hand, if we ignore the recursive component, T (n) 2 ⌦(n). Combining the
two gives T (n) 2 ⇥(n).

cn

cn3 i

c ⇥ < nlog3 2

⇥2i

⇥1

cn4 i

✓ ◆

Drawing a tree, there are 2i vertices at depth i,
i

of which do cn3 j 4j i
work (as

j
long as 3j 4j i  n). As a crude upper bound, this is at most cn3 i

, so the total work ✓ ◆i

at depth i is at most cn
2

. Summing over the entire tree, the total work is at most
3

1 ✓ ◆iX
cn

2
= 3cn 2 O(n). We have cn work at the root, giving a lower bound of

3
i=0

⌦(n). Combining the two gives a total of ⇥(n).

Problem 1-2. Stone Searching

Sanos is a supervillain on an intergalactic quest in search of an ancient and powerful artifact called
the Thoul Stone. Unfortunately she has no idea what planet the stone is on. The universe is
composed of an infinite number of planets, each identified by a unique positive integer. On each
planet is an oracle who, after some persuasion, will tell Sanos whether or not the Thoul Stone
is on a planet having a strictly higher planet identifier than their own. Interviewing every oracle
in the universe would take forever, and Sanos wants to find the Thoul Stone quickly. Supposing
the Thoul Stone resides on planet k, describe an algorithm to help Sanos find the Thoul Stone by
interviewing at most O(log k) oracles.

�

3 Problem Session 2

Solution: First observe that if we could find a planet with identifier x > k that is not too much
larger than k (specifically, x = ⇥(k)), then we would be done, as binary searching the planets from
1 to x 1 would find the value of k by visiting at most O(log x) = O(log k) oracles. It remains to
find such a planent x.

To find x, instruct Sanos to visit planets 2i starting at i = 0 until an orcale on planet x = 2i
⇤

first tells Sanos that x > k. Since x is the first planet for which 2i > k, then x/2 < k and
⇤x < 2k = ⇥(k) as desired. To reach planet x = 2i

⇤
, Sanos interviews i = dlog2 ke = ⇥(log k)

oracles, so to find k, this algorithm interviews at most O(log k) oracles as desired.

Problem 1-3. Collage Collating

Fodoby is a company that makes customized software tools for creative people. Their newest
software, Ottoshop, helps users make collages by allowing them to overlay images on top of each
other in a single document. Describe a database to keep track of the images in a given document
which supports the following operations:

1. make document(): construct an empty document containing no images

2. import image(x): add an image with unique integer ID x to the top of the document

3. display(): return an array of the document’s image IDs in order from bottom to top

4. move below(x, y): move the image with ID x directly below the image with ID y

Operation (1) should run in worst-case O(1) time, operations (2) and (3) should each run in worst-

case O(n) time, while operation (4) should run in worst-case O(log n) time, where n is the number
of images contained in a document at the time of the operation.

Solution: This database requires us to maintain a sequence of images ordered extrinsically, but also
support searching intrinsically for images based on their ID. So, we will implement the database
with a combination of both a sequence data structure, specifically a doubly linked list (as imple-

mented in PS1-4) storing image IDs, and a set data structure, specifically a sorted array storing
pairs (x, vx) sorted by x values, where x is the ID of an image, and vx is a pointer to the linked list
node containing x.

To implement make document(), simply initialize an empty linked list L and an empty sorted
array S, each in O(1) time. There is no output to this operation, so it is trivially correct.

To implement import image(x), add x to the front of L in node vx in O(1) time and add (x, vx)
to S in O(n) time. Delegating to these data structures ensures that x is added to front of the
sequence stored in L, and that S now contains (x, vx) and remains sorted after insertion.

To implement display(), construct and return an array by iterating the items of L in sequence
order which can be done in O(n).

To implement move below(x, y), use binary search to find pairs (x, vx) and (y, vy) in S, each
in O(log n) time. Then we can remove node vx from L in O(1) time and insert it after node vy,
also in O(1) time, by relinking pointers. For completeness, here is one way to relink the pointers
in a doubly linked list:

4 Problem Session 2

1 def relink(S, vx, vy):
2 if vx.prev: vx.prev.next = vx.next
3 else: S.head = vx.next
4 if vx.next: vx.next.prev = vx.prev
5 else: S.tail = vx.prev
6 vx.prev = vy
7 vx.next = vy.next
8 if vy.next: vy.next.prev = vx
9 else: S.tail = vx

10 vy.next = vx

Problem 1-4. Brick Blowing

Porkland is a community of pigs who live in n houses lined up along one side of a long, straight
street running east to west. Every house in Porkland was built from straw and bricks, but some
houses were built with more bricks than others. One day, a wolf arrives in Porkland and all the
pigs run inside their homes to hide. Unfortunately for the pigs, this wolf is extremely skilled at
blowing down pig houses, aided by a strong wind already blowing from west to east. If the wolf
blows in an easterly direction on a house containing b bricks, that house will fall down, along with
every house east of it containing strictly fewer than b bricks. For every house in Porkland, the wolf
wants to know its damage, i.e., the number of houses that would fall were he to blow on it in an
easterly direction.

(a) Suppose n = 10 and the number of bricks in each house in Porkland from west to east
is [34, 57, 70, 19, 48, 2, 94, 7, 63, 75]. Compute for this instance the
damage for every house in Porkland.

Solution: [4, 5, 6, 3, 3, 1, 4, 1, 1, 1]

(b) A house in Porkland is special if it either (1) has no easterly neighbor or (2) its adja-

cent neighbor to the east contains at least as many bricks as it does. Given an array
containing the number of bricks in each house of Porkland, describe an O(n)-time
algorithm to return the damage for every house in Porkland when all but one house
in Porkland is special.

Solution: Maintain an array D of the same size as the input array H to store updated
damages, where the ith

item of D is an integer representing the number of damages
counted so far. To add damage to the ith

house, add to the value at D[i] in O(1) time.
As each house will itself fall down when blown on, initialize every element of D to 1
in O(n) time, and count other damages using the following algorithm.

If exactly one house (say the hth
house) in Porkland is not special, that means the

subarray A from the east-most house to h non-strictly monotonically increases, as
does the subarray B from the (h + 1)th

house to the west-most house. We can find
h in O(n) time via a linear scan. The damage for any house in subarray B is 1, as
no house to the west contains strictly fewer bricks, so these values are set correctly at
initialization.

�

�

�

5 Problem Session 2

It remains to compute the damage for the houses in A. Use a two-finger algorithm
starting with one index i at the beginning of A (i = 0) and another index j at the
beginning of B (j = 0). Then repeat the following process until i = |A|: if j < |B|
and house A[i] has strictly more bricks than B[j], then increase j by 1; otherwise, add
j to the damage at D[i] and increase i by 1. This loop halts when i+j = |A|+|B| = n,
and i + j increases by one in each iteration. Since the work done in each iteration is
O(1), this algorithm runs in O(n) time.

To prove that this algorithm correctly computes the damage for each house in A we
first prove that the loop above maintains the invariant that at the start of each iteration,
A[i] > B[k] for all k 2 {0, . . . , j 1}. This property implies the algorithm computes
damage correctly for each house in A: the algorithm updates the damage for A[i] when
A[i]  B[j], so the claim implies the houses west of A[i] with strictly fewer bricks are
exactly the houses H = {B[k] | k 2 {0, . . . , j 1}} where |H| = j; so the damage
blowing on house A[i] is D[i] = j + 1 as recorded.

To prove the claim, we induct on i + j. When i + j = 0, the claim is vacuously true
as the set of possible k is empty. Now assume for induction that the claim holds for
some i + j. If A[i] > B[j], then increasing j by one directly maintains the invariant
since A[i] > B[k] for k 2 {0, . . . , j 1} by induction. Alternatively, if A[i]  B[j],
then increasing i by 1 also maintains the induction hypothesis since A[i + 1] > A[i],
proving the claim.

(c) Given an array containing the number of bricks in each house of Porkland, describe
an O(n log n)-time algorithm to return the damage for every house in Porkland.

Solution: We modify merge sort to record all damages that occur between houses
within each subarray before every merge. Since we will be moving brick values in H
from their original locations, we will replace each brick value bi = H[i] with tuples
H[i] = (bi, i), to keep track which house is associated with bi.

As in (b), initialize a damages array D to 1s. Then, recursively sort and record dam-

ages that would occur between houses in the first half of H , and then do the same for
the second half. Next use the O(n)-time algorithm from part (b) to count the damages
that would occur between one house in the first half and one house in the second half,
and then use the merge step of merge sort to combine the two sorted halves into one
sorted array in O(n) time. Since both (b) and merge take O(n) time, the recurrence
for this algorithm is the same as merge sort, yielding an O(n log n) running time.

Now we prove this algorithm correctly records the damage of every house in a given
subarray with any other house in the subarray (in addition to sorting the subarray), by
inducting on the size of the subarray. When the subarray has size 1, there is exactly
one damage between houses within that subarray, and the initialization step records
it. Alternatively, assume for induction that the claim is true for all k < n. By induc-

tion, the algorithm correctly records all damages between houses within the first half
of the subarray, and also all damages between houses within the second half. It re-

mains to record damages between houses in the left half with houses on the right half.

6 Problem Session 2

Fortunately, since the first and last halves of the subarray are sorted, the algorithm in
(b) counts exactly those damages. Then sorting using the merge step of merge sort
maintains the invariant as desired.

Note that the merge step and the algorithm in part (b) are both two finger algorithms
that traverse from the starts of the same two subarrays. Our implementation for (d)
utilizes this observation to record the damages with the merge step of merge sort,
rather than separately.

(d) Write a Python function get damages that implements your algorithm.

Solution:

1 def get_damages(H):
2 D = [1 for _ in H]
3 H2 = [(H[i], i) for i in range(len(H))]
4 def merge_sort(A, a = 0, b = None):
5 if b is None: b = len(A)
6 if 1 < b - a:
7 c = (a + b + 1) // 2
8 merge_sort(A, a, c)
9 merge_sort(A, c, b)

10 i, j, L, R = 0, 0, A[a:c], A[c:b]
11 while a < b:
12 if (j >= len(R)) or (i < len(L) and L[i][0] <= R[j][0]):
13 D[L[i][1]] += j
14 A[a] = L[i]
15 i += 1
16 else:
17 A[a] = R[j]
18 j += 1
19 a += 1
20 merge_sort(H2)
21 return D

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

