Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 2: Data Structures

Lecture 2: Data Structures

Data Structure Interfaces

e A data structure is a way to store data, with algorithms that support operations on the data

Collection of supported operations is called an interface (also API or ADT)

Interface is a specification: what operations are supported (the problem!)

Data structure is a representation: how operations are supported (the solution!)

In this class, two main interfaces: Sequence and Set

Sequence Interface (L02, L07)

e Maintain a sequence of items (order is extrinsic)
e Ex: (g, 1,2, ...,2T,—1) (zero indexing)
e (use n to denote the number of items stored in the data structure)

e Supports sequence operations:

Container | build (X) given an iterable X, build sequence from items in X
len () return the number of stored items
Static iter_seq() return the stored items one-by-one in sequence order
get_at (i) return the i item
set_at (i, x) replace the i item with
Dynamic | insert_at (i, x) | add z as the i" item
delete_at (i) remove and return the " item
insert_first (x) | add x as the first item
delete_first () remove and return the first item
insert_last (x) add z as the last item
delete_last () remove and return the last item

e Special case interfaces:

stack | insert_last (x) and delete_last ()
queue | insert_last (x) and delete_first ()

Set Interface (L03-L08)

Lecture 2: Data Structures

e Sequence about extrinsic order, set is about intrinsic order

e Maintain a set of items having unique keys (e.g., item x has key x . key)

o (Set or multi-set? We restrict to unique keys for now.)

e Often we let key of an item be the item itself, but may want to store more info than just key

e Supports set operations:

Container | build (X) given an iterable X, build sequence from items in X
len () return the number of stored items

Static find (k) return the stored item with key k

Dynamic | insert (x) add x to set (replace item with key x . key if one already exists)
delete (k) remove and return the stored item with key k

Order iter_ord() return the stored items one-by-one in key order

find_min ()
find_max ()
find_next (k)
find_prev (k)

e Special case interfaces:

dictionary

return the stored item with smallest key

return the stored item with largest key

return the stored item with smallest key larger than k
return the stored item with largest key smaller than k

set without the Order operations

e In recitation, you will be asked to implement a Set, given a Sequence data structure.

Array Sequence

e Array is great for static operations! get_at (i) and set_at (i, x) in ©(1) time!

e But not so great at dynamic operations...

o (For consistency, we maintain the invariant that array is full)

e Then inserting and removing items requires:

— reallocating the array

— shifting all items after the modified item

Operation, Worst Case O(-)
Data Container Static Dynamic
StI‘UCtUI'C build (X) get_at (1) insert_first (x) insert_last (x) insert_at (i, x)
set_at (i, x) delete_first () delete_last () delete_at (i)
Array n n n n

Lecture 2: Data Structures

Linked List Sequence

Pointer data structure (this is not related to a Python “list”)

Each item stored in a node which contains a pointer to the next node in sequence
Each node has two fields: node.item and node.next

Can manipulate nodes simply by relinking pointers!

Maintain pointers to the first node in sequence (called the head)

Can now insert and delete from the front in ©(1) time! Yay!

(Inserting/deleting efficiently from back is also possible; you will do this in PS1)
But now get_at (i) and set_at (i, x) each take O(n) time... :(

Can we get the best of both worlds? Yes! (Kind of...)

Operation, Worst Case O(-)
Data Container Static Dynamic
Structure build (X) get_at (1) insert_first (x) insert_last (x) insert_at (i, x)
set_at (i, x) delete_first () delete_last () delete_at (1)
Linked List n n 1 n n

Dynamic Array Sequence

Make an array efficient for last dynamic operations

Python “list” is a dynamic array

Idea! Allocate extra space so reallocation does not occur with every dynamic operation
Fill ratio: 0 < r < 1 the ratio of items to space

Whenever array is full (r = 1), allocate ©(n) extra space at end to fill ratio r; (e.g., 1/2)
Will have to insert O(n) items before the next reallocation

A single operation can take ©(n) time for reallocation

However, any sequence of ©(n) operations takes ©(n) time

So each operation takes O(1) time “on average”

Lecture 2: Data Structures

Amortized Analysis

Data structure analysis technique to distribute cost over many operations
Operation has amortized cost 7'(n) if k operations cost at most < k7'(n)
“T'(n) amortized” roughly means 7'(n) “on average” over many operations
Inserting into a dynamic array takes © (1) amortized time

More amortization analysis techniques in 6.046!

Dynamic Array Deletion

Delete from back? ©(1) time without effort, yay!

However, can be very wasteful in space. Want size of data structure to stay ©(n)
Attempt: if very empty, resize to » = 1. Alternating insertion and deletion could be bad...
Idea! When r < 7,4, resize array to ratio r; where rq < r; (e.g.,rq = 1/4, 17, = 1/2)

Then O(n) cheap operations must be made before next expensive resize

Td—‘rl)

Can limit extra space usage to (1 + ¢)n for any £ > 0 (set rg = 5

1 _
e i =
Dynamic arrays only support dynamic last operations in ©(1) time

Python List append and pop are amortized O(1) time, other operations can be O(n)!

(Inserting/deleting efficiently from front is also possible; you will do this in PS1)

Operation, Worst Case O(-)
Data Container Static Dynamic
Structure build (X) get_at (i) insert_first (x) | insert_last (x) | insert_at (i, x)
set_at (i, x) delete_first () delete_last () delete_at (1)
Array n 1 n n n
Linked List n n 1 n n
Dynamic Array n 1 n 1) n

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	L02.pdf
	cover.pdf
	Blank Page

