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Recitation 19: Complexity 

0-1 Knapsack Revisited
• 0-1 Knapsack

– Input: Knapsack with volume S, want to fill with items: item i has size si and value vi.P P 
– Output: A subset of items (may take 0 or 1 of each) with si ≤ S maximizing vi

– Solvable in O(nS) time via dynamic programming

• How does running time compare to input?

– What is size of input? If numbers written in binary, input has size O(n log S) bits
– Then O(nS) runs in exponential time compared to the input
– If numbers polynomially bounded, S = nO(1), then dynamic program is polynomial
– This is called a pseudopolynomial time algorithm

• Is 0-1 Knapsack solvable in polynomial time when numbers not polynomially bounded?

• No if P 6= NP. What does this mean? (More Computational Complexity in 6.045 and 6.046)

Decision Problems 

• Decision problem: assignment of inputs to No (0) or Yes (1)

• Inputs are either No instances or Yes instances (i.e. satisfying instances)

Problem 

s-t Shortest Path Does a given G contain a path from s to t with weight at most d? 

Negative Cycle Does a given G contain a negative weight cycle? 

Longest Path Does a given G contain a simple path with weight at least d? 

Subset Sum Does a given set of integers A contain a subset with sum S? 

Tetris Can you survive a given sequence of pieces? 

Chess Can a player force a win from a given board? 

Halting problem Does a given computer program terminate for a given input? 

Decision 

• Algorithm/Program: constant length code (working on a word-RAM with Ω(log n)-bit
words) to solve a problem, i.e., it produces correct output for every input and the length of
the code is independent of the instance size

• Problem is decidable if there exists a program to solve the problem in finite time
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Decidability 

• Program is finite string of bits, problem is function p : N → {0, 1}, i.e. infinite string of bits 

• (# of programs |N|, countably infinite) � (# of problems |R|, uncountably infinite) 

• (Proof by Cantor’s diagonal argument, probably covered in 6.042) 

• Proves that most decision problems not solvable by any program (undecidable) 

• e.g. the Halting problem is undecidable (many awesome proofs in 6.045) 

• Fortunately most problems we think of are algorithmic in structure and are decidable 

Decidable Problem Classes 

R problems decidable in finite time ‘R’ comes from recursive languages 

EXP problems decidable in exponential time 2nO(1) most problems we think of are here 

P problems decidable in polynomial time nO(1) efficient algorithms, the focus of this class 

• These sets are distinct, i.e. P ( EXP ( R (via time hierarchy theorems, see 6.045) 

Nondeterministic Polynomial Time (NP) 
• P is the set of decision problems for which there is an algorithm A such that for every 

instance I of size n, A on I runs in poly(n) time and solves I correctly 

• NP is the set of decision problems for which there is an algorithm V , a “verifier”, that takes 
as input an instance I of the problem, and a “certificate” bit string of length polynomial in 
the size of I , so that: 

– V always runs in time polynomial in the size of I , 

– if I is a YES-instance, then there is some certificate c so that V on input (I, c) returns 
YES, and 

– if I is a NO-instance, then no matter what c is given to V together with I , V will always 
output NO on (I, c). 

• You can think of the certificate as a proof that I is a YES-instance. If I is actually a NO-
instance then no proof should work. 
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Problem Certificate Verifier 

s-t Shortest Path 

Negative Cycle 

Longest Path 

Subset Sum 

Tetris 

A path P from s to t 

A cycle C 

A path P 

A set of items A0 

Sequence of moves 

Adds the weights on P and checks if ≤ d 

Adds the weights on C and checks if < 0 

Checks if P is a simple path with weight at least d 

Checks if A0 ∈ A has sum S 

Checks that the moves allow survival 

• P ⊂ NP (if you can solve the problem, the solution is a certificate) 

• Open: Does P = NP? NP = EXP? 

• Most people think P ( NP (( EXP), i.e.,t generating solutions harder than checking 

• If you prove either way, people will give you lots of money. ($1M Millennium Prize) 

• Why do we care? If can show a problem is hardest problem in NP, 
then problem cannot be solved in polynomial time if P 6= NP 

• How do we relate difficulty of problems? Reductions! 

Reductions 

• Suppose you want to solve problem A 

• One way to solve is to convert A into a problem B you know how to solve 

• Solve using an algorithm for B and use it to compute solution to A 

• This is called a reduction from problem A to problem B (A → B) 

• Because B can be used to solve A, B is at least as hard (A ≤ B) 

• General algorithmic strategy: reduce to a problem you know how to solve 

A Conversion B 

Unweighted Shortest Path 

Product Weighted Shortest Path 

Sum Weighted Shortest Path 

Give equal weights 

Logarithms 

Exponents 

Weighted Shortest Path 

Sum Weighted Shortest Path 

Product Weighted Shortest Path 

• Problem A is NP-Hard if every problem in NP is polynomially reducible to A 

• i.e. A is at least as hard as (can be used to solve) every problem in NP (X ≤ A for X ∈ NP) 

• NP-Complete = NP ∩ NP-Hard 
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• All NP-Complete problems are equivalent, i.e. reducible to each other 

• First NP-Complete? Every decision problem reducible to satisfying a logical circuit. 

• Longest Path, Tetris are NP-Complete, Chess is EXP-Complete 

EXP-Complete Problem Difficulty
(informal)

P NP EXP R

NP-Hard EXP-Hard

NP-Complete

0-1 Knapsack is NP-Hard 

• Reduce known NP-Hard Problem to 0-1 Knapsack: Partition 

– Input: List of n numbers ai 
– Output: Does there exist a partition into two sets with equal sum? P 

• Reduction: si = vi = ai, S = 
2
1 ai 

• 0-1 Knapsack at least as hard as Partition, so since Partition is NP-Hard, so is 0-1 Knapsack 

• 0-1 Knapsack in NP, so also NP-Complete 
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