Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 19: Complexity

Recitation 19: Complexity

0-1 Knapsack Revisited
e 0-1 Knapsack

— Input: Knapsack with volume .S, want to fill with items: item ¢ has size s; and value v;.
— Output: A subset of items (may take 0 or 1 of each) with > s; < .S maximizing > v;

— Solvable in O(n.S) time via dynamic programming

e How does running time compare to input?

What is size of input? If numbers written in binary, input has size O(n log S) bits

Then O(n.S) runs in exponential time compared to the input
— If numbers polynomially bounded, S = n°", then dynamic program is polynomial

— This is called a pseudopolynomial time algorithm
e [s 0-1 Knapsack solvable in polynomial time when numbers not polynomially bounded?

e No if P 7 NP. What does this mean? (More Computational Complexity in 6.045 and 6.046)

Decision Problems
e Decision problem: assignment of inputs to No (0) or Yes (1)
e Inputs are either No instances or Yes instances (i.e. satisfying instances)

Problem | Decision

s-t Shortest Path | Does a given G contain a path from s to ¢ with weight at most d?
Negative Cycle | Does a given GG contain a negative weight cycle?
Longest Path | Does a given GG contain a simple path with weight at least d?
Subset Sum | Does a given set of integers A contain a subset with sum S?
Tetris | Can you survive a given sequence of pieces?
Chess | Can a player force a win from a given board?

Halting problem | Does a given computer program terminate for a given input?

e Algorithm/Program: constant length code (working on a word-RAM with Q(logn)-bit
words) to solve a problem, i.e., it produces correct output for every input and the length of
the code is independent of the instance size

e Problem is decidable if there exists a program to solve the problem in finite time

Recitation 20: Complexity 2

Decidability
e Program is finite string of bits, problem is function p : N — {0, 1}, i.e. infinite string of bits

e (# of programs |N|, countably infinite) < (# of problems |R|, uncountably infinite)

(Proof by Cantor’s diagonal argument, probably covered in 6.042)

Proves that most decision problems not solvable by any program (undecidable)

e.g. the Halting problem is undecidable (many awesome proofs in 6.045)

Fortunately most problems we think of are algorithmic in structure and are decidable

Decidable Problem Classes

R | problems decidable in finite time ‘R’ comes from recursive languages
EXP | problems decidable in exponential time 27° most problems we think of are here

o(1)

P | problems decidable in polynomial time n efficient algorithms, the focus of this class

e These sets are distinct, i.e. P C EXP C R (via time hierarchy theorems, see 6.045)

Nondeterministic Polynomial Time (NP)

e P is the set of decision problems for which there is an algorithm A such that for every
instance [of size n, A on [runs in poly(n) time and solves I correctly

e NP is the set of decision problems for which there is an algorithm V, a “verifier”, that takes
as input an instance / of the problem, and a “certificate” bit string of length polynomial in
the size of I, so that:

— V always runs in time polynomial in the size of I,

— if I is a YES-instance, then there is some certificate ¢ so that V' on input (1, ¢) returns
YES, and

— if I is a NO-instance, then no matter what c is given to V' together with 7, V' will always
output NO on (7, ¢).

e You can think of the certificate as a proof that / is a YES-instance. If I is actually a NO-
instance then no proof should work.

Recitation 20: Complexity 3

Problem | Certificate Verifier
s-t Shortest Path | A path P from s tot¢ | Adds the weights on P and checks if < d
Negative Cycle | A cycle C' Adds the weights on C' and checks if < 0
Longest Path | A path P Checks if P is a simple path with weight at least d
Subset Sum | A set of items A’ Checks if A" € A has sum S
Tetris | Sequence of moves | Checks that the moves allow survival

P C NP (if you can solve the problem, the solution is a certificate)

Open: Does P = NP? NP = EXP?

Most people think P C NP (C EXP), i.e.,t generating solutions harder than checking

If you prove either way, people will give you lots of money. ($1M Millennium Prize)

Why do we care? If can show a problem is hardest problem in NP,
then problem cannot be solved in polynomial time if P # NP

How do we relate difficulty of problems? Reductions!

Reductions

e Suppose you want to solve problem A

One way to solve is to convert A into a problem B you know how to solve

Solve using an algorithm for B and use it to compute solution to A

This is called a reduction from problem A to problem B (A — B)

Because B can be used to solve A, B is at least as hard (A < B)

General algorithmic strategy: reduce to a problem you know how to solve

A Conversion B

Unweighted Shortest Path Give equal weights | Weighted Shortest Path
Product Weighted Shortest Path | Logarithms Sum Weighted Shortest Path
Sum Weighted Shortest Path Exponents Product Weighted Shortest Path

e Problem A is NP-Hard if every problem in NP is polynomially reducible to A
e i.e. Ais atleast as hard as (can be used to solve) every problem in NP (X < A for X € NP)

e NP-Complete = NP N NP-Hard

Recitation 20: Complexity

e All NP-Complete problems are equivalent, i.e. reducible to each other

e First NP-Complete? Every decision problem reducible to satisfying a logical circuit.

e Longest Path, Tetris are NP-Complete, Chess is EXP-Complete

NP-Hard EXP-Hard
—— ——

- NP-Complete \ | EXP-Complete - Problem Difficulty
- <_T <_T : (informal)
! -
P NP EXP R

0-1 Knapsack is NP-Hard

e Reduce known NP-Hard Problem to 0-1 Knapsack: Partition

— Input: List of » numbers a;

— Output: Does there exist a partition into two sets with equal sum?

e Reduction: s, = v; = a;, S = 1 >

)

e (-1 Knapsack at least as hard as Partition, so since Partition is NP-Hard, so is 0-1 Knapsack

e 0-1 Knapsack in NP, so also NP-

Complete

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

