

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Recitation 19: Complexity

Recitation 19: Complexity

0-1 Knapsack Revisited
• 0-1 Knapsack

– Input: Knapsack with volume S, want to fill with items: item i has size si and value vi.P P
– Output: A subset of items (may take 0 or 1 of each) with si ≤ S maximizing vi

– Solvable in O(nS) time via dynamic programming

• How does running time compare to input?

– What is size of input? If numbers written in binary, input has size O(n log S) bits
– Then O(nS) runs in exponential time compared to the input
– If numbers polynomially bounded, S = nO(1), then dynamic program is polynomial
– This is called a pseudopolynomial time algorithm

• Is 0-1 Knapsack solvable in polynomial time when numbers not polynomially bounded?

• No if P 6= NP. What does this mean? (More Computational Complexity in 6.045 and 6.046)

Decision Problems

• Decision problem: assignment of inputs to No (0) or Yes (1)

• Inputs are either No instances or Yes instances (i.e. satisfying instances)

Problem

s-t Shortest Path Does a given G contain a path from s to t with weight at most d?

Negative Cycle Does a given G contain a negative weight cycle?

Longest Path Does a given G contain a simple path with weight at least d?

Subset Sum Does a given set of integers A contain a subset with sum S?

Tetris Can you survive a given sequence of pieces?

Chess Can a player force a win from a given board?

Halting problem Does a given computer program terminate for a given input?

Decision

• Algorithm/Program: constant length code (working on a word-RAM with Ω(log n)-bit
words) to solve a problem, i.e., it produces correct output for every input and the length of
the code is independent of the instance size

• Problem is decidable if there exists a program to solve the problem in finite time

2 Recitation 20: Complexity

Decidability

• Program is finite string of bits, problem is function p : N → {0, 1}, i.e. infinite string of bits

• (# of programs |N|, countably infinite) � (# of problems |R|, uncountably infinite)

• (Proof by Cantor’s diagonal argument, probably covered in 6.042)

• Proves that most decision problems not solvable by any program (undecidable)

• e.g. the Halting problem is undecidable (many awesome proofs in 6.045)

• Fortunately most problems we think of are algorithmic in structure and are decidable

Decidable Problem Classes

R problems decidable in finite time ‘R’ comes from recursive languages

EXP problems decidable in exponential time 2nO(1) most problems we think of are here

P problems decidable in polynomial time nO(1) efficient algorithms, the focus of this class

• These sets are distinct, i.e. P (EXP (R (via time hierarchy theorems, see 6.045)

Nondeterministic Polynomial Time (NP)
• P is the set of decision problems for which there is an algorithm A such that for every

instance I of size n, A on I runs in poly(n) time and solves I correctly

• NP is the set of decision problems for which there is an algorithm V , a “verifier”, that takes
as input an instance I of the problem, and a “certificate” bit string of length polynomial in
the size of I , so that:

– V always runs in time polynomial in the size of I ,

– if I is a YES-instance, then there is some certificate c so that V on input (I, c) returns
YES, and

– if I is a NO-instance, then no matter what c is given to V together with I , V will always
output NO on (I, c).

• You can think of the certificate as a proof that I is a YES-instance. If I is actually a NO-
instance then no proof should work.

3 Recitation 20: Complexity

Problem Certificate Verifier

s-t Shortest Path

Negative Cycle

Longest Path

Subset Sum

Tetris

A path P from s to t

A cycle C

A path P

A set of items A0

Sequence of moves

Adds the weights on P and checks if ≤ d

Adds the weights on C and checks if < 0

Checks if P is a simple path with weight at least d

Checks if A0 ∈ A has sum S

Checks that the moves allow survival

• P ⊂ NP (if you can solve the problem, the solution is a certificate)

• Open: Does P = NP? NP = EXP?

• Most people think P (NP ((EXP), i.e.,t generating solutions harder than checking

• If you prove either way, people will give you lots of money. ($1M Millennium Prize)

• Why do we care? If can show a problem is hardest problem in NP,
then problem cannot be solved in polynomial time if P 6= NP

• How do we relate difficulty of problems? Reductions!

Reductions

• Suppose you want to solve problem A

• One way to solve is to convert A into a problem B you know how to solve

• Solve using an algorithm for B and use it to compute solution to A

• This is called a reduction from problem A to problem B (A → B)

• Because B can be used to solve A, B is at least as hard (A ≤ B)

• General algorithmic strategy: reduce to a problem you know how to solve

A Conversion B

Unweighted Shortest Path

Product Weighted Shortest Path

Sum Weighted Shortest Path

Give equal weights

Logarithms

Exponents

Weighted Shortest Path

Sum Weighted Shortest Path

Product Weighted Shortest Path

• Problem A is NP-Hard if every problem in NP is polynomially reducible to A

• i.e. A is at least as hard as (can be used to solve) every problem in NP (X ≤ A for X ∈ NP)

• NP-Complete = NP ∩ NP-Hard

4 Recitation 20: Complexity

• All NP-Complete problems are equivalent, i.e. reducible to each other

• First NP-Complete? Every decision problem reducible to satisfying a logical circuit.

• Longest Path, Tetris are NP-Complete, Chess is EXP-Complete

EXP-Complete Problem Difficulty
(informal)

P NP EXP R

NP-Hard EXP-Hard

NP-Complete

0-1 Knapsack is NP-Hard

• Reduce known NP-Hard Problem to 0-1 Knapsack: Partition

– Input: List of n numbers ai
– Output: Does there exist a partition into two sets with equal sum? P

• Reduction: si = vi = ai, S =
2
1 ai

• 0-1 Knapsack at least as hard as Partition, so since Partition is NP-Hard, so is 0-1 Knapsack

• 0-1 Knapsack in NP, so also NP-Complete

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

