
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Session 9

Problem Session 9

Problem 9-1. Coin Crafting

Ceal Naffrey is a thief in desperate need of money. He recently acquired n identical gold coins. Each
coin has distinctive markings that would easily identify them as stolen if sold. However, using his amateur
craftsman skills, Cael can melt down gold coins to craft other golden objects. Ceal has a buyer willing
to purchase golden objects at different rates, but will only purchase one of any object. Ceal has compiled
a list of the n golden objects, listing both the positive integer purchase price the buyer would be willing
to pay for each object and each object’s positive integer melting number: the number of gold coins that
would need to be melted to craft that object. Given this list, describe an efficient algorithm to determine the
maximum revenue that Ceal could make, by melting down his coins to craft into golden objects to sell to his
buyer.

Problem 9-2. Career Fair Optimization

Tim the Beaver always attends the career fair, not to find a career, but to collect free swag. There are n
booths at the career fair, each giving out one known type of swag. To collect a single piece of swag from
booth i, having integer coolness ci and integer weight wi, requires standing in line at that booth for integer
ti minutes. After obtaining a piece of swag from one booth, it will take Tim exactly 1 minute to get back in
line at the same booth or any other. Tim’s backpack can hold at most weight b in swag; but at any time Tim
may spend integer h minutes to run home, empty the backpack, and return to the fair, taking 1 additional
minute to get back in a line. Given that the career fair lasts exactly k minutes, describe an O(nbk)-time
algorithm to determine the maximum total coolness of swag Tim can collect during the career fair.

Problem 9-3. Protein Parsing

Prof. Leric Ander’s lab performs experiments on DNA. After experimenting on any strand of DNA (a se-
quence of nucleotides, either A, C, G, or T), the lab will cut it up so that any useful protein markers can be
used in future experiments. Ander’s lab has compiled a list P of known protein markers, where each protein
marker corresponds to a sequence of at most k nucleotides. A division of a DNA strand S is an ordered
sequence D = (d1, . . . , dm) of DNA strands, where the ordered concatenation of D results in S. The value
of a division D is the number of DNA strands in D that appear as protein markers in P . Given a DNA strand
S and set of protein markers P , describe an O(k(|P | + k|S|))-time algorithm to determine the maximum
value of any division of S.

Problem 9-4. Lazy Egg Drop

The classic egg drop problem asks for the minimum number of drops needed to determine the breaking floor
of a building with n floors using at most k eggs, where the breaking floor is the lowest floor from which
an egg could be dropped and break. This problem has a closed form solution, but can also be solved with
dynamic programming (Exercise!). However, if the building does not have an elevator, one might instead
want to minimize the total drop height: the sum of heights from which eggs are dropped. Suppose each of
the n floors of the building has a known positive integer height hi, where floor heights strictly increase with
i. Given these heights, describe an O(n3k)-time algorithm to return the minimum total drop height required
to determine the breaking floor of the building using at most k eggs.

2 Problem Session 9

Problem 9-5. Building a Wall

The pigs in Porkland from Problem Session 2, have decided to build a stone wall along their southern border
for protection against the menacing wolf. The wall will be one meter thick, n meters long, and at most k
meters tall. The wall will be built from a large supply of identical long stones: each a 1 × 1 × 2 meter rect-
angular prism. Long stones may be placed either vertically or horizontally in the wall. With much difficulty,
a single long stone can be broken into two 1-meter cube stones, but the pigs prefer not using cube stones
when possible.

The ground along the southern border of Porkland is uneven, but the pigs have leveled each square meter
along the border to an integer meter elevation. Let a border plan be an n × k array B correspond to what
the border looks like before a wall has been built. B[j][i] corresponds to the cubic meter whose top is at
elevation k − j, located at meter i along the border. B[j][i] is ’.’ if that cubic meter is empty and must
be covered by a stone, and ’#’ if that cubic meter is dirt, so should not be covered. B has the property that
if B[j][i] is covered by dirt, so is every cubic meter B[t][i] beneath it (for t ∈ {j, . . . , k − 1}), where
the top-most cubic meter B[0][i] in each column is initially empty. Below is an example B for n = 10
and k = 5.

A placement of stones into border plan B is a set of placement triples:

• (i,j,’1’) places a cube stone to cover B[j][i];

• (i,j,’D’) places a long stone oriented down to cover B[j][i] and B[j + 1][i]; and

• (i,j,’R’) places a long stone oriented right to cover B[j][i] and B[j][i + 1].

A placement is complete if every empty cubic meter in B is covered by some stone; and is non-overlapping
if no cubic meter is covered by more than one stone and no stone overlaps dirt. Below is a complete non-
overlapping placement for B that uses 2 cube stones, and a pictorial depiction.

1 B = [P = [
2 ’..........’, (0,0,’D’), (0,2,’D’), (0,4,’R’), (1,0,’R’), (1,1,’R’),
3 ’..........’, (1,2,’1’), (1,3,’R’), (2,2,’R’), (3,0,’D’), (3,3,’R’),
4 ’..........’, (3,4,’R’), (4,0,’R’), (4,1,’R’), (4,2,’R’), (6,0,’D’),
5 ’.....#.##.’, (6,2,’R’), (6,3,’1’), (7,0,’D’), (8,0,’D’), (8,2,’R’),
6 ’..#..####.’, (9,0,’D’), (9,3,’D’),
7]]

0
0 1 2 3 4 5 6 7 8 9

1

2

3

4

(a) Given n × k border plan B, describe an O(22kkn)-time algorithm to return a complete non-
overlapping placement for B using the fewest cube stones possible.

(b) Write a Python function build wall(B) that implements your algorithm from (a) for border
plans with k = 5.

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

