
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Session 5

Problem Session 5

Problem 5-1. Graph Radius

In any undirected graph G = (V, E), the eccentricity �(u) of a vertex u ∈ V is the shortest distance to its
farthest vertex v, i.e., �(u) = max{δ(u, v) | v ∈ V }. The radius R(G) of an undirected graph G = (V, E)
is the smallest eccentricity of any vertex, i.e., R(G) = min{�(u) | u ∈ V }.

(a) Given connected undirected graph G, describe an O(|V ||E|)-time algorithm to determine the
radius of G.

(b) Given connected undirected graph G, describe an O(|E|)-time algorithm to determine an upper
bound R∗ on the radius of G, such that R(G) ≤ R∗ ≤ 2R(G).

Problem 5-2. Internet Investigation

MIT has heard complaints regarding the speed of their WiFi network. The network consists of r routers,
some of which are marked as entry points which are connected to the rest of the internet. Some pairs of
routers are directly connected to each other via bidirectional wires. Each wire wi between two routers has
a known length ` i measured in a positive integer number of feet. The latency of a router in the network is
proportional to the minimum feet of wire a signal from the router must pass through to reach an entry point.
Assume the latency of every router is finite and there is at most 100r feet of wire in the entire network.
Given a schematic of the network depicting all routers and the lengths of all wires, describe an O(r)-time
algorithm to determine the sum total latency, summed over all routers in the network.

Problem 5-3. Quadwizard Quest

Wizard Potry Harter and her three wizard friends have been tasked with searching every room of a Labyrinth
for magical artifacts. The Labyrinth consists of n rooms, where each room has at most four doors leading to
other rooms. Assume all doors begin closed and every room in the Labyrinth is reachable from a specified
entry room by traversing doors between rooms. Some doors are protected by evil enchantments that must
be disenchanted before they can be opened; but all other doors may be opened freely. Given a map of
the Labyrinth marking each door as enchanted or not, describe an O(n)-time algorithm to determine the
minimum number of doors that must be disenchanted in order to visit every room of the Labyrinth, beginning
from the entry room.

Problem 5-4. Purity Atlantic

Brichard Ranson is the founder of Purity Atlantic, an international tour company that specializes in planning
luxury honeymoon getaways for newlywed couples. To book a customized tour, a couple submits their home
city, and the names of three touring cities they would like to visit during their honeymoon. Then Purity will
arrange all accommodations, including a flight itinerary: a sequence of flights from their home to each
touring city (in any order), then returning back to their home. Unfortunately, it’s not always possible to fly
directly between any two cities, so multiple flights may be required. While cost and time are not a factor,
couples prefer to minimize the number of direct flights they will have to take during their honeymoon. Given
a list of c cities and a list of all f available direct flights, where each direct flight is specified by an ordered
pair of cities (origin, destination), describe an efficient algorithm to determine a flight itinerary for a given
couple that minimizes the number of direct flights they will have to take.

2 Problem Session 5

Problem 5-5. Pocket Cube

A Pocket Cube1 is a smaller 2 × 2 × 2 variant of the traditional 3 × 3 × 3 Rubik’s cube, consisting of eight
corner cubes, each with a different color on its three visible faces. The solved configuration is when each
2 × 2 face of the Pocket Cube is monochromatic. We reference each color ci with an index i ∈ {0, . . . , 5}.
Without loss of generality, we fix the position and orientation of one of the corner cubes and only allow
single-turn rotations about the normals of the three faces of the Pocket Cube {f0, f1, f2} that do not contain
the fixed corner cube; specifically, a move is described by tuple (j, s) corresponding to a single-turn rotation
of face fj , clockwise when s = 1 and counterclockwise when s = −1. Breadth-first search can be used to
solve puzzles like the Pocket Cube by searching a graph whose vertices are possible configurations of the
puzzle, with an edge between two configurations if one can be reached from the other via a single move.
Instead of storing these adjacencies explicitly, one can compute the neighbors of a given configruation by
applying all possible single moves to the configuration.

f0
f1

f1

f2

c0 c0
c0 c0

c1
c1

c1
c1

c2 c2
c2 c2

c3 c3
c3 c3

c4
c4

c4
c4

c5
c5

c5
c5

f0 Solved
State

Fixed Fixed

f2

(a) Argue that the number of distinct configurations of a Pocket Cube is less than 12 million (try to
get as tight a bound as you can using combinatorics).

(b) State the max and min degree of any vertex in the Pocket Cube graph.

(c) In your problem set template is code that fully explores the Pocket Cube graph from a given
configuration using breadth-first search, and then returns a sequence of moves that solves the
Pocket Cube (assuming the solved configuration is reachable). However, this solver is very
slow2. Run the code provided and state the number of configurations the search explores. How
does this number compare to your upper bound from part (a)?

(d) State the max number of moves w needed to solve any solvable Pocket Cube.

(e) Let Ni be the number of Pocket Cube configurations reachable within i moves of the a particu-
lar configuration. The code provided visits Nw configurations (which is larger than 3 million).
Describe an algorithm to find a shortest sequence of moves to solve any Pocket Cube configura-
tion (or return no such sequence exists) that visits no more than 2Ndw/2e configurations (which
is less than 90 thousand).

(f) Rewrite the solve(config) function in the template code provided, based on your algorithm
from part (e).

1http://en.wikipedia.org/wiki/Pocket_Cube
2Please note that the code requires a couple minutes and considerable memory (over 400 Mb) to complete.

http://en.wikipedia.org/wiki/Pocket_Cube

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

3 Problem Session 5

----------------------------------- #
REWRITE SOLVE IMPLEMENTING PART (e) #
----------------------------------- #
def solve(config):

Return a sequence of moves to solve config, or None if not possible

Fully explore graph using BFS
parent, frontier = {config: None}, [config]
while len(frontier) != 0:

frontier = explore_frontier(frontier, parent, True)
print(’Searched %s reachable configurations’ % len(parent))

Check whether solved state visited and reconstruct path
if SOLVED in parent:

path = path_to_config(SOLVED, parent)
return moves_from_path(path)

return None

--------------------------------------- #
READ, BUT DO NOT MODIFY CODE BELOW HERE #
--------------------------------------- #
Pocket Cube configurations are represented by length 24 strings
Each character repesents the color of a small cube face
Faces are layed out in reading order of a Latin cross unfolding of the cube

SOLVED = ’000011223344112233445555’

def config_str(config):
Return config string representation as a Latin cross unfolding
return """

%s%s
%s%s

%s%s%s%s%s%s%s%s
%s%s%s%s%s%s%s%s
%s%s
%s%s

""" % tuple(config)

def shift(A, d, ps):
Circularly shift values at indices ps in list A by d positions
values = [A[p] for p in ps]
k = len(ps)
for i in range(k):

A[ps[i]] = values[(i - d) % k]

def rotate(config, face, sgn):
Returns new config by rotating input face of input config
Rotation is clockwise if sgn == 1, counterclockwise if sgn == -1
assert face in (0, 1, 2)
assert sgn in (-1, 1)
if face is None: return config
new_config = list(config)
if face == 0:

shift(new_config, 1*sgn, [0,1,3,2])
shift(new_config, 2*sgn, [11,10,9,8,7,6,5,4])

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

4 Problem Session 5

elif face == 1:
shift(new_config, 1*sgn, [4,5,13,12])
shift(new_config, 2*sgn, [0,2,6,14,20,22,19,11])

elif face == 2:
shift(new_config, 1*sgn, [6,7,15,14])
shift(new_config, 2*sgn, [2,3,8,16,21,20,13,5])

return ’’.join(new_config)

def neighbors(config):
Return neighbors of config
ns = []
for face in (0, 1, 2):

for sgn in (-1, 1):
ns.append(rotate(config, face, sgn))

return ns

def explore_frontier(frontier, parent, verbose = False):
Explore frontier, adding new configs to parent and new_frontier
Prints size of frontier if verbose is True
if verbose:

print(’Exploring next frontier containing # configs: %s’ % len(frontier))
new_frontier = []
for f in frontier:

for config in neighbors(f):
if config not in parent:

parent[config] = f
new_frontier.append(config)

return new_frontier

def path_to_config(config, parent):
Return path of configurations from root of parent tree to config
path = [config]
while path[-1] is not None:

path.append(parent[path[-1]])
path.pop()
path.reverse()
return path

def moves_from_path(path):
Given path of configurations, return list of moves relating them
Returns None if any adjacent configs on path are not related by a move
moves = []
for i in range(1, len(path)):

move = None
for face in (0, 1, 2):

for sgn in (-1, 1):
if rotate(path[i - 1], face, sgn) == path[i]:

move = (face, sgn)
moves.append(move)

if move is None:
return None

return moves

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

5 Problem Session 5

def path_from_moves(config, moves):
Return the path of configurations from input config applying input moves
path = [config]
for move in moves:

face, sgn = move
config = rotate(config, face, sgn)
path.append(config)

return path

def scramble(config, n):
Returns new configuration by appling n random moves to config
from random import randint
for _ in range(n):

ns = neighbors(config)
i = randint(0, 2)
config = ns[i]

return config

def check(config, moves, verbose = False):
Checks whether applying moves to config results in the solved config
if verbose:

print(’Making %s moves from starting configuration:’ % len(moves))
path = path_from_moves(config, moves)
if verbose:

print(config_str(config))
for i in range(1, len(path)):

face, sgn = moves[i - 1]
direction = ’clockwise’
if sgn == -1:

direction = ’counterclockwise’
if verbose:

print(’Rotating face %s %s:’ % (face, direction))
print(config_str(path[i]))

return path[-1] == SOLVED

def test(config):
print(’Solving configuration:’)
print(config_str(config))
moves = solve(config)
if moves is None:

print(’Path to solved state not found... :(’)
return

print(’Path to solved state found!’)
if check(config, moves):

print(’Move sequence terminated at solved state!’)
else:

print(’Move sequence did not terminate at solved state... :(’)

if __name__ == ’__main__’:
config = scramble(SOLVED, 100)
test(config)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

