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Lecture 8: Binary Heaps 

Priority Queue Interface 

• Keep track of many items, quickly access/remove the most important 

– Example: router with limited bandwidth, must prioritize certain kinds of messages 

– Example: process scheduling in operating system kernels 

– Example: discrete-event simulation (when is next occurring event?) 

– Example: graph algorithms (later in the course) 

• Order items by key = priority so Set interface (not Sequence interface) 

• Optimized for a particular subset of Set operations: 

build(X) build priority queue from iterable X 
insert(x) add item x to data structure 
delete max() remove and return stored item with largest key 
find max() return stored item with largest key 

• (Usually optimized for max or min, not both) 

• Focus on insert and delete max operations: build can repeatedly insert; 
find max() can insert(delete min()) 

Priority Queue Sort 
• Any priority queue data structure translates into a sorting algorithm: 

– build(A), e.g., insert items one by one in input order 

– Repeatedly delete min() (or delete max()) to determine (reverse) sorted order 

• All the hard work happens inside the data structure 

• Running time is Tbuild + n · Tdelete max ≤ n · Tinsert + n · Tdelete max 

• Many sorting algorithms we’ve seen can be viewed as priority queue sort: 

Priority Queue Operations O(·) Priority Queue Sort 
Data Structure build(A) insert(x) delete max() Time In-place? 
Dynamic Array n 1(a) n 2n Y 
Sorted Dynamic Array n log n n 1(a) 

2n Y 
Set AVL Tree n log n log n log n n log n N 

Goal n log n(a) log n(a) n log n Y 

Selection Sort 
Insertion Sort 
AVL Sort 

Heap Sort 
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Priority Queue: Set AVL Tree 

• Set AVL trees support insert(x), find min(), find max(), delete min(), and 
delete max() in O(log n) time per operation 

• So priority queue sort runs in O(n log n) time 

– This is (essentially) AVL sort from Lecture 7 

• Can speed up find min() and find max() to O(1) time via subtree augmentation 

• But this data structure is complicated and resulting sort is not in-place 

• Is there a simpler data structure for just priority queue, and in-place O(n lg n) sort? 
YES, binary heap and heap sort 

• Essentially implement a Set data structure on top of a Sequence data structure (array), using 
what we learned about binary trees 

Priority Queue: Array 

• Store elements in an unordered dynamic array 

• insert(x): append x to end in amortized O(1) time 

• delete max(): find max in O(n), swap max to the end and remove 

• insert is quick, but delete max is slow 

• Priority queue sort is selection sort! (plus some copying) 

Priority Queue: Sorted Array 

• Store elements in a sorted dynamic array 

• insert(x): append x to end, swap down to sorted position in O(n) time 

• delete max(): delete from end in O(1) amortized 

• delete max is quick, but insert is slow 

• Priority queue sort is insertion sort! (plus some copying) 

• Can we find a compromise between these two array priority queue extremes? 
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Array as a Complete Binary Tree 

• Idea: interpret an array as a complete binary tree, with maximum 2i nodes at depth i except 
at the largest depth, where all nodes are left-aligned 

1 d0 ______O____ 
2 d1 ____O____ __O__ 
3 d2 __O__ __O O O 
4 d3 O O O 

• Equivalently, complete tree is filled densely in reading order: root to leaves, left to right 

• Perspective: bijection between arrays and complete binary trees 

1 Q = [0,1,2,3,4,5,6,7,8,9] 
2 d0 0 -> ______0____ 
3 d1 1 2 -> ____1____ __2__ 
4 d2 3 4 5 6 -> __3__ __4 5 6 
5 d3 7 8 9 -> 7 8 9 

• Height of complete tree perspective of array of n item is dlg ne, so balanced binary tree 

Implicit Complete Tree 

• Complete binary tree structure can be implicit instead of storing pointers 

• Root is at index 0 

• Compute neighbors by index arithmetic: 

left(i) = 2i + 1 

right(i) = 2i + 2 � � 
i − 1 

parent(i) = 
2 
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Binary Heaps 

• Idea: keep larger elements higher in tree, but only locally 

• Max-Heap Property at node i: Q[i] ≥ Q[j] for j ∈ {left(i), right(i)} 

• Max-heap is an array satisfying max-heap property at all nodes 

• Claim: In a max-heap, every node i satisfies Q[i] ≥ Q[j] for all nodes j in subtree(i) 

• Proof: 

– Induction on d = depth(j) − depth(i) 

– Base case: d = 0 implies i = j implies Q[i] ≥ Q[j] (in fact, equal) 

– depth(parent(j)) − depth(i) = d − 1 < d, so Q[i] ≥ Q[parent(j)] by induction 

– Q[parent(j)] ≥ Q[j] by Max-Heap Property at parent(j) 

• In particular, max item is at root of max-heap 

Heap Insert 
• Append new item x to end of array in O(1) amortized, making it next leaf i in reading order 

• max heapify up(i): swap with parent until Max-Heap Property 

– Check whether Q[parent(i)] ≥ Q[i] (part of Max-Heap Property at parent(i)) 

– If not, swap items Q[i] and Q[parent(i)], and recursively max heapify up(parent(i)) 

• Correctness: 

– Max-Heap Property guarantees all nodes ≥ descendants, except Q[i] might be > some 
of its ancestors (unless i is the root, so we’re done) 

– If swap necessary, same guarantee is true with Q[parent(i)] instead of Q[i] 

• Running time: height of tree, so Θ(log n)! 
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Heap Delete Max 

• Can only easily remove last element from dynamic array, but max key is in root of tree 

• So swap item at root node i = 0 with last item at node n − 1 in heap array 

• max heapify down(i): swap root with larger child until Max-Heap Property 

– Check whether Q[i] ≥ Q[j] for j ∈ {left(i), right(i)} (Max-Heap Property at i) 

– If not, swap Q[i] with Q[j] for child j ∈ {left(i), right(i)} with maximum key, and 
recursively max heapify down(j) 

• Correctness: 

– Max-Heap Property guarantees all nodes ≥ descendants, except Q[i] might be < some 
descendants (unless i is a leaf, so we’re done) 

– If swap is necessary, same guarantee is true with Q[j] instead of Q[i] 

• Running time: height of tree, so Θ(log n)! 

Heap Sort 
• Plugging max-heap into priority queue sort gives us a new sorting algorithm 

• Running time is O(n log n) because each insert and delete max takes O(log n) 

• But often include two improvements to this sorting algorithm: 

In-place Priority Queue Sort 
• Max-heap Q is a prefix of a larger array A, remember how many items |Q| belong to heap 

• |Q| is initially zero, eventually |A| (after inserts), then zero again (after deletes) 

• insert() absorbs next item in array at index |Q| into heap 

• delete max() moves max item to end, then abandons it by decrementing |Q| 

• In-place priority queue sort with Array is exactly Selection Sort 

• In-place priority queue sort with Sorted Array is exactly Insertion Sort 

• In-place priority queue sort with binary Max Heap is Heap Sort 
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Linear Build Heap 

• Inserting n items into heap calls max heapify up(i) for i from 0 to n − 1 (root down): 
n−1 n−1X X 

worst-case swaps ≈ depth(i) = lg i = lg(n!) ≥ (n/2) lg(n/2) = Ω(n lg n) 
i=0 i=0 

• Idea! Treat full array as a complete binary tree from start, then max heapify down(i) 
for i from n − 1 to 0 (leaves up): 

n−1 n−1 � �X X n nn n 
worst-case swaps ≈ height(i) = (lg n−lg i) = lg = Θ lg √ = O(n) 

n! n(n/e)n 
i=0 i=0 

• So can build heap in O(n) time 

• (Doesn’t speed up O(n lg n) performance of heap sort) 

Sequence AVL Tree Priority Queue 

• Where else have we seen linear build time for an otherwise logarithmic data structure? 
Sequence AVL Tree! 

• Store items of priority queue in Sequence AVL Tree in arbitrary order (insertion order) 

• Maintain max (and/or min) augmentation: 
node.max = pointer to node in subtree of node with maximum key 

– This is a subtree property, so constant factor overhead to maintain 

• find min() and find max() in O(1) time 

• delete min() and delete max() in O(log n) time 

• build(A) in O(n) time 

• Same bounds as binary heaps (and more) 

Set vs. Multiset 
• While our Set interface assumes no duplicate keys, we can use these Sets to implement 

Multisets that allow items with duplicate keys: 

– Each item in the Set is a Sequence (e.g., linked list) storing the Multiset items with the 
same key, which is the key of the Sequence 

• In fact, without this reduction, binary heaps and AVL trees work directly for duplicate-key 
items (where e.g. delete max deletes some item of maximum key), taking care to use ≤ 
constraints (instead of < in Set AVL Trees) 
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