
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Session 5

Problem Session 5

Problem 5-1. Graph Radius

In any undirected graph G = (V, E), the eccentricity �(u) of a vertex u ∈ V is the shortest distance to its
farthest vertex v, i.e., �(u) = max{δ(u, v) | v ∈ V }. The radius R(G) of an undirected graph G = (V, E)
is the smallest eccentricity of any vertex, i.e., R(G) = min{�(u) | u ∈ V }.

(a) Given connected undirected graph G, describe an O(|V ||E|)-time algorithm to determine the
radius of G.
Solution: Compute R(G) directly: run breadth-first search from each node u and calculate �(u)
as the maximum of δ(u, v) for each v ∈ V . Then return the minimum of �(u) for all u ∈ V .
Each vertex is connected to an edge because G is connected so |V | = O(|E|). Each BFS takes
O(|E|) time, leading to O(|V ||E|) time in total.

(b) Given connected undirected graph G, describe an O(|E|)-time algorithm to determine an upper
bound R∗ on the radius of G, such that R(G) ≤ R∗ ≤ 2R(G).
Solution: Use breadth-first search to find �(u) for any u ∈ V in O(|E|) time. We claim that
R(G) ≤ �(u) ≤ 2R(G), so we can choose R∗ = �(u). First, �(u) ≥ R(G) because R(G) is
the minimum �(v) over all v ∈ V . Second, 2R(G) ≥ �(u) because if a vertex x has eccentricity
R(G), we can construct a path from u to any other vertex v by concatenating a shortest path
from u to x and a shortest path from x to v, both of which have length at most R(G); thus �(u)
cannot be greater than 2R(G).

Problem 5-2. Internet Investigation

MIT has heard complaints regarding the speed of their WiFi network. The network consists of r routers,
some of which are marked as entry points which are connected to the rest of the internet. Some pairs of
routers are directly connected to each other via bidirectional wires. Each wire wi between two routers has
a known length ` i measured in a positive integer number of feet. The latency of a router in the network is
proportional to the minimum feet of wire a signal from the router must pass through to reach an entry point.
Assume the latency of every router is finite and there is at most 100r feet of wire in the entire network.
Given a schematic of the network depicting all routers and the lengths of all wires, describe an O(r)-time
algorithm to determine the sum total latency, summed over all routers in the network.

Solution: Construct undirected unweighted graph G in the following way. Construct r vertices, one
associated with each router in the network. Then, for each wire wi connecting between routers ai and bi
with length ` i, add an unweighted chain of ` i edges between the vertices associated with routers ai and bi.
For each wire wi, this process adds ` i edges and ` i − 1 vertices to the graph. Now, if there were exactly one
entry point, we could run breadth-first search from it to every other node in the graph, and the shortest path
from the entry point to each router would be equal to the router’s latency, by definition.

In order to search from all entry points at once, we add an additional node s (sometimes called a super node)
to the graph with an edge to every entry point, and compute shortest paths from s using breadth-first search.
Now, the shortest path from s to a router is one more than the latency at the router, so to return the total
latency, we can sum the shortest path distance over all routers and subtract r. The graph G has at most
r + 100r +1 = O(r) nodes and at most 100r + r = O(r) edges, so the graph takes O(r) time to construct.

2 Problem Session 5

Breadth-first search runs in linear time in the size of the graph, so also takes O(r) time. Lastly, computing
the sum just requires looping over the O(r) vertices and summing shortest paths to vertices that are routers.
Thus the algorithm runs in O(r) time.

Problem 5-3. Quadwizard Quest
Wizard Potry Harter and her three wizard friends have been tasked with searching every room of a Labyrinth
for magical artifacts. The Labyrinth consists of n rooms, where each room has at most four doors leading to
other rooms. Assume all doors begin closed and every room in the Labyrinth is reachable from a specified
entry room by traversing doors between rooms. Some doors are protected by evil enchantments that must
be disenchanted before they can be opened; but all other doors may be opened freely. Given a map of
the Labyrinth marking each door as enchanted or not, describe an O(n)-time algorithm to determine the
minimum number of doors that must be disenchanted in order to visit every room of the Labyrinth, beginning
from the entry room.

Solution: Construct a graph G with a vertex associated with each of the n rooms in the Labyrinth and
an edge between two rooms if there is a door that is not enchanted connecting them. For any room in
this graph, if the wizards can reach a room corresponding to vertex v, the wizards can search the rooms
associated with every vertex in v’s connected component without having to disenchant any door. Since
every room is reachable from the entry room, it is suffices to identify the connected components of G, and
then repeatedly disenchant doors that would connect two disconnected components. If there are k connected
components of G, the wizards must disenchant k − 1 doors to visit every room. So, run either Full breadth-
first search or Full depth-first search to count the number of connected components of G and return one less.
G has n vertices and at most 4n edges, so counting the number of connected components in G will take at
most O(n) time for either algorithm.

Problem 5-4. Purity Atlantic
Brichard Ranson is the founder of Purity Atlantic, an international tour company that specializes in planning
luxury honeymoon getaways for newlywed couples. To book a customized tour, a couple submits their home
city, and the names of three touring cities they would like to visit during their honeymoon. Then Purity will
arrange all accommodations, including a flight itinerary: a sequence of flights from their home to each
touring city (in any order), then returning back to their home. Unfortunately, it’s not always possible to fly
directly between any two cities, so multiple flights may be required. While cost and time are not a factor,
couples prefer to minimize the number of direct flights they will have to take during their honeymoon. Given
a list of c cities and a list of all f available direct flights, where each direct flight is specified by an ordered
pair of cities (origin, destination), describe an efficient algorithm to determine a flight itinerary for a given
couple that minimizes the number of direct flights they will have to take.

Solution: Let the directed distance from city a to city b be the fewest direct flights needed to reach b
from a (or infinite if b is not reachable from a). Given the home city and three touring cities, if we couldn �
compute the 2 4

2 = 12 = O(1) pairwise directed distances between all pairs of the four input cities, then
we could find an itinerary of that minimizes the number of direct flights starting at home, visiting the three
cities, and returning in O(1) time, by comparing the fewest flights needed for each of the 3! = 6 = O(1)
permutations of touring cities, each of which can be computed in O(1) time (if none yield a finite distance,
then return that no itinerary is possible). To compute these pairwise directed distances, create a graph G
with a vertex associated with each of the c cities and a directed edge for each of the f flights from the vertex
associated with the origin to the vertex associated with the destination. Then, for each of the four input
cities, breadth-first search to find the directed distance between it and the other three cities, storing parent

3 Problem Session 5

pointers to remember a shortest path for each pair. Each of the four breadth-first searches takes O(c + f)
time, so the 12 pairwise distance can be all computed in O(c + f) time, and a minimizing itinerary can
be returned by concatonating the corresponding remembered shortest paths. Thus the entire algorithm also
runs in O(c + f) time. This algorithm is efficient because any correct algorithm must examining the entire
graph.

Problem 5-5. Pocket Cube

A Pocket Cube1 is a smaller 2 × 2 × 2 variant of the traditional 3 × 3 × 3 Rubik’s cube, consisting of eight
corner cubes, each with a different color on its three visible faces. The solved configuration is when each
2 × 2 face of the Pocket Cube is monochromatic. We reference each color ci with an index i ∈ {0, . . . , 5}.
Without loss of generality, we fix the position and orientation of one of the corner cubes and only allow
single-turn rotations about the normals of the three faces of the Pocket Cube {f0, f1, f2} that do not contain
the fixed corner cube; specifically, a move is described by tuple (j, s) corresponding to a single-turn rotation
of face fj , clockwise when s = 1 and counterclockwise when s = −1. Breadth-first search can be used to
solve puzzles like the Pocket Cube by searching a graph whose vertices are possible configurations of the
puzzle, with an edge between two configurations if one can be reached from the other via a single move.
Instead of storing these adjacencies explicitly, one can compute the neighbors of a given configruation by
applying all possible single moves to the configuration.

f0
f1

f1

f2

c0 c0
c0 c0

c1
c1

c1
c1

c2 c2
c2 c2

c3 c3
c3 c3

c4
c4

c4
c4

c5
c5

c5
c5

f0 Solved
State

Fixed Fixed

f2

(a) Argue that the number of distinct configurations of a Pocket Cube is less than 12 million (try to
get as tight a bound as you can using combinatorics).
Solution: If one of the corner cubes is fixed, the remaining seven corner cubes may exist in
7! permutations, while each corner cube may rotate independently to any of three rotations. So
the number of configurations is upper bounded by 7!37 = 11022480.

(b) State the max and min degree of any vertex in the Pocket Cube graph.
Solution: Three sides may be rotated, and each may be rotated clockwise or counterclockwise.
So each configuration has exactly 3 × 2 = 6 configurations neighboring it.

(c) In your problem set template is code that fully explores the Pocket Cube graph from a given
configuration using breadth-first search, and then returns a sequence of moves that solves the
Pocket Cube (assuming the solved configuration is reachable). However, this solver is very
slow2. Run the code provided and state the number of configurations the search explores. How
does this number compare to your upper bound from part (a)?
Solution: The provided BFS searches configurations. This is exactly one third of the configura-
tions estimated by part (a). In fact, the space of configurations turns out to be three disconnected

1http://en.wikipedia.org/wiki/Pocket_Cube
2Please note that the code requires a couple minutes and considerable memory (over 400 Mb) to complete.

http://en.wikipedia.org/wiki/Pocket_Cube

4 Problem Session 5

components of equal size. A representative configuration contained in each component can be
achieved by rotating a single corner cube of the solved state to each of its three rotations.

(d) State the max number of moves w needed to solve any solvable Pocket Cube.
Solution: This can be found directly from the code output: the diameter is equal to the number
of frontiers visited minus 1, i.e., 14.

(e) Let Ni be the number of Pocket Cube configurations reachable within i moves of the a particu-
lar configuration. The code provided visits Nw configurations (which is larger than 3 million).
Describe an algorithm to find a shortest sequence of moves to solve any Pocket Cube configura-
tion (or return no such sequence exists) that visits no more than 2Ndw/2e configurations (which
is less than 90 thousand).
Solution: Run BFS from both the query configuration and the solved configuration, but al-
ternating exploring frontiers from each. Store parent pointers to the configuration preceded by
each explored configuration. After exploring each frontier, check whether a configuration in the
new frontier has been explored by the other BFS. If it has been explored by the other BFS,
construct the path from the query configuration to the solved configuration through the overlap-
ping node, by following parent pointers from one BFS to the query configuration, and following
parent pointers from the other BFS to the solved configuration. Because we alternate exploring
frontiers, the lengths of the paths found by each BFS differ by at most one, so each has length at
most dw/2e. Then each BFS visits at most Ndw/2e configuration, as desired.

(f) Rewrite the solve(config) function in the template code provided, based on your algorithm
from part (e).
Solution:

1 def solve(config):
2 # Return a sequence of moves to solve config, or None if not possible
3 def check(frontier, parent):
4 for f in frontier:
5 if f in parent:
6 return f
7 return None
8 parent_c, frontier_c = {config: None}, [config]
9 parent_s, frontier_s = {SOLVED: None}, [SOLVED]

10 middle = check(frontier_c, parent_s)
11 while middle is None:
12 frontier_c = explore_frontier(frontier_c, parent_c)
13 middle = check(frontier_c, parent_s)
14 if middle: break
15 frontier_s = explore_frontier(frontier_s, parent_s)
16 middle = check(frontier_s, parent_c)
17 if middle:
18 path_c = path_to_config(middle, parent_c)
19 path_s = path_to_config(middle, parent_s)
20 path_s.pop()
21 path_s.reverse()
22 return moves_from_path(path_c + path_s)
23 return None

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

