
Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Problem Session 1 

Problem Session 1 

Problem 1-1. Asymptotic behavior of functions 

For each of the following sets of five functions, order them so that if fa appears before fb in your 
sequence, then fa = O(fb). If fa = O(fb) and fb = O(fa) (meaning fa and fb could appear in 
either order), indicate this by enclosing fa and fb in a set with curly braces. For example, if the 
functions are: 

√ √ 
f1 = n, f2 = n, f3 = n + n, 

the correct answers are (f2, {f1, f3}) or (f2, {f3, f1}). 

a) 

f1 

f2 

f3 

f4 

f5 

= (log n)2019 

2019)= n 2 log (n 
3 = n 

= 2.019n 

= n log n 

d) 

f1 

f2 

f3 

f4 

f5 

= 2n 

3 = n� � 
n 

= 
n/2 

= n!� � 
n 

= 
3 

Solution: 

a. (f1, f5, f2, f3, f4). This order follows directly from the claim in R01 that (log n)a = o(nb) for 
all positive constants a and b, as well as standard logarithm and exponentiation manipulations. 

b. ({f2, f5}, f3, f1, f4). This order follows from the definition of the binomial coefficient and√ 
Stirling’s approximation. The trickiest one is f3 = Θ(2n/ n) (by repeated use of Stirling), 
which grows slower than f1. 



2 Problem Session 1 

Problem 1-2. Given a data structure D supporting the four first/last sequence operations: 
D.insert first(x), D.delete first(), D.insert last(x), D.delete last(), 

each in O(1) time, describe algorithms to implement the following higher-level operations in terms 
of the lower-level operations. Recall that delete operations return the deleted item. 

(a) swap ends(D): Swap the first and last items in the sequence in D in O(1) time. 
Solution: Swapping the first and last items in the list can be performed by simply 
deleting both ends in O(1) time, and then inserting them back in the opposite order, 
also in O(1) time. This algorithm is correct by the definitions of these operations. 

1 def swap_ends(D): 
2 x_first = D.delete_first() 
3 x_last = D.delete_last() 
4 D.insert_first(x_last) 
5 D.insert_last(x_first) 

(b) shift left(D, k): Move the first k items in order to the end of the sequence n D 
in O(k) time. (After, the kth item should be last and the (k + 1)st item should be first.) 
Solution: To implement shift left(D, 1), delete the first item and insert it into 
the last position in O(1) time. The list maintains the relative ordering of all items in the 
sequence, except has moved the first item behind all the others, so shift left(D, 
1) is correct. Then to implement shift left(D, k), move the first item to the last 
position as above, and then recursively call shift left(D, k - 1) until reaching 
base case shift left(D, 1). By induction, if shift left(D, k - 1) is cor-
rect, moving the first item to the last position restores correctness. shift left(D, 
k) runs in O(k) time because it makes O(k) recursive calls until reaching the base 
case, doing constant work per call. 

1 def shift_left(D, k): 
2 if (k < 1) or (k > len(D) - 1): 
3 return 
4 x = D.delete_first() 
5 D.insert_last(x) 
6 shift_left(D, k - 1) 



3 Problem Session 1 

Problem 1-3. Double-Ended Sequence Operations 

A dynamic array can implement a Sequence interface supporting worst-case O(1)-time indexing as 
well as insertion and removal of items at the back of the array in amortized constant time. However, 
insertion and deletion at the front of a dynamic array are not efficient as every entry must be shifted 
to maintain the sequential order of entries, taking linear time. 

On the other hand, a linked-list data structure can be made to support insertion and removal oper-
ations at both ends in worst-case O(1) time (see PS1), but at the expense of linear-time indexing. 

Show that we can have the best of both worlds: design a data structure to store a sequence of items 
that supports worst-case O(1)-time index lookup, as well as amortized O(1)-time insertion and 
removal at both ends. Your data structure should use O(n) space to store n items. 

Solution: There are many possible solutions. One solution uses two-stacks to implement the 
deque, where care needs to be taken when popping from an empty stack, or pushing to a full stack. 
An alternative approach would be to store the queued items in the middle of an array rather than at 
the front, leaving a linear number of extra slots at both the beginning and end whenever rebuilding 
occurs, guaranteeing that linear time rebuilding only occurs once every Ω(n) operations. 

For example, whenever reallocating space to store a sequence of n elements, copy them to the 
middle of a length m = 3n array. To insert or remove an item to the beginning or end of the 
sequence, add or remove an element at the appropriate end in constant time. If no free slot is exists 
during an insertion, at least a linear number of insertions must have happened since the last rebuild, 
so we can afford to rebuild the array. If removing an item brings the ratio n/m of items to array 
size to below 1/6, at least m/6 = Ω(n) removals must have occurred since the last rebuild, so we 
can again afford to rebuild the array. 

A linear number of operations between expensive linear time rebuilds ensures that each dynamic 
operation takes at most amortized O(1) time. To support array indexing in constant time, we 
maintain the index location i of the left-most item in the array and the number of items n stored in 
the array, both of which can be maintained in worst-case constant time per update. To access the 
j th item stored in the queue sequence using zero-indexing, confirm that i + j < n and return the 
item at index i + j of the array container in worst-case constant time. 



4 Problem Session 1 

Problem 1-4. Jen & Berry’s 

Jen drives her ice cream truck to her local elementary school at recess. All the kids rush to line up 
in front of her truck. Jen is overwhelmed with the number of students (there are 2n of them), so 
she calls up her associate, Berry, to bring his ice cream truck to help her out. Berry soon arrives 
and parks at the other end of the line of students. He offers to sell to the last student in line, but the 
other students revolt in protest: “The last student was last! This is unfair!” 

The students decide that the fairest way to remedy the situation would be to have the back half of 
the line (the n kids furthest from Jen) reverse their order and queue up at Berry’s truck, so that the 
last kid in the original line becomes the last kid in Berry’s line, with the (n + 1)st kid in the original 
line becoming Berry’s first customer. 

(a) Given a linked list containing the names of the 2n kids, in order of the original line 
formed in front of Jen’s truck (where the first node contains the name of the first kid 
in line), describe an O(n)-time algorithm to modify the linked list to reverse the order 
of the last half of the list. Your algorithm should not make any new linked list nodes 
or instantiate any new non-constant-sized data structures during its operation. 
Solution: Reverse the order of the last half of the nodes in a list in three stages: 

• find the nth node a in the sequence (the end of Jen’s line) 
• for each node x from the (n + 1)st node b to the (2n)th node c, change the next 

pointer of x to point to the node before it in the original sequence 
• change the next pointer of a and b to point to c and nothing respectively 

Finding the nth node requires traversing next pointers n − 1 times from the head of the 
list, which can be done in O(n) time via a simple loop. We can compute n by halving 
the size of the list (which is guarenteed to be even). 
To change the next pointers of the last half of the sequence, we can maintain pointers 
to the current node x and the node before it xp, initially b and a respectively. Then, 
record the node xn after x, relink x to point to the xp, the node before x in O(1) time. 
Then we can change the current node to xn and the node before it to x, maintaining the 
desired properties for the next node to relink. Repeating n times, relinks all n nodes 
in the last half of the sequence in O(n) time. 
Lastly, by remembering nodes a, b, and c while the algorithm traverses the list, means 
that changing the exceptional next pointers at the front and back of the last half of the 
list takes O(1), leading to an O(n) time algorithm overall. 



5 Problem Session 1 

(b) Write a Python function reorder students(L) that implements your algorithm. 

Solution: 

1 def reorder_students(L): 
2 n = len(L) // 2 # find the n-th node 
3 a = L.head 
4 for _ in range(n - 1): 
5 a = a.next 
6 b = a.next # relink next pointers of last half 
7 x_p, x, x_p = a, b 
8 for _ in range(n): 
9 x_n = x.next 

10 x.next = x_p 
11 x_p, x = x, x_n 
12 c = x_p 
13 a.next = c # relink front and back of last half 
14 b.next = None 
15 return 



MIT OpenCourseWare 
https://ocw.mit.edu 

6.006 Introduction to Algorithms 
Spring 2020 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page




