
MIT OpenCourseWare
http://ocw.mit.edu

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.004 Computation Structures
Spring 2009

http://ocw.mit.edu
http://ocw.mit.edu/terms

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures

BSim

Introduction to BSim

BSim is a simulator for the 6.004 Beta architecture. The BSim user interface is very similar to
JSim’s: there’s a simple editor for typing in your program and some tools for assembling the
program into binary, loading the program into the simulated Beta’s memory, executing the
program and examining the results.

To run BSim, login to an Athena console. After signing onto the Athena station, add the 6.004
locker to gain access to the design tools and model files (you only have to do this once each
session):

 athena% add 6.004

Start BSim running in a separate window by typing

 athena% bsim &

It can take a few moments for the Java runtime system to start up, please be patient! BSim takes
as input a assembly language program to be executed. The initial BSim window is a very simple
editor that lets you enter and modify your netlist. If you use a separate editor to create your
netlists, you can have BSim load your netlist files when it starts:

 athena% bsim filename … filename &

There are various handy buttons on the BSim toolbar:

 Exit. Asks if you want to save any modified file buffers and then exits BSim.

 New file. Create a new edit buffer called “untitled”. Any attempts to save this
buffer will prompt the user for a filename.

 Open file. Prompts the user for a filename and then opens that file in its own edit
buffer. If the file has already been read into a buffer, the buffer will be reloaded
from the file (after asking permission if the buffer has been modified).

 Close file. Closes the current edit buffer after asking permission if the buffer has
been modified.

 Reload file. Reload the current buffer from its source file after asking permission
if the buffer has been modified. This button is useful if you are using an external

6.004 Computation Structures - 1 - BSim

editor to modify the netlist and simply want to reload a new version for
simulation.

 Save file. If any changes have been made, write the current buffer back to its
source file (prompting for a file name if this is an untitled buffer created with the
“new file” command). If the save was successful, the old version of the file is
saved with a “.bak” extension.

 Save file, specifying new file name. Like “Save file” but prompts for a new file
name to use.

 Save all files. Like “save file” but applied to all edit buffers.

 Assemble the current buffer, i.e., convert it into binary and load it into the
simulated Beta’s memory. Any errors detected will be flagged in the editor
window and described in the message area at the bottom of the window. If the
assembly completes successfully, a window showing the Beta datapath is created
from which you can start execution of the program.

 Assemble the current buffer and output the resulting binary to a file whose name
is the same as source file for the current buffer with “.bin” appended.

 Using information supplied in the checkoff file, check for specified memory
values. If all the checks are successful, submit the program to the on-line
assignment system.

The Display window has some additional toolbar buttons that are used to control the simulation.
The values shown in the window reflect the values on Beta signals after the current instruction
has been fetched and executed but just before the register file is updated at the end of the cycle.

 Stop execution and update the datapath display.

 Reset the contents of the PC and registers to 0, and memory locations to the
values they had just after assembly was complete. You have to stop a running
simulation before a reset.

 Start simulation and run until a HALT() instruction is executed or a breakpoint is
reached. You can stop a running simulation using the stop control described
above. For maximum simulation speed, the datapath display is not updated until
the simulation is stopped.

6.004 Computation Structures - 2 - BSim

 Execute the program for a single cycle and then update the display. Very useful
for following your program’s operation instruction-by-instruction.

 Toggle visualization between the programmer’s panel (the default) and the
animated datapath.

 Bring up a window that let’s you configure the cache parameters for main
memory.

If “.options tty” is specified by the program, a small 5-line typeout window appears at the bottom
of the datapath window. You can output characters to this window by executing a WRCHAR()
instruction after placing the character value in R0. The tty option also allows for type-in: any
character typed by the user causes an interrupt to location 12; RDCHAR() can be used to fetch
the character value into R0. Clicking the mouse will cause an interrupts to location 16; CLICK()
can be used to fetch the coordinates of the last click into R0. The coordinates are encoded as
(x<<16)+y, or -1 if there has been no mouse click since the last call to CLICK().

If “.options clock” is specified by the program, an interrupt to location 8 is generated every
10,000 cycles. (Remember though that interrupts are disabled until the program enters user mode
– see section 6.3 of the Beta documentation.)

Introduction to assembly language

BSim incorporates an assembler: a program that converts text files into binary memory data.
The simplest assembly language program is a sequence of numerical values which are
converted to binary and placed in successive byte locations in memory:

 | Comments begin with vertical bar and end at a newline

 37 3 255 | decimal (the default radix)
 0b100101 | binary (note the 0b prefix)
 0x25 | hexadecimal (note the 0x prefix)
 'a' | character constants

Values can also be expressions; e.g., the source file

 37+0b10-0x10 24 - 0x1 4*0b110-1 0xF7 % 0x20

generates 4 bytes of binary output, each with the value 23. Note the operators have no
precedence – you have to use parentheses to avoid simple left-to-right evaluation. The
available operators are

- unary minus
~ bit-wise complement
+ addition
- subtraction
* multiplication

6.004 Computation Structures - 3 - BSim

6.004 Computation Structures - 4 - BSim

/ division
% modulo (result is always positive!)
>> right shift
<< left shift

We can also define symbols for use in expressions:

 x = 0x1000 | address in memory of variable X
 y = 0x10004 | another address

 | Symbolic names for registers
 R0 = 0
 R1 = 1
 …
 R31 = 31

Note that symbols are case-sensitive: “Foo” and “foo” are different symbols. A special
symbol named “.” (period) means the address of the next byte to be filled by the assembler:

 . = 0x100 | assemble into location 0x100
 1 2 3 4
 five = . | symbol five has the value 0x104
 5 6 7 8
 . = . + 16 | skip 16 bytes
 9 10 11 12

Labels are symbols that represent memory address. They can be set with the following
special syntax:

 X: | this is an abbreviation for X = .

For example the table on the left shows what main memory will contain after assembling the
program on the right.

 ---- MAIN MEMORY ----
 byte: 3 2 1 0
 . = 0x1000
 1000: 09 04 01 00 sqrs: 0 1 4 9
 1004: 31 24 19 10 16 25 36 49
 1008: 79 64 51 40 64 81 100 121
 100C: E1 C4 A9 90 144 169 196 225
 1010: 00 00 00 10 slen: LONG(. – sqrs)

Macros are parameterized abbreviations:

 | macro to generate 4 consecutive bytes
 .macro consec(n) n n+1 n+2 n+3

 | invocation of above macro
 consec(37)

The macro invocation above has the same effect as

 37 38 39 40

6.004 Computation Structures - 5 - BSim

Note that macros evaluate their arguments and substitute the resulting value for occurrences
of the corresponding formal parameter in the body of the macro. Here are some macros for
breaking multi-byte data into byte-size chunks

 | assemble into bytes, little-endian format
 .macro WORD(x) x%256 (x/256)%256
 .macro LONG(x) WORD(x) WORD(x>>16)
 LONG(0xdeadbeef)

Has the same effect as

 0xef 0xbe 0xad 0xde

The body of the macro includes the remainder of the line on which the .macro directive
appears. Multi-line macros can be defined by enclosing the body in “{“ and “}”.

beta.uasm contains symbol definitions for all the registers (R0, …, R31, BP, LP, SP, XP, r0,
…, r31, bp, lp, sp, xp) and macro definitions for all the Beta instructions:

OP(Ra,Rb,Rc) Reg[Rc] ← Reg[Ra] op Reg[Rb]
 Opcodes: ADD, SUB, MUL, DIV, AND, OR, XOR
 CMPEQ, CMPLT, CMPLE, SHL, SHR, SRA

OPC(Ra,literal,Rc) Reg[Rc] ← Reg[Ra] op SEXT(literal15:0)
 Opcodes: ADDC, SUBC, MULC, DIVC, ANDC, ORC, XORC
 CMPEQC, CMPLTC, CMPLEC, SHLC, SHRC, SRAC

LD(Ra,literal,Rc) Reg[Rc] ← Mem[Reg[Ra] + SEXT(literal)]
ST(Rc,literal,Ra) Mem[Reg[Ra] + SEXT(literal)] ← Reg[Rc]
JMP(Ra,Rc) Reg[Rc] ← PC + 4; PC ← Reg[Ra]
BEQ/BF(Ra,label,Rc) Reg[Rc] ← PC + 4; if Reg[Ra] = 0 then PC ← PC + 4 + 4*SEXT(literal)
BNE/BT(Ra,label,Rc) Reg[Rc] ← PC + 4; if Reg[Ra] ≠ 0 then PC ← PC + 4 + 4*SEXT(literal)
LDR(Ra,label,Rc) Reg[Rc] ← Mem[PC + 4 + 4*SEXT(literal)]

Also included are some convenience macros:

LD(label,Rc) expands to LD(R31,label,Rc)
ST(Ra,label) expands to ST(Ra,label,R31)
BR(label) expands to BEQ(R31,label,R31)
CALL(label) expands to BEQ(R31,label,LP)
RTN() expands to JMP(LP)
DEALLOCATE(n) expands to SUBC(SP,n*4,SP)
MOVE(Ra,Rc) expands to ADD(Ra,R31,Rc)
CMOVE(literal,Rc) expands to ADDC(R31,literal,Rc)
PUSH(Ra) expands to ADDC(SP,4,SP) ST(Ra,-4,SP)
POP(Rc) expands to LD(SP,-4,Rc) ADDC(SP,-4,SP)

HALT() cause the simulator to stop execution

6.004 Computation Structures - 6 - BSim

The following is a complete example assembly language program:

 .include /mit/6.004/bsim/beta.uasm

 . = 0 | start assembling at location 0
 LD(input,r0) | put argument in r0
 CALL(bitrev) | call the procedure (= BR(bitrev,r28))
 HALT()

 | reverse the bits in r0, leave result in r1
 bitrev:
 CMOVE(32,r2) | loop counter
 CMOVE(0,r1) | clear output register
 loop:
 ANDC(r0,1,r3) | get low-order bit
 SHLC(r1,1,r1) | shift output word by 1
 OR(r3,r1,r1) | OR in new low-order bit
 SHRC(r0,1,r0) | done with this input bit
 SUBC(r2,1,r2) | decrement loop counter
 BNE(r2,loop) | repeat until done
 RTN() | return to caller (= JMP(r28))

 input:
 LONG(0x12345) | 32-bit input (in HEX)

The BSim assembly language processor includes a few helpful directives:

.include filename

Process the text found in the specified file at this point in the assembly.

.align
.align expression

Increment the value of “.” until it is 0 modulo the specified value, e.g., “.align 4” moves
to the next word boundary in memory. A value of 4 is used if no expression is given.

.ascii "chars…"

Assemble the characters enclosed in quotes into successive bytes of memory. C-like
escapes can be used for non-printing characters.

.text "chars…"

Like .ascii except an additional 0 byte is added to the end of the string in memory.

.breakpoint

Stop the Beta simulator if it fetches an instruction from the current location (i.e., the
value of “.” at the point the .breakpoint directive occurred). You can define as many
breakpoints as you want.

.protect
This directive indicates that subsequent bytes output by the assembler are “protected,”
causing the simulator to halt if a ST instruction tries to overwrite their value. This
directive is useful for protecting code (e.g., the checkoff program) from being overwritten
by errant programs.

6.004 Computation Structures - 7 - BSim

.unprotect
The opposite of .protect – subsequent bytes output by the assembler are not protected and
can be overwritten by the program.

.options …

Used to configure the simulator. Available options:

clk enable periodic clock interrupts to location 8

 noclk disable clock interrupts (default)

 div simulate the DIV instruction (default)

nodiv make the DIV opcode an illegal instruction

 mul simulate the MUL instruction (default)

nomul make the MUL opcode an illegal instruction

kalways don’t let program enter user mode (ie, supervisor bit is always 1)
 nokalways allow program to enter user mode (default)

tty enable RDCHAR(), WRCHAR(), CLICK() (see end of first section)
 notty RDCHAR(), WRCHAR(), CLICK() are disabled (default)

 annotate if BP is non-zero, label stack frames in the programmer’s panel
 noannotate don’t annotate stack frames (default)

.pcheckoff …
.tcheckoff …
.verify …

Supply checkoff information to the simulator.

