
6.003 Homework #10 Solutions 

Problems 
1. DT Fourier Series 

Determine the Fourier Series coeÿcients for each of the following DT signals, which are 
periodic in N = 8. 
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Because x3[n] is real-valued and an odd function of n, the series is purely imaginary. 
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2. Inverse DT Fourier Series 

Determine the DT signals with the following Fourier series coeÿcients. Assume that the 
signals are periodic in N = 8. 

k

1
ak

1/
√

2
k

1
bk

ak = cos 
ˇk 

4 
= 
e 
j2ˇk 

8 + e 
−j2ˇk 

8 

2 
= 

1 
N 

X 
<N> 

x[n]e −j 
2ˇ 
N 
kn 

x1[n] = 4�[n − 1] + 4�[n + 1] 

for |n| < 5. Since x1[n] is periodic, a more general expression is 
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Notice that x2[n] has imaginary components, because the Fourier series coeÿcients are 
not conjugate symmetric (b−k 6= b� k). 
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3. Impulsive Input 

Let the following periodic signal 
1X 

x(t) = �(t − 3m) + �(t − 1 − 3m) − �(t − 2 − 3m) 
m=−1 

be the input to an LTI system with system function 
s/4 − e −s/4H(s) = e . 

Let bk represent the Fourier series coeÿcients of the resulting output signal y(t). Deter-
mine b3. 

The period of x(t) is T = 3. Therefore the period of y(t) is also T = 3. The fundamental 
frequency of x(t) (and y(t)) is !0 = 2ˇ 

T = 2ˇ 
3 . 

Let ak represent the Fourier series coeÿcients for x(t). Then 
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4. Fourier transform 

Part a. Find the Fourier transform of 
−|t|x1(t) = e . 
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Part b. Find the Fourier transform of 
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Hint: Try duality. 
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5. Fourier transform 

Part a. Determine x1(t), whose Fourier transform X1(j!) has the following magnitude 
and angle. 

ω
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Express x1(t) as a closed-form and sketch this function of time. 

X1(j!) = |X1(j!)|ej∠X1(j!) = 
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0 otherwise 
Notice that X1(j!) is 3j! times X1a(j!) defined as 
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Part b. Determine x2(t), whose Fourier transform X2(j!) has the following magnitude 
and angle. 
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X2(j!) can be expressed as a di˙erence: 
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Express x2(t) as a closed-form and sketch this function of time. 

Part c. What are important similarities and di˙erences between x1(t) and x2(t)? How 
do those similarities and di˙erences manifest in their Fourier transforms? 

Both x1(t) and x2(t) are real functions of time. However, x1(t) is an odd function of time 
and x2(t) is an even function of time. Taken together, these features mean that X1(j!) is 
an odd function of ! that is purely imaginary, and X2(!) is an even function of ! that is 
purely real. 
Both X1(j!) and X2(j!) are zero for |!| > 3ˇ. Therefore, both x(t) and x2(t) have 
infinite extents in time. 
Both X1(j!) and X2(j!) are discontinuous functions of !. Thus, the magnitudes of x1(t) 
and x2(t) both decrease as 1 

t for large t. 
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6. Fourier Transforms 

following plots. 
The magnitude and angle of the Fourier transform of a signal x(t) are given in the 

1−1 2−2
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|X(jω)|
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π
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Five signals are derived from x(t) as shown in the left column of the following table. 
Six magnitude plots (M1-M6) and six angle plots (A1-A6) are shown on the next page. 
Determine which of these plots is associated with each of the derived signals and place 
the appropriate label (e.g., M1 or A3) in the following table. Note that more than one 
derived signal could have the same magnitude or angle. 
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