
 
MIT OpenCourseWare 
http://ocw.mit.edu
 
6.002 Circuits and Electronics, Spring 2007 
 
Please use the following citation format: 
 

Anant Agarwal, 6.002 Circuits and Electronics, Spring 2007 
(Massachusetts Institute of Technology: MIT 
OpenCourseWare). http://ocw.mit.edu (accessed MM DD, 
YYYY). License: Creative Commons Attribution-
Noncommercial-Share Alike. 

 
Note: Please use the actual date you accessed this material in your 
citation. 
 
For more information about citing these materials or our Terms of Use, 
visit: http://ocw.mit.edu/terms
 

http://ocw.mit.edu/
http://ocw.mit.edu/
http://ocw.mit.edu/terms


MIT OpenCourseWare 
http://ocw.mit.edu
 
6.002 Circuits and Electronics, Spring 2007 
Transcript – Lecture 14 
 
I will be replacing Professor Agarwal today because he is away. I am 
one of the recitation instructors for those of you who have not seen 
me. We will talk today about a neat application of RC networks and 
expand those to application in MOS memory systems. 
 
To connect with everything, we will get back to the basic circuit that 
we have been discussing so far. And you recall the circuit that we have 
been studying, the canonical RC with an input voltage function of t. 
 
And we had specified that we solved this problem for the case of a 
step input or a condition in which a t=0. At t greater or equal to zero 
vI is equal to some capital VI value that for now on is constant. 
 
And the other condition that we discussed was the value of the voltage 
on the capacitor that would exist at time t=0. Let's call that vc(0). And 
in general there is some finite value here. It can be zero or it can be 
different from zero. 
 
Given that, we learned how to write down directly, without messing 
around with differential equations, the answer for the voltage on the 
capacitor vc(t), let me define also my vc right here, is equal to VI, the 
final value, plus vc(0), the initial value on the capacitor, minus the 
final value, e^–t/RC. 
 
This is our standard equation to which we plug in, and it's either a 
rising exponential if VI is larger than VC or a decaying exponential if VI 
is a smaller value than VC. This should all be familiar. 
 
And, again, as pointed out in the notes, the reading for today is 10.3 
and for the new material you should look at Chapter 11 where we 
discuss memory. This is where we stood as of last time. Now, I would 
like to discuss a little bit more about the storage of charge in 
capacitors. 
 
And how we can take advantage of that for storing logic state. One of 
the things that I am sure you must be aware of is that one of the 
perhaps most massively produced chips is actually the so-called DRAM 
which you find in every PC and every computer that exists anywhere. 

http://ocw.mit.edu/


 
This DRAM is dynamic random access memory in which we can store a 
state and come back and look at it at any time later, provided we don't 
power off our machine. The logic state in the basic memory elements, 
of which instead there are close to 1 giga elements per chip, are 
stored on capacitors. 
 
And so we will play a little bit with that concept today. And, although 
we're not going to discuss the specific example of the DRAM, the basic 
elements of the DRAM you will see actually in a demo shortly. 
 
So that's the general response of this network that I have here to an 
input VI that happens at t=0. Now, the one thing that you recognize 
immediately is that it really doesn't matter what the value of VI was 
for t less than zero. 
 
What really counts is the value of VI at t=0. And that's the value that 
we're interested in. Now, there is an implicit statement in that. And 
that statement is that somehow that network appears like this at t=0. 
 
So, there has to be some switch there, and you will see that, that 
basically starts my condition to that at t=0. And so the history of VI 
really doesn't matter. The response following that equation that we 
have there will depend on the initial value which is vc(0) here. 
 
Now that is the voltage on the capacitor at that time. And then 
assuming that VI is a value that is larger than vc(0) will have a rising 
exponential that will come to this value. And this is the time constant 
RC and this is time. 
 
So, the capacitor starts with some voltage here and goes to a new 
voltage that is imposed by the input for time greater than zero. We 
can define at any one time, say this time, this time, this time, this 
time the state of the capacitor. 
 
The state. What is the state of the capacitor? The state is the 
summary of all inputs that are relevant to predicting the future. If I 
know the state of the capacitor this time, I can predict what it is going 
to go given a response VI here in the future. 
 
So, predicts the future. Now, what is the state variable on the 
capacitor? What is actually stored on the capacitor? You can say, well, 
what is stored is voltage. The real physical quantity that is stored is 



the charge q which is for linear capacitors related to the voltage, let 
me actually write it correctly, vc like this. 
 
So, the real state variable is this. But for a linear capacitor, since there 
is one-to-one relationship between the two, v is also a state variable. 
OK, so let's then go back to our original circuit. 
 
What we have is -- -- vc(t), so that's the future value of the voltage on 
the capacitor, is a function of vc(0), the initial value and the variable 
input now in the future time. And for the case of vI(t) being constant 
VI for t greater or equal than zero we have the equation that we just 
described. 
 
Nothing new. All the past inputs to the capacitor for time t less or 
equal to zero is summarized in this value. And vi being constant the 
future is predicted from that. So, that's the concept of the state. 
 
There is an initial state on the capacitor. And then there is a final state 
that will be reached when equilibrium actually is achieved. There is a 
fair amount of discussion in the text, and we don't go in great detail 
here, but it is both convenient for analysis and also it's interesting in 
many cases to look at the response of a linear network for two 
different conditions. 
 
So, we're interested in two cases. One is the so-called zero state 
response. Now, what is the zero state response? It's the response to a 
condition in which we impose an input and impose also the condition 
that the initial value, initial state of the capacitor is zero. 
 
So then we ask how does it respond to vi(t)? So, starting with a 
capacitor at zero state what is the response? It allows us to decouple 
the initial conditions from the response to the input. Now, you will see 
that this is actually very useful. 
 
The second condition to which we're also very interested is the so-
called zero input response. What is that? That is vi(t)=0. Now, it's the 
condition under which there is no input. vi(t)=0. The question here is 
how does it relax? We're starting with an initial state. 
 
So, how this state relaxes out in the circuit. Now, the zero state 
response, this one here is Z so called SR for our case, which I will 
write like this, vC, ZSR is simply a rising exponential. We start from 
zero and we go to VI. 
 



So, it's VI-VI e^–t/RC. So, that's the ZSR. The ZIR, the zero input 
response is like this. It's the decay of the initial voltage on the 
capacitor to zero or to equilibrium. Starting from vC(0) we're decaying 
like this. 
 
Now, do you see something that's rather obvious from what's on the 
board in terms of ZIR and ZSR and the final complete answer which is 
there? They are specific cases, but how do they relate to the full 
answer? It's the sum. 
 
It's the superposition of the two. What basically we see here -- And 
that's actually a general statement, is that vC = vC,ZSR + vC,ZIR. 
Now, you may say this is trivial because we started from that, ended 
back in that from some very simple observations. 
 
However, we are not always solving networks for responses that are 
steps. The input voltage may be a ramp. We did that in recitation. Or, 
it could be an impulse. Or, it can be a more complicated function. 
 
Having this observation in place actually allows us to solve the 
problem rather neatly. If I have time at the end, I might come back to 
this. So, this is the same equation as I started with, arrived at from a 
principle of superposition of two different solutions. 
 
One application of state which can be, since we have energy storage 
element here, the capacitor, which can be stored on the capacitor is in 
memory. And you may ask, so why do we need a memory node to 
perform logic? Well, there are cases in which a result depends on 
previous results. 
 
So, a computation proceeds in time. In order to do that, we need to 
store intermediate results and proceed forward. One good example is 
if you're doing a continuous summation, say, on your calculator, you 
keep putting things in the memory. 
 
The M+ button, right? And you keep adding a series of numbers. Every 
time we store the sum of the previous operation we add another 
number and so on. Clearly we need some way of storing state. For a 
complete computing system, we need combinational logic and we need 
memory. 
 
In fact, these are the two basic elements that are essential for any 
kind of computing system. We need to remember intermediate results. 
We need to remember transient inputs. And that's the role that all 



these enormous amount of memory that comes to play in computers is 
doing. 
 
The basic memory abstraction is as follows. Imagine a block which 
needs to be populated by transistor, resistor, capacitor, whatever 
elements. And it has a control input, which we will call the store. 
 
It has a state input that we will call dIN and has an output dOUT. 
When we're telling this element, OK, now it's time to store, it looks at 
the input dIN and stores it for, in principle, an infinite amount of time. 
 
If we were to make a drawing of this, of what this looks like, let's 
suppose, let me do all this in one axis. So, time moves this way. Let's 
suppose that we have an input dIN that looks like this, and the store 
command comes in the form of a logic. 
 
Let's actually suggest here this is logic one, this is logic zero. And, 
although this is not absolutely necessary, let's also define that the 
store command comes in the form of a logic one at this store input. 
 
Store, let's say, looks like this. What does the output look like then in 
this particular case? Assuming that the output was dOUT, the stored 
element was zero prior to the store, then the output would look like 
this. 
 
This is dOUT. As you can see, it would remember the one that it saw 
at this point. In fact, it would do that irrespective of what was stored 
in this memory cell. For example, suppose it was storing one and the 
output didn't change, it's still one. 
 
If it was storing a zero, it would flip to a one. If we had another store, 
let's say here, then what happens? Then it would go back down to zero 
because now we sampled an input that is zero and we flipped the 
state. 
 
That's what a memory -- -- element or cell would do for us. It would 
remember the output state. And, not only that, but in principle it 
should be undisturbable. In other words, I may do something to this 
dOUT but it should not flip the state. 
 
And that comes about quite a bit. Because in actual integrated circuit 
memory there is lots and lots and lots of nearest neighbors to this cell 
which, when they're flipped, have a cross-coupling to the cell. 
 



The cell must be designed robust enough that it doesn't flip, that no 
coupling actually occurs. All right. Now we're going to try to apply 
what we've learned so far to invent a basic memory element. 
 
And, believe it or not, this is the key to the DRAM. Let's implement this 
in a circuit. Suppose I have a switch here like this. And I will put a 
capacitor. I take my dOUT here. This is dIN. And the switch is 
operated by a command here that we will call store. 
 
When store is one it goes up. When store is zero it is down here. 
That's capacitor C. This is the storage node. What are we actually 
storing in this case? Let's suppose that this voltage here is 5 volts. 
 
I flip the switch up to one and I flip it back down to zero. What's the 
voltage in this capacitor here? 5 volts. Now the capacitor is at 5 volts, 
I put dIN to ground, flip the switch back up and then back down to its 
known storing condition. 
 
What's the voltage in the capacitor? It's zero, exactly. So, it does store 
the value of the voltage that it saw, five or zero, high and low. It 
stores it because it stores charge. That's actually the physical quantity 
that's stored. 
 
It's manifested as a voltage, which we see. All right. Now, is this, oh, 
before I move from here. What is the basic cell in a DRAM, one that 
you go out and buy by the billions of cells? It's actually this. 
 
The only difference is that this switch here is replaced with a MOSFET. 
And that's all it is. So, a MOSFET plays the role of the switch. When 
the gate is high this is a resistor and connects the input to the 
capacitor. 
 
And when the gate voltage is below the threshold voltage this is an 
open, as we've seen, and it isolates the transistor from the output. So, 
that's the basic memory element. And, as I said, it's the key to a 
DRAM. 
 
OK. Now let's consider a little bit the conditions of operation of this 
thing. Let me draw the circuit in two conditions. One in which it is 
storing, one in which it is sampling and one in which it is storing. 
 
Not to redraw this thing. Assuming that I have a MOSFET there, I 
would have the on resistance in place here when store=1. Now, in 



principle, the output is connected to -- -- some load resistance. We'll 
talk a little bit more about this load resistance in a minute. 
 
This is the situation when we are at store=1 situation. For example, 
let's suppose that dIN is 5 volts. Now, what is the situation for 
store=0? It's very simple. We have the capacitor C and dOUT and here 
we have a resistance. 
 
The switch is open. This is store=0 condition. What we have in this 
case is we have a problem similar to what I was discussing earlier. It is 
a ZIR, if you like, situation. And this you can think of as a ZSR if we're 
starting with zero charge on the capacitor, but I'm interested in this 
part. 
 
In this case, I am starting with a vC(0)=5 volts. And I'm asking myself 
how long will this cell hold the value? And, in fact, that is actually what 
happens in a dynamic RAM. The value on the capacitor is not stored 
forever. 
 
In fact, that's why we call it dynamic because we have to come back 
and restore it every once in a while. For how long are we going to 
store the charge? What's the response of vc for t greater than zero 
after the switch flicked? It's very simple. 
 
It's vc is equal to 5 volts e to the minus t over RC, right? That's the 
response. We have a decay. And applying to the things we know. We 
start from 5 volts, let's say here, I have a decay going down towards 
zero, at some point we are going to cross the threshold for high. 
 
The only period in which I have a valid output, if the capacitor was 
storing a one, is this period here. This is the only period in which I 
have valid stored one because, once I go beyond capital T here, I have 
crossed the legal limit, threshold for discriminating a high output. 
 
And from then on the output is no longer valid. So, this memory is 
good provided time is less than capital T. It's not a case in which the 
capacitor can hold charge forever. In fact, we can calculate, that is we 
can solve for T in this particular case. 
 
It's in your notes. Nothing really profound. T is equal to minus RC log 
VOH over 5 volts. So, this is basically what the response is going to 
be. Now, there is an implicit assumption here, which is that the store 
pulse width is much, much larger than RON C. 
 



In other words, when we want to store a one here starting from zero, 
we better charge it all the way up to 5 volts in the time that our switch 
is connected here. And what is the relevant time constant? It's going 
to be the RON C. 
 
In fact, it's actually the RON parallel RL with C. But typically RON is 
much, much less than RL so we don't have to worry about that. 
Dominant time constant is RON C. So, provided these things are 
happening, we have a memory. 
 
Now, we can try to improve things a little bit. We see here that we will 
have a decay to an invalid state in time T. How can we improve 
things? One way to improve things are the buffer. Here is our memory 
element again. 
 
Here is the capacitor. This is the storing node. Now I am going to put 
the buffering effect. I am going to put two buffers here. Two invertors, 
I should say, because if I am storing a one here I want to be able to 
see a one here as well. 
 
And, in this case, what I am looking at is the RIN of the buffer. And, in 
principle, I have out here the RL. Now, this is better because if RIN is 
much larger than RL then the time T, in this case, is much larger than 
the case without buffer. 
 
So, we buffer the effect of VL. This could be one of these neat circuits 
we saw in recitation like a source faller, for example, or it can be just 
an inverter in which case you just see the input of a transistor. 
 
So, now this condition can be satisfied. Let me give you some cases 
which are some numbers that are typical for a dynamic RAM. Typical 
times we're talking about is RIN on order of 1 gigaohm and storage 
node capacitor on order of 1 femtofarad to one picofarad. 
 
Now, if you can do the math in your head, which is just multiplication, 
you will see that the time constant, the RC is between 1 millisecond to 
1 microsecond. And for DRAMs, actually, we try to be in the order of 
milliseconds. 
 
These are the times we're talking about. If I have this kind of circuit, 
somehow there has got to be additional circuitry that comes back, 
samples the voltage here and restores it. And that is actually what is 
happening in a DRAM. 
 



And my laptop is working there and its DRAM keeps getting refreshed 
every, say, millisecond or whatever the condition is. But, in our case, 
we are going to do a slightly different case in which we will create a 
static memory. 
 
Let's actually look at, first of all, the case of the discharge. Pay 
attention to, let me actually break the loop here. This is my capacitor. 
This is a resistor that is in series with a capacitor like you see here. 
 
Actually, I am going to keep that resistor in series with the capacitor, 
even in this case, because I have it for my second part of my example. 
I charge the capacitor to 5 volts. And you can see here this lights up, I 
hope everybody can see it, proportional to the voltage that I have 
here. 
 
From here on it's all logic levels. So, the intensity of light here will 
always be the same. It's either lit or it's not lit. Right now I am 
charging the capacitor. In fact, let's see. Maybe I can discharge the 
capacitor first. 
 
Here the capacitor is discharged. As you can see, the input is zero, the 
output is a one, and then the output of this inverter here is a one. I 
have two inverters in series. And I am going to charge the capacitor. 
 
I charged it to 5 volts and this lit up, this is off of course, that's an 
inverter, this is a valid zero, produce a valid one. And now I am going 
to take the input out. As you can see it's stored. In fact, we have to 
wait for a very long time. 
 
We don't have enough time to wait for this to discharge, so instead 
what I am going to do now is I am going to add also the resistor. Now 
I am going to flip the resistor in parallel with the capacitor to imitate 
what happens when we have an input resistance. 
 
You saw that there was a discharge of the capacitor. This input level 
went down. Voltage here flipped over to a one. Let me do it again now 
with a resistor in place. Storing charge on the capacitor. 
 
That's the store command. Now, don't store. I have less, about a 
second. The element here is 20,000 microfarads and 100 ohms which 
gives me a time constant of two seconds. Assuming a VOC of the order 
of, let's say, I don't know what it is for this case, 2.5, the log would be 
about 0.5, so it cuts basically the time to about one. 
 



So, it lasts about one second, if my math is all correct. It's actually a 
little longer than a second, excuse me, but the point is that the charge 
is gone. Now, notice, however, that there is something I can do here, 
which is that suppose I take the switch or a switch and bring it back 
and provide a path from the output to the input here. 
 
And this switch is open when this is closed and closed when this is 
open. So, this basically is the compliment of store. What I am doing 
now is I put a charge here, it produces a valid one at this point, and 
then I am feeding this valid one back to the input. 
 
As you can see, this will now allow me, even though I have a high 
resistance, to store the value for a long time. In this case, what I am 
going to do is I am going to connect the output, as you can see here. 
 
And I have my resistor in. And I am storing zero here, storing 5 volts. 
Now I am going to flip the switch. Basically, I mean the don't store, 
don't look case. You notice this dims a little bit. Sorry. 
 
No, I want the resistor in. There. Yes. OK, so the output remain value. 
This dimmed a little bit but the output has remained OK. All right. So, 
we've provided a feedback. Now we've created a static memory. 
 
This will hold charge for as long as the circuit is powered up. Now, 
there is still one little problem that I have with this kind of 
configuration. And that is if I disturb this output the charge may, the 
state may change. 
 
So, for example, let's say that I have -- I disturbed it by coming close 
to it, so let's charge it again. OK. I flipped the switch. I flipped the 
state from the output. That is an invalid condition. 
 
I shouldn't be able to do that. How do I avoid that? How can I avoid 
this problem that you just saw? Well, I need yet another buffer. The 
answer is in your notes. If I don't take the output here but rather take 
the output here, or if I don't want an inverted output, if I don't want 
an inverted output, I could put yet another element there. 
 
Then the situation would be fine. In this case, let me do it again. 
Charge. Why isn't this lit? A bad one? Now, of course we disturbed the 
input. Now, of course I can do anything I want here. Nothing happens, 
but you may say this is a trivial case because this is already zero. 
 



So, I am going to change the state. Here's is the changed state. See. I 
can show this. Nothing happens up there. So, this is an interesting 
situation in which I am buffering the output so that the output does 
not feed back to the input. 
 
And, by and large, in designing circuits this is something that we do. 
Now, in the remaining three minutes there is an example that we 
have. Can we put the laptop here? OK, so here is an example of how 
memory can be put together now to create something a little bit more 
complicated. 
 
And you can see the memory cells that we were discussing here. 
There's four of them, so this is a four bit memory. There is a decoder 
at the beginning here which decodes the address of each cell, so the 
input here will tell me which cell I need to address. 
 
Let's look at the truth table. This is the truth table for the decoder. As 
you can see, depending on the address that I have here, this is zero, 
one, two and three in a binary system, only A, B, C or D is up, is high. 
 
Which means that this end operation here only allows the input that is 
presented to all of the cells, what is going through the AND gate here 
to appear at the output. If, for example, we have a one, zero, the only 
end input that is going to be high is going to be this one. 
 
And that means the only cell that will look at the input when the store 
comes up is going to be this one here. At that point it will store 
whatever is on the input cell because that's an AND operation. 
 
That is a simple example of a memory. And following that simple 
arrangement you can build incredibly large memory systems. So, 
that's all I had for today. And I will see you on Tuesday. 


